Journal of
Software

Engineering

ISSN 1819-4311

@

Academic
Journals Inc. www.academicjournals.com

Tournal of Software Engineering 4 (3): 193-214, 2010
ISSN 1819-4311
© 2010 Academic Journals Inec.

A Test Case Prioritization Method with Practical Weight Factors
Siripong Roongruangsuwan and Jirapun Daengde;j

Autonomous System Research Laboratory, Faculty of Science and Technology,
Assumption University, Thailand

Abstract: Statistics gathered m past research show that testing, analysis and
debugging costs usually consume over 50% of the costs associated with the
development of large software systems. Specifically, regression testing has been
shown to be a critically important phase of software testing and many techniques
have been proposed that reduce effort, time and cost of testing, such as test case
prioritization techniques, regression selection techniques and test case reduction
methods. This study concentrates on a survey of test case prioritization techniques.
This study classifies and organizes existing test case prioritization techniques
researched since 1998 mto four categories: (a) customer requirement-based
techniques (b) coverage-based techniques (¢) cost effective-based techniques and
(d) chronographic history-based techniques. Also, this study resolves the
following research problems: (a) ignoring practical weight factors (b) inefficient test
case prioritization methods and (c¢) ignoring the size of test cases. In brief, the
contributions are to: (a) collate a comprehensive set of test case prioritization
techniques (b) compare these test case prioritization techniques and identify the
limitations of each technique (c) propose a new classification of test case
priortization techniques (d) introduce a new continuous test case prioritization
process () propose a new test case prioritization method along with a practical set
of weight factors and (f) define specific research issues and guide future research
of test case prioritization methods.

Key words: Test prioritization, prioritization method, practical prioritization
method, prioritization weight factor and prioritization process

INTRODUCTION

Software testing is a comprehensive set of activities conducted with the intent of finding
errors in software. Tt is one activity in the software development process aimed at evaluating
a software item, such as system, subsystem and features (e.g., functionality, performance and
security) against a given set of system requirements. Also, software testing 1s the process
of validating and verifying that a program functions properly. Many researchers have proven
that software testing is one of the most critically important phases of the software
development life cycle and consumes significant resources in terms of effort, time and cost.

Bement (NIST, 2002) said that The impact of software errors is enormous because
virtually every business in the United States now depends on software for the development,
production, distribution and after-sales support of products and services. Innovations in
fields ranging from robotic manufacturing to nanotechnology and human genetics research

Corresponding Author: Siripong Roongruangsuwan, Autonomous System Research Laboratory,
Faculty of Science and Technology, Assumption University, Thailand
193

J. Software Eng., 4 (3): 193-214, 2010

have been enabled by low-cost computational and control capabilities supplied by
computers and software. Also, a study conducted by NIST in 2002 reports that software
bugs cost the US economy $59.5 billion anmually. More than a third of this cost could be
avolded if better software testing was performed (NIST, 2002).

Beizer (1990) claimed that software testing should take around 40-70% of the time and
cost of the software development process. Many approaches have been proposed to reduce
time and cost during software testing process, including test case prioritization techniques
and test case reduction techniques. For example, Srikanth (Srikanth and Williams, 2005;
Rothermel et al., 1999-2001a; Tonella et al., 2006) and (McMaster and Memon, 2005-2006).
Also, many empirical studies for prioritizing test cases have been conducted, like (Qu et ol.,
2008; Kim et al, 2000, Clempner and Medel, 2006, Graves et al., 2001, Yu et al., 2008;
Rothermel et ai., 1998-1999).

Furthermore, Rothermel (Rothermel and Harrold, 1996) gave an interesting justification
of test case prioritization as follows: One of the industrial collaborators reports that for one
of its products that contains approximately 20,000 lines of code, runming the entire test suite
requires seven weeks. In such cases, testers may want to order their test cases so that those
test cases with the highest priority, according to some criterion, are run first”. They have
proven that prioritizing and scheduling test cases are one of the most important tasks during
software testing process.

Test case prioritization techniques prioritize and schedule test cases in an order that
attempts to maximize some objective function. For example, software test engineers might
wish to schedule test cases in an order that achieves code coverage at the fastest rate
possible, exercises features in order of expected frequency of use, or exercises subsystems
in an order that reflects their historical propensity to fail. When the time required to execute
all test cases in a test suite is short, test case prioritization may not be cost effective - it may
be most expedient simply to schedule test cases in any order (Rothermel ef af., 2002). When
the time required to run all test cases in the test suite 1s sufficiently long, the benefits offered
by test case prioritization methods become more sigmficant.

Although, test case prioritization methods have great benefits for software test
engineers, there are still outstanding major research 1ssues that should be addressed. The
examples of major research 1ssues are: (a) existing test case prioritization methods ignore the
practical weight factors in their ranking algorithm (b) existing techniques have an inefficient
weight algorithm and (c) those techniques are lacking automation during the prioritization
process.

Software testing has been widely used as a way to help engineers develop lugh-quality
systems. Testing is an important process that is performed to support quality assurance by
gathering information about the nature of the software being studied (Harrold, 2000). These
activities consist of desigming test cases, executing the software with those test cases and
examining the results produced by those executions (Beizer, 1990) indicates that more than
fifty percent of the cost of software development 1s devoted to testing with the percentage
for testing critical software being even higher. As software becomes more pervasive and is
used more often to perform critical tasks, the importance of its quality will remam high.
Unless engineers can find efficient ways to perform effective testing, the percentage of
development costs devoted to testing may increase significantly.

Software Testing is an empirical investigation conducted to provide stakeholders with
information about the quality of the product or service under test (Kaner, 2006), with respect
to the context in which it is intended to operate. Software Testing also provides an objective,

194

J. Software Eng., 4 (3): 193-214, 2010

independent view of the software to allow the business to appreciate and understand the
risks of implementation of the software. Test techmques include the process of executing a
program or application with the intent of finding software bugs. It can also be stated as the
process of validating and verifying that software meets the business and technical
requirements that guided its design and development, so that it works as expected. Software
Testing can be unplemented at any time in the development process; however, the most test
effort 1s employed after the requirements have been defined and coding process has been
completed.

The next sections present technicues to reduce effort, time and cost during the software
testing phase, including test case prioritization and test case reduction technicues to help
testers reduce the time and cost required for running test cases.

Software engineers generally save test suites that they develop so that they can easily
reuse those suites later as the software evolves. Reusing test cases in regression testing
process is pervasive in the software industry (Onoma et al., 1998) and can save as much as
one-half of the cost of software mamtenance (Beizer, 1990) However, executing a set of test
cases 1n an existing test suite consume a huge amount of time.

Rothermel et al. (1999-2001a) gave an mteresting example as follows: one of the
industrial collaborators reports that for one of its products that contains approximately 20,000
lines of code, runmng the entire test suite requires seven weeks. In such cases, testers may
want to order their test cases so that those test cases with the highest priority, according to
some criterion, are run first. This has proven that prioritizing and scheduling test cases are
one of the most important tasks during regression testing process.

Test case prioritization techniques prioritize and schedule test cases in an order that
attempts to maximize some objective function. For example, software test engineers might
wish to schedule test cases in an order that achieves code coverage at the fastest rate
possible, exercises features mn order of expected frequency of use, or exercises subsystems
in an order that reflects their historical propensity to fail. When the time required to execute
all test cases m a test suite 1s short, test case prioritization may not be cost effective - it may
be most expedient simply to schedule test cases m any order. When the time required to run
all test cases in the test suite 13 sufficiently long, the benefits offered by test case
priorntization methods become more significant.

Test case prioritization technicues provide a way to schedule and run test cases, which
have the highest priority earliest in order to provide earlier feedback to software testing
engineers and earlier detect faults. This study presents numerous techniques developed,
between 2002 and 2008, that can umprove a test suite’s rate of fault detection

Rothermel et al. (2002) mentioned that the test case prioritization process is required for
software testing because: (a) the regression testing phase consumes a lot of time and cost
to run and (b) there 1s not enough time or resources to run the entire test suite, therefore (c)
there is a need to decide which test cases to run first.

This study introduces a new 4C classification of test case prioritization techmques
researched 1n 1998-2008, based on their characteristics, as follows:

* Customer Requirement-Based Techniques: Customer requirement-based techmques
are methods to prioritize test cases based on requirement documents. Many researchers
have researched this area, such as (Srikanth and Williams, 2005; Zhang et al., 2007,
Nilawar and Dascalu, 2003). Also, many weight factors have been used in these
techniques, including custom-priority, requirement complexity and requirement volatility

195

J. Software Eng., 4 (3): 193-214, 2010

¢+ Coverage-Based Techniques: Coverage-based techniques are methods to prioritize test
cases based on coverage criteria, such as requirement coverage, total requirement
coverage, additional requirement coverage and statement coverage. Many researchers
have researched this area, such as (Leon and Podgurski, 2003; Rothermel et al., 1999-
2001a; Bryce and Colbourn, 2006)

* Cost Effective-Based Techniques: Cost effective-based techmques are methods to
prioritize test cases based on costs, such as cost of analysis and cost of prioritization.
Many researchers have researched this area, for instance (Malishevsky et al., 2002,
2006; Elbaum et al., 2004)

¢+ Chronographic History-Based Techniques: Chronographic history-based techniques
are methods to prioritize test cases based on test execution history. A few researchers
have researched this area, for example (Kim and Porter, 2002; Qu ef al., 2007b)

The following sections describe the above techniques in detail.

Customer Requirement-Based Prioritization Techniques

Srikanth and Williams (2005) presented the requirements-based test case prioritization
approach to prioritize a set of test cases. They built upon current test case prioritization
techniques (Elbaum et af., 2002) and proposed to use several factors to weight (or rank) the
test cases. Those factors are the customer-assigned priority (CP), Requirements Complexity
(RC) and Requirements Volatility (RV). Additionally, they assigned value (1 to 10) for each
factor for the measurement. They stated that higher factor values indicate a need for
prioritization of test case related to that requirement.

Weight prioritization measures the important of testing a requirement earlier

WP = % (PF..* PFosgn), PF =1 ton
Where:

* WP represents weight prioritization that measures the mmportance of testing a
requirerment

¢ PF,.. represents the value of each factor, like CP, RC and RV

¢ PF,., represents the weight of each factor, like CP, RC and RV

Test cases are then ordered such that the test cases for requirements with lugh WP are
executed before others.

Srikanth et al. (2003) were interested in two particular goals of test case prioritization
approaches: (&) to unprove user perceived software quality in a cost effective way by
considering potential defect severity and (b) to improve the rate of detection of severe faults
during system level testing of new code and regression testing of existing code. They
presented a value-driven approach to system-level test case priortization called the
Prioritization of Requirements for Test (PORT). PORT prioritizes systemn test cases based
upen four factors: Requirements Volatility (RV), Customer Priority (CP), Implementation
Complexity (IC) and fault proneness of the requirements (FP). They proposed the following
formula to prioritize test cases:

PFV,=Y"_(FactorValue, * FactorWeight,)

196

J. Software Eng., 4 (3): 193-214, 2010
Where:

* PFV, represents the prioritization factor value for requirement 1

¢ FactorValue; represents the value for factor j for requirement 1

¢ FactorWeight, represents the factor weight for the jth factor for a particular product. PFV
is a measure of the importance of testing a requirement

A value-matrix representation of PFV for requirements 1s shown below where PFV (P) 15
the product of value (V) and weight (w).

P = Vw (PEV,..PFV,., = (R R, R RS R¥ R RF . RT). (W Wee Wi
WRV)(4*1)

Where:

* PFV, represents prioritization factor value for requirement 1, which 1s the summation of
the product of factor value and the assigned factor weight for each of the factors

*+ R, represents requirements coverage of each test case

* W, represents a weight measurement for CP factor

* Wy represents a weight measurement for RC factor

¢ Wy represents a weight measurement for FP factor

¢ W represents a weight measurement for RV factor

The computation of PFV1 for a requirement 1s used in computing the Weighted Priority
(WP) of its associated test cases. WP of the test case is the product of two elements: (a) the
average PFV of the requirement(s) the test case maps to and (b) the requirements-coverage
a test case provides. Requirements coverage 1s the fraction of the total project requirements
exercised by a test case. Let there be n total requirements for a product/release and test case
jmaps toi requirements. WPj is an indication of the priority of running a particular test case.
WP is represented as below:

WEj = (¥ PEV./Y L PFV,)*(1/n)
Where:

¢« WPjis an indication of the priority of running a particular test case
+ PFV, represents prioritization factor value for requirement i, which is the summation of
the product of factor value and the assigned factor weight for each of the factors

The test cases are ordered for execution by descending value of WP such that the test
case with the highest WP value is run first.

All the above techniques rely on the assumption that testing requirement priorities and
test case costs are uniform, however mn practice these can vary widely. For the former, testing
requirement priorities can change frequently during software development and the uniformly
categorized testing requirements specification often fail to address stakeholder values
(Boehm and Huang, 2003; Karlsson and Ryan, 1997; Mogyorodi, 2001). For the latter, test
cases usually require different execution time and resources. Obviously, testing requirement
priorities and test case costs should have a great impact on the prioritization of those test

197

J. Software Eng., 4 (3): 193-214, 2010

cases and so the existing prioritization techniques and the corresponding metrics should be
adapted to incorporate them. Zhang et al (2005) proposed a new, general test case
prioritization techmque and associated metric based on varying testing requirement priorities
and test case costs. They proposed an algorithm that weights test cases by the following
factors: (a) test history (b) additional requirement coverage (c) test case cost and (d) total
requirement coverage.

Nilawar and Dascalu (2003) proposed an approach for test case generation for web
based applications. One of their generation processes 1s the prioritization of test cases. They
presented a simple approach for test case prioritization through the requirement traceability
matrix. The matrix can be produced by mapping from use cases in the Use Case diagram to
functional requirements from users. They also proposed sumply to use weight values
assigned to each requirement by developers. Each requirement 1s assigned a priority weight
from 1 to 10, 10 being highest.

Coverage-Based Prioritization Techniques

Test coverage analysis 15 a measure used in software testing known as code coverage
analysis for practitioners. Tt describes the quantity of source code of a program that has been
exercised during testing. Tt is a form of testing that inspects the code directly and is therefore
a form of white box testing. The following lists a process of coverage-based techniques: (a)
finding areas of a program not exercised by a set of test cases (b) creating additional test
cases to increase coverage (¢) determining a quantitative measure of code coverage, which
is an indirect measure of quality and (d) identifying redundant test cases that do not increase
coverage. The coverage-based techmque s a structural or white-box testing technique.
Structural testing compares test program behavior against the apparent mtention of the
source code. This contrasts with functional or blaclk-box testing, which compares test
program behavior against a requirements specification. Structural testing examines how the
program works, taking into account possible pitfalls in the structure and logic. Functional
testing examines what the program accomplishes, without regard to how it works internally.
The coverage-based techniques are methods to prioritize test cases based on coverage
criteria, such as requirement coverage, total requirement coverage, additional requirement
coverage and statement coverage. The following paragraphs present coverage-based
priortization techniques that have been proposed.

Leon and Podgurski (2003) presented an empirical comparison of four different
techniques for filtering large test suites: test suite minimization, prioritization by additional
coverage, cluster filtering with one-per-cluster sampling and failure pursuit sampling. The
first two techniques are based on selecting subsets that maximize code coverage as quickly
as possible, while the latter two are based on analyzing the distribution of the tests’
execution profiles (Leon and Podgurski, 2003).

Rothermel e al. (1999-2001a) have researched and surveyed test case prioritization.
They considered mine approaches for prioritizing a set of test cases and reported results
measuring the effectiveness of those approaches to improve the capability to reveal faults.
They proposed the following techniques: (a) random approaches (b) optimal prioritization
(c) total branch coverage prioritization (d) additional branch coverage prioritization (e) total
statement coverage prioritization (f) additional statement coverage prioritization (g) total
fault-exposing-potential ~ prioritization and (h) additional fault-exposing-potential
prioritization.

Bryce and Memon (2007) described an algorithm for re-generating prioritized test suites.
The generated test suites are a special kind of a covering array called a biased covering array.

198

J. Software Eng., 4 (3): 193-214, 2010

They began by defining a set of interaction weights for each value of each factor. For each
factor the weight of combimng it with each other factor is computed as a total mteraction
benefit. The factors are sorted in decreasing order of interaction benefit and then filled as
follows. First, the individual interaction weights for each of the factor’s values are computed.
This selects the value of the factor that has the greatest value interaction benefit. After all
factors have been fixed, a single test has been added and the benefits for factors are
recomputed and the process starts again. The algorithm is complete when all pairs have been
covered.

Leon and Podgurski (2003) believed that test case filtering is closely related to the field
of test case prioritization. The goal of test case filtering is to select a relatively small subset
of a test suite which finds a large portion of the defects that would be found if the whole test
suite were to be used. In their study they presented an empirical comparison of four different
techniques for filtering large test suites: test suite minimization, prioritization by additional
coverage, cluster filtering with one-per-cluster sampling and failure pursuit sampling. Their
results indicate that their techniques can be as efficient as or more efficient at revealing
defects than coverage-based techniques, but that the two kinds of techniques are also
complementary in the sense that they find different defects. Accordingly, some simple
combinations of these techniques were evaluated for use in test case priontization. The
results indicate that applying this combination of techniques can produce results more
efficiently than applying prioritization by additional coverage alone.

The test case prioritization techniques studied (Korel and Al-Yami, 1998; Brottier et al.,
2006) are primarily based on variations of the total requirement coverage and the additional
requirement coverage of various structural elements in a program. For instance, total
statement coverage prioritization orders test cases in decreasing order of the number of
statements they exercise. Additional statement coverage prioritization orders test cases in
decreasing order of the number of additional statements they exercise that have not yet been
covered by the tests earlier in the prioritized sequence. These prioritization methods do not
take mto consideration the statements which influenced, or could potentially influence, the
values of the program output. Neither do they take into consideration whether a test case
traverses a statement or not while prioritizing the test cases. It 1s ntuitive to expect that the
output of a test case that executes a larger number of statements that influence the output,
or have the potential to influence the output, 1s more likely to be affected by the modification
than tests covering fewer such statements. In addition, tests exercising modified statements
should have lugher priority than tests that do not traverse any modifications.

Teffrey and Gupta (2006) presented a new approach for prioritizing test cases that is
based not only on total statement coverage (also known in that study as branch coverage),
but that also takes into account the number of statements executed that influence or have
potential to mfluence the output produced by the test case. The set of such statements
corresponds to the relevant slice, which is computed on the output of the program when
executed by the test case (Agrawal ef al., 1993; Korel and Laski, 1991; Gyunothy ef al., 1999).
The approach is based on the following observation: If a modification in the program has to
affect the output of a test case n the regression test suite, it must affect some computation
in the relevant slice of the output for that test case. Therefore, their heuristic for prioritizing
test cases assigns higher weight to a test case with larger number of statements in its
relevant slice of the output. They used the following factors in their approach to prioritize
test cases: (a) the number of statements m the relevant slice of output for the test case,
because any modification should necessarily affect some computation in the relevant slice
to be able to change the output for this test case and (b) the number of statements that are
executed by the test case but are not in the relevant slice of the output.

199

J. Software Eng., 4 (3): 193-214, 2010

Teffrey and Gupta (2006) ordered the test cases in decreasing order of test case weight,
where the weight for a test i3 determined as follows:

TW = Req slice + Req exercise
Where:

* TW represents a weight prioritization determined for each test case

+ ReqSlice represents a number of requirements presented in the relevant slice of output
for each test case

¢ Reqexercise represents a number of requirements exercised by the test case

Ties are broken arbitrarily. This criterion essentially gives single weight to those
exercised requirements that are outside the relevant slice and double weight to those
exercised requirements that are contained in the relevant slice.

Jones and Harrold (JTones and Harrold, 2001) presented new algorithms for test-suite
reduction and prioritization that can be tailored effectively for use with Modified Coverage
(MC) and Decision Coverage (DC). Most existing techmiques from researchers who have
been investigating test suite reduction (also referred to as test suite minimization) and
prioritization techmques consider a set of test-case coverage criteria such as, statements,
decisions, definition user associations and specification items. In their study, they focused
on MC and DC criteria as for test case reduction and prioritization, building on Rothermel’s
test case prioritization technique (Rothermel et al., 1999-2001b). Their approach uses total
requirement coverage and the additional requirement coverage to weight and schedule test
cases accordingly.

Cost Effective-Based Prioritization Techniques

Cost effective-based techniques are methods of prioritizing test cases based on costs,
such as cost of analysis and cost of prioritization. Many researchers have researched this
area. The following paragraphs present existing cost effective-based test case prioritization
techniques.

Leung and White (1991) presented a cost model for regression test selection. The
proposed model incorporates various costs of regression testing, including the costs of
executing and validating test cases and the cost of performing analyses to support test
selection and provides a way to compare tests for relative effectiveness. This model can be
appropriately applied to an effective regression test selection techniques (Rothermel and
Harrold, 1997), which necessarily select all test cases in the existing test suite that may reveal
faults.

However, Leung’s model does not consider the costs of overlooking faults due to
discarded tests. Alexey G. Malishevsky, Gregg Rothermel and Sebastian Elbaum
(Malishevsky et al., 2002) presented cost models for prioritization that take these costs into
account. They defined the following variables to prioritize test cases: cost of analysis, Ca(T)
and cost of the prioritization algorithm, Cp(T).

WP = Ca(T) + Cp(T)
Where:

« WPis a weight prioritization value for each test case

200

J. Software Eng., 4 (3): 193-214, 2010

¢+ Ca(T) includes the cost of source code analysis, analysis of changes between old and
new versions and collection of execution traces

* Cp(T) 1s the actual cost of rmming a priontization tool and, depending on the
prioritization algorithm used, can be performed during either the prelininary or critical

phase

Furthermore, Malishevsky (2002) divided the regression testing process mto two
phases: preliminary phase and critical phase. Preliminary phase activities may be assigned
different costs than critical phase activities, since the latter may have greater ramifications
for things like release time.

The cost of a test case is related to the resources required to execute and validate it.
Additionally, cost-cognizant prioritization requires an estimate of the severity of each fault
that can be revealed by a test case. Fault severity may be used to order tests by the same two
criteria listed previously. Previous works (Rothermel et al, 1999) have defined and
mvestigated various prioritization techmques. Meanwhile, Malishevsky et al (2006) and
Elbaum et al. (2000) focus on four practical code-coverage-based heuristic techmques. Those
four techniques are: total function coverage prioritization (fn-total), additional function
coverage prioritization (fn-addtl), total function difference-based prioritization (fn-diff-total)
and additional function difference-based prioritization (fn-diff-addtl).

Chronographic History-Based Prioritization Techniques

Chronographic history-based techniques are methods to prioritize test cases based on
test execution history. The following paragraphs present an overview of existing
chronographic history-based test case prioritization technicues.

Kim and Porter (2002) proposed to use information about each test case’s prior
performance to increase or decrease the likelihood that it will be used in the current testing
session. Their approach 1s based on ideas taken from statistical quality control (exponential
welghted moving average) and statistical forecasting (exponential smoothing).

Kim and Porter (2002) defined the selection probabilities of each test case, TC, at time,
t, to be P_t(H,, o), where H,_1s a set of t, ime-ordered observations {hl, h2, ... hn} drawn
from runs of TC and 4 13 a smoothing constant used to weight individual historical
observations. The higher values emphasize recent observations, while lower values
emphasize older ones. These values are then normalized and used as probabilities. The
general form of:

PisP,=h and P, = ch+ (1- @)P, . O<=a<=1,k> =1

when testing n a black box environment, source code related information 1s not available. In
such situations, practitioners only have output of test cases and other run-time mformation
available, such as the runmng time of test cases. Qu et al. (2007a) proposed a prioritization
technique based on this limited information. One general method of prioritization for black
box testing 1s to mitialize a test suite using test history and then adjust the order of the rest
of the test cases based on nm-time information. To guide the adjusting strategy, a matrix R
is used. They defined the matrix, R, to predict the fault detection relationship of test cases,
s0 once a test case revealed regression faults, related test cases can be adjusted to higher
priority to achieve a better rate of fault detection. Tet T be a test suite, let T' be a subset of
T and let R be a matrix which describes the fault detection relationship of test cases. Their

201

J. Software Eng., 4 (3): 193-214, 2010

general process of test case prioritization for black box testing can be described shortly as
follows: (&) select T' from T and prioritize T' using available test lustory (b) build a test case
relation matrix R based on available information (¢} draw a test case from T' and run it (d)
reorder rest test cases using run-time information and test case relation matrix R and (e)
repeat from step ¢ until testing resource is exhausted.

In the conclusion, this study mtroduces a new 4C type of test case prioritization
techniques, which are: (a) customer requirement-based techniques (b) coverage-based
techniques (c) cost effective-based techniques and (d) chronographic history-based
technicques. First, customer requirement-based techniques are methods to directly prioritize
test cases from requirement specifications. Second, the coverage-based technique is a
structural white-box testing technique. Third, cost effective-based techniques are methods
to prioritize test cases based on only cost factors, such as cost of analysis and cost of
prioritization. Last, the chronographic history-based techniques are methods to prioritize test
cases based on test execution history factors. All existing test case prioritization techniques
have their own advantages and disadvantages. Outstanding research issues are addressed
1n next section.

RESEARCH CHALLENGES

Here, provides details of the research issues related to test case prioritization techniques
that motivated this study:

¢ Ignore Practical Weight Prioritization Factors: Existing test case prioritization
methods consider a set of test-case coverage criteria (e.g., statements, decisions,
definition-use associations, or specification items), other criteria such as risk or fault-
detection effectiveness, or combmations of these criteria. They ignore the complex
practical criteria such as resource constraints, time and resource consumption,
configuration of software, customization of the application under test and other
computer language paradigms. Examples of existing techniques that ignore the
practical factors are: Srikanth’s method (Srikanth et af., 2005), Williams’s technique
(Srikanth et al., 2005) and (Zhang et af., 2008)

¢ Inefficient Ranking Algorithm for Test Case Prioritization: Existing test case
prioritization technicues propose a simple ranking algorithm. Some of them use a random
method for ranking. Some of them ignore the relevant knowledge for their ranking. For
example, Hema Srikanth (2005), Laurie Williams (Srikanth et af., 2005) and Gregg
Rothermel and Sebastian Elbaum (Malishevsky et al., 2002)

¢ Tgnore Size of Test Case: One of the purposes of test case prioritization and reduction
techniques 1s to minimize size of test cases as much as possible. Small test suites that
retain high fault detection are desirable

PROPOSED METHODS

Here, proposes a new 2R-23-3R continuous test case prioritization process. Also, this
section discusses a proposed method that resolves the above research problems. The
proposed method aims to: (a) include practical weight prioritization factors (b) improve the
ability to rank and schedule test cases during the prioritization process and (c) reserve a large
number of test cases with high priority.

202

J. Software Eng., 4 (3): 193-214, 2010

1. Select
Asetof |:> priortization
test cases techniques

®®<: s

i | 1. Re-assign!

Notes: weight

A prioritized value
[tnput/Output set of

test cases

[Jprices
I ~"JSub-process 3. Remdenngm i &
<> Decision cases

Fig. 1: A 2R-25-3R test case prioritization process

Test Case Prioritization Process

This section mtroduces a new 2R-25-3R continuous process to prioritize and schedule
test cases introduced by wing the above literature review and previous works
(Kosindrdecha and Roongruangsuwan, 2007; Roongruangsuwan and Daengdej, 2009). Also,
the new process includes a re-prioritization sub-process in order to ensure that the result of
prioritization is satisfied.

Figure 1 shows a proposed test case prioritization process. The proposed process is a
continuous process that allows users to continuously prioritize test cases until they are
satisfied with the result. However, it starts with a large number of test cases needed to be
prioritized. The process begins with a requisite process and follows with a reordering
process. [t sumply prioritizes test cases based on given prioritization technique, coverage
factors, weight value and priority value. The following elaborates the continuous process
in details.

From the Fig. 1, there are two processes in the test case prioritization techmque, which
break down briefly as follows:

* Requisite: This contains two sub-processes, which are:

* Select Prioritization Techniques: This sub-process is used to select type of test
case priorntization techniques. There are four types of techniques: (a) customer
requirement-based techmques (b) coverage-based techniques (c) cost effective-
based techniques and (d) chronographic history-based technique)

* Specify Coverage or Factors: This sub-process is used to identify type of factors.
There are many weight factors used in the test case prioritization techmques, such
as requirement, statement-coverage, code-coverage, function-coverage and cost-
benefit

* Reordering: This consists of three sub-processes described as below:

+ Re-assign Weight Value: This sub-process is used to assign weight value for each
test case in order to calculate weight prioritization value

*» Re-calculate Priority Value: This sub-process 1s used to calculate priority value
based on assigned weights and values for each weight prioritization factors

¢ Re-order Test Cases: This sub-process is used to schedule test cases based on the
higher prionty value

203

J. Software Eng., 4 (3): 193-214, 2010

Practical weight priortization factors
/On/stﬁmr\ Time factor Defect factor Complex factor
EC Ca CoDP CoV ET TCODP TSIV Teplx ReqCov Dep

Fig. 2: Practical weight prioritization factors

However, this study proposes to include a re-prioritize process in case that the result
of prioritization is not satisfied. All existing test case prioritization techniques do not include
that process. Those techniques assume explicitly that the result 1s always satisfied.

Practical Weight Factors

This study proposes the following practical factors to prioritize test cases.

Figure 2 introduces a comprehensive set of practical weight factors for test case
prioritization. This study proposes 13 factors that software test engineers should not ignore
while running a test case prioritization process. Those factors are valuable and key criteria
of a success of testing activities. The following describes them in details.

Figure 2, there are four groups of practical weight prioritization factors, which are: (a)
cost factors (b) time factors (¢) defect factors and (d) other factors. Those factors can be
described in table below.

Table 1 shows practical factors for test case prioritization activities along with their
explanation. The following describes the above factors in details: The above factors can be
elaborated as follows:

Hoffiman (1999) addressed many cost related factors, such as cost for test case
execution, cost of test results analysis including validation, cost of data preparation, into his
cost-benefits analysis model. This can imply that cost related factors proposed in this study
(i.e., EC, Ca, CoDP and CoV) are important and sensible. Also, Douglas described that the
time consumption factor, for data preparation (or TCfDP), i1s a common factor used in
software testing and should therefore be applied in prioritizing test cases. Additionally,
Douglas described that the dependency factor, called Dep in this study, is also a common
factor used in software testing and therefore researchers should focus on this factor during
the prioritization process.

Kalyana (2005) described that the time consumption for validation (or TCfV') factor 1s one
of the most important and practical metrics in the software testing field. It 1s related to the
effort required to validate results and find a defect. Also, Kalyana referred to the test impact
(or TT) factor as a business impact that affects end-users. This factor is widely used as
software testing metric. [gnormg this test may lead to the following problems: a) mcreased
failures due to poor quality b) increased software development costs ¢) increased time to
market due to inefficient testing and d) increased market transaction costs (NIST, 2002).

Cadar and Engler (2005), from Stanford Umiversity, argued that high cost 1s actually not
so important in some sense. They selected the execution time (or ET) to measure their
proposed technique in their experiment. This can imply that this factor is a significant factor
that should be mcluded.

In general, test cases that detect bugs should have higher priority, due to the fact that
those bugs will be fixed and are required to re-test again. This factor can be referred to the

204

J. Software Eng., 4 (3): 193-214, 2010

Table 1: Proposed practical weight prioritization factors

Factor Description

1. Cost lactors

Execution cost (EC) A total cost of running a set of test cases

Cost of analysis (Ca) Ca includes the cost of source code analysis, analysis of changes

between old and new wversions and collection of execution traces
(Malishevsky et al., 2002)

Cost of data preparation (CoDP) A total cost of preparing all input values for test cases

Cost of validation (CoV) A total cost of validating the expected result and actual result

2. Time factors

Execution time (ET) A total time of running a set of test cases.

Time consuming for data preparation (TCfDP) A total time for preparing all input values.

Time consumning for validation (TCfV) A total time for validating the expected result and actual result

3. Defect factors

Defects occurred (DO) An indicator of how many test cases have acknowledged defects after
execution.

Defects severity (DS) A dimension for classifying seriousness for defects. Possible values are:

showstopper, critical and minor severity.

4. Complex factors

Test case complexity (TCplx) The complexity of test cases. Measures how difficult and complex a test
case is (Srikanth et ., 2005). In addition, its complexity usually
determines the effort required to execute it (Aranha and Borba, 2006;
Tai, 1980; Tsui et ai., 2008)

Requirement coverage (ReqCov) Number of requirernents covered by test cases (Srikanth and Williams,
2005).Requirements coverage views can help wvalidate that all
requirements are implemented in the system (Lormans and van Deursen,

2005)

Dependency (Dep) A dependency of test cases. This factor describes how many pre-
requisites are required for each test case before execution

Test impact (TT) Tmpact of test cases. This factor assesses the importance of test cases, to

determine if test cases are not executed

defect discovery rate (also known as DO), one of the most widely used metrics in software
testing (Rajib, 2006).

The severity level of a defect indicates the potential business impact for the end user
(also known as DS). The business impact factor is equal to the effect on the end user
multiplied by the frequency of occurrence. This factor provides indications about the quality
of the software under test. A high-severity defect means low product/software quality and
vice versa. At the end of testing phase, this information 1s useful to make the release decision
based on the number of defects and their severity levels. Kalyana (Konda 2005) stated that
this factor is one of the most important and practical metrics in software testing. In addition,
Tulie and Mark reported that this factor is widely used in defect measurement system and is
always recorded in defect reports (Offutt et al., 1995). This consensus implies a significant
rationale for prioritizing test cases by defect severity level.

The literature reviews (Aranha and Borba, 2006; Tai, 1980; Tsui et al., 2008) reveal that
the complexity of a test case is one of the most important factors. The complexity determines
the effort required to execute test cases. Also, the literature review (Lormans and van
Deursen, 2005) reveals that requirement coverage, called ReqCov m this study, views can
help validate that all requirements are implemented in the system.

Multi Prioritization Method

This study proposes a new test case prioritization method with the above practical
weight factors, called Multi-Prioritization, in order to improve the ability to rank and prioritize
test cases. The following lists steps proposed in this study.

Assign weight for each factor (e.g., EC, Ca and DO) in each group (e.g., cost factors, time
factors, defect factors and other factors) by using 100-point method (Leffingwell and Widrig,

205

J. Software Eng., 4 (3): 193-214, 2010

/ Assgned weight mode \
Blance oriented Cost ariented Time oriented Defect oriented Complex orented Customization

Cost 25 points | Cost 100 points | Cost Opoims |Cost QO points | Cost 0 poinis Cost 8 points
Time 25points |Time Opoims |Time 100 poinis|Time Opoints |Time O points Time b points
Defect 25 points |Defect O poimts |Defect Opoints |Defect 100 poimts|Defect Opoints | Defect ¢ points
Complex 25 points | Complex 0 points | Complex 0points |Complex O points |Complex 100 points| Complex d points

‘Where: Cost Cost factar = EC, Ca, CoDP and CoTV
Time Time factor = ET, TCfDP and TCEV
Defect Defect factor = DO and DS
Complex Complex factors = TCplx, ReqCov, Dep and T1
a,b,candd anumber of customized points for each group

Fig. 3: Assigned-weight model

Table 2: Assiened-value model

Factors Scale assignment

EC A range between 1-5 by: 5 = Best, 4 = Very Good, 3 =Good, 2 =Poor and 1 =Bad.

Ca

CoDP

CoV

ET High, Medium and Low

TCDP

TCEV Where High denotes the scale from 80 to 100 points, Medium denotes the scale from 40 to 70 points and
Low denates the scale from 10 to 30 points.

DO True and False

Where True denotes 100 points and False denotes O point.

The 100-points method from (Leffingwell and Widrig, 2003) is applied to this scale assignment.
D3 Showstopper, Critical and Minor

Where Showstopper denotes 50 points, Critical denotes 40 points and Minor denotes 10 points.

The 100-points method from (Leffingwell and Widrig, 2003) is applied to this scale assignment.

ReqCov Scale from 1 to 10 where 1 is the minimurmn value and 10 is maximum value.
TCplx True and False
Dep Where True denotes 100 points and False denotes O point.

The 100-points method from (Leffingwell and Widrig, 2003) is applied to this scale assignment.

TI High, Medium and Low
Where High denotes the scale firom 80 to 100 points, Medium denotes the scale from 40 to 70 points and
Low denotes the scale from 10 to 30 points.

2003). Due to the fact that auto weight algorithm is beyond the scope of this study, however,
the structure of weight assignment 1s proposed as follows:

Figure 3 presents an assigned-weight model used in the proposed prioritization method
mn this study. There are six approaches to assign weights for each factors: (a) balance
oriented (b) cost oriented (c) time oriented (d) defect oriented (e) complex oriented and (f)
customization.

Balance oriented model assigns 25 pomts for each group (e.g., cost, time, defect and
complex). Cost oriented model focuses on only cost factors. Time oriented model assigns 100
points for all time factors. Defect oriented model also assigns 100 points for each defect
factor. Complex oriented model gives 100 points for complex factors as well. The last model
allows users to customize and give their own points for each group.

Assign a value for each test case. Due to the fact that auto-assigned value algorithm is
very complex and beyond the scope of this study, the following assigned-value model is
proposed.

Table 2 presents an approach of how to assign value for each factor in this study. This
study simply use three groups: (a) range between 1 and 5 (b) high, medium and low and (¢)
100 points technicque proposed by Leffingwell.

206

J. Software Eng., 4 (3): 193-214, 2010
Compute weight prioritization (WP) value for each test case as follows:
WP = Y'"_ (PF value; *PF weight,)
Where:

* WP 1s weight prioritization for each test case calculated from 13 factors
¢+ PFValue, is a value assigned to each test case
¢ PFWeight is a weight assigned for each factor

Order test cases by WP, such that higher WP gives a test case higher priority.

EVALUATION
Here, describes the experiments design, measurement metrics and results.

Experiments Design
An evaluation method for this experiment has been proposed in order to compare and
assess the proposed method with other current prioritization techmques, as follows:

¢ Prepare Experiment Data: The literature survey shows that most researchers prepare
experiment data to evaluate test case prioritization methods consisting of around 1,000-
8,000 test cases. Generate randomly 1,000 test cases with general format such as test
case id, test case description, input data and expected result

¢+ Run Prioritization Method: Prioritize those 1,000 test cases by using prioritization
methods. A comparative evaluation method has been made among the following
techmques: (a) random method (b) Hema’s technique (Srikanth et af., 2005) (¢) Alexy’s
cost-effective prioritization method (Malishevsky et al., 2002) and (d) the Multi-
Priontization method presented m previous section. The experiment data used i this
experiment 1s 1,000 test cases

+ Evaluate Results: In this step, the above comparative methods are executed to rank and
prioritize 1,000 test cases, for 10 times. This is because this study concentrates on the
average percentage of high priority reserve effectiveness, size of acceptable test cases
and total prioritization time. In total, there are 10,000 test cases executed in this
experimertt

Measurement Metrics

The section lists the measurement metrics used in the experiment. This study proposes
to use three metrics, which are: (a) percentage of high priority reserve effectiveness (b) size
of acceptable test case and (c) total prioritization time. Test case prioritization techniques aim
to identify and schedule lugh-priority test cases. This i3 because the time and cost consumed
i the software testing process, particularly during a regression testing process, can be
significantly decreased by executing those high-prionty cases first (Rothermel ef al., 1999,
2001b). Thus, the percentage of high-priority test cases is one of the important metrics used
in this experiment (Rajib, 2006). This experiment compares the existing test case prioritization
techniques and proposed methods to find the methods that reserve a maximum number of
high-priority test cases. This study proposes to use the number of acceptable test cases as

207

J. Software Eng., 4 (3): 193-214, 2010

another metric, because the size of prioritized test cases has an impact on the effort, time and
cost consumed during the execution, particularly during the regression testing phase
(Beizer, 1990, Rothermel ef al., 1999-2001b). Thus, a smaller number of test cases consumes
less effort, tme and cost. This study compares a number of reserved acceptable test cases
between existing techmques and proposed method. The acceptable test cases m this
experiment are test cases with high and medium priority. All low-priority test cases are
excluded. Additionally, this study proposes to use the total prioritization tune as a final
metric. This is because time-consuming prioritization techniques can consume a huge amount
of time during the software testing process. The techniques with the least total prioritization
time are desirable. The following describes details of each metric used in this experiment.

Percentage of High Priority Reserve Effectiveness

This metric measures the effectiveness of reserving high priority test cases from the set
of original test cases (Rajib, 2006). This is because high priority test cases have higher
priority value more than lower priority test cases. Therefore, the high percentage of high
priority reserve effectiveness 1s desirable. This metric can be calculated as the following
formula;

% HPRE = (# of Reserved / # of Total)*100
Where:

* % HPRE is a percentage of high priority reserve effectiveness

+ No. of reserved is the number of redundant test cases removed from the set of original
test cases

* No. of total 1s the total number of test cases

Size of Acceptable Test Cases
This metric 13 the munber of acceptable test cases, expressed as a percentage, as follows:

% Size = (# Size / # of Total Size)*100
Where:

* % size 1s the number of acceptable test cases, expressed as a percentage

*+ No. of size is the number of test cases that each method generates, excluding low-
priority test cases

* No. of total size 1s the total number of test cases in the experiment, which is assigned
1,000

Total Prioritization Time
This 1s the total number of times the prioritization methods are run in the experiment.
This metric 1s related to the time used during pre-process and post-process of test case

prioritization. Therefore, less time is desirable. Tt can be calculated as the following formula:

TPT = ComT + CalT + RPMT

208

J. Software Eng., 4 (3): 193-214, 2010
Where:

* TPT is the total amount of time consumed in runming the priontization methods

* ComT 1s the time to compile source code in order to prioritize test cases

* CalT 1s the total amount of time consumed in assigning weights, assigmng values and
computing weight prioritization values

* RPMT s the total time to run the test case prioritization methods including ordering test
cases

RESULTS AND DISCUSSION

Here, discusses an evaluation result of the above experiment. This section presents a
graph that compares the above proposed method to other three existing test case
prioritization techniques, based on the following measurements: (a) high priority reserve
effectiveness (b) size of acceptable priority and (c) total time. Those three techmques are: (a)
random approach (b) Hema’s method and (¢) Alexey’s method. There are two dimensions in
the following graph: (a) horizontal and (b) vertical axis. The horizontal represents three
measurements whereas the vertical axis represents the percentage value.

Figure 4 represents an evaluation result of comparing an effectiveness of high priority
reservation, a number of acceptable priority cases and total prioritization time. The above
graph showed that the above proposed method generated the highest high priority reserve
effectiveness. Tt was calculated as 46.76% where as the other techniques was computed less
than 40%. Those techniques reserved the less number of test cases with high priority. Also,
the graph showed that the proposed method consumes the least total time during a
prioritization process, comparing to other techniques. Tt used only 43.30%, which is slightly
less than others. Finally, the graph presented that the proposed method 1s the second best
technique to reserve the acceptable priority test cases.

60.00- 0 Random approch
OHema's method 53.06%
B Alexey's method 49.74%
50.00- @ Our proposed method
46.76% 43.31%
BT s 37 43.30%
39.96%
4.00-
32.65
s 30.004
-]
20.00+
10.00-
0.00 T - — T
High priority reserve effectiveness Size of acceptable priority Total time
Measurements

Fig. 4: An evaluation result of test case prioritization methods

209

J. Software Eng., 4 (3): 193-214, 2010
DISCUSSION

This section discusses the previous evaluation result. The following table ranked test
case prioritization techniques used in the experiments, based on the above measurements,
by 1 is the first, 2 is the second, 3 is the third and 4 is the last.

Table 3 shows a ranking of each comparative test case prioritization method. In the table,
1t 18 concluded that our proposed method 1s the most recommended prioritization techmque
to reserve a large number of high priority test cases while mimmizing a total prioritization
time. Also, it shows that our proposed method is not worst than other technicues in term of
preserving a number of acceptable test cases.

Figure 4, this study determines and ranks the above comparative methods into five
ranking: 5-Excellent, 4-Very good, 3-Good, 2-Normal and 1-Poor. This study uses a maximum
and minimum value to find an interval value for ranking those methods.

For an effectiveness of high priority test cases reservation, the maximum and minimum
percentage is 46.76% and 30.99%. The different between maximum and minimum value is
15.77%. An mterval value 1s equal to a result of dividing the different values by 5. As a result,
the interval value is 3.154. Thus, it can be determined as follows: 5-Excellent (since 43.606 to
46.76%), 4-Very good (between 40.452 and 43.603%), 3-Good (between 37.298 and 40.451 %),
2-Normal (between 34.144 and 37.2988%) and 1-Poor (from 30.99 to 34.143%).

For a number of acceptable test cases, the maximum and mimmum percentage 15 55.73
and 30.03%. The different value 15 25.7%. The interval value 1s 5.14. Therefore, it can be
determined as follows: 5-Excellent (since 50.59 to 55.73%), 4-Very good (between 45.45 and
50.58%), 3-Good (between 40.31 and 45.44%), 2-Normal (between 35.17 and 40.30%) and
1-Poor (from 30.03 to 35.16%).

For a total prioritization time, the maximum and minimum percentage is 44.87 and 43.30%.
The different between maximum and minimum value is 1.57%. An interval value is equal to
a result of dividing the different values by 5. As a result, the interval value 15 0.314. Thus, it
can be determined as follows: 5-Excellent (since 43.3 to 43.614%), 4-Very good (between
43.614 and 43.928%), 3-Good (between 43.928 and 44 .242%), 2-Normal (between 44.242 and
44.556%) and 1-Poor (from 44.556 to 44.87%).

Therefore, the experiment result of those four comparative methods can be shown in
Table 4.

The above result suggests that our proposed method is perfectly suitable for a scenario
that concentrates on reserving a large number of high priority test cases, preserving
acceptable cases and minimizing total prioritization time. Our proposed method is by far
better than other three methods in term of high priority reserve effectiveness. Hema’s method

Table 3: Test case generation techniques ranking table

Methods High priority reserve effectiveness Size of acceptable priority Total time
Random approach 4 4 4
Hema’s method 3 1 2
Alexey’s method 2 3 3
The proposed method 1 2 1

Table 4: A comparison of test case reduction methods

Algorithm High priority reserve effectiveness No. of acceptable test cases Total time
Random method 1 1 1
Hema’s method 1 5 5
Alexey’s method 3 4 5
Our prop osed method 5 5 5

210

J. Software Eng., 4 (3): 193-214, 2010

and our method are top two excellent prioritization methods for reserving medium priority test
cases. Finally, the random approach consumes the greatest prioritization time comparing to

other three methods.
CONCLUSION AND FUTURE WORK

This study proposes a new test case prioritization process, called 2ZR-25-3R. The new
process contains two processes, named 2R: (a) requisite and (b) reordering. The first process
consists of two sub-processes, called 25, which are: (a) select test case prioritization
technique and (b) specify coverage or factors. The second process is composed of three
sub-processes, called 3R, included as follows: (a) re-assign weight value (b) re-calculate
priority value and (¢) re-order test cases. This study reveals that there are many research
challenges and gaps in the test case prioritization area. However, this study focus on solving
the following research issues: (a) a lack of practical weight factors (b) an inefficient ranking
algorithm used in the prioritization process and {¢) ignore to reserve the high priority test
cases. This study mtroduces a new practical set of weight factors used in the test case
prioritization process. The new set 15 composed of four groups: (a) cost (b) tune (¢) defect
and (e) complex. Also, this study proposes to mnprove the ability to weight and rank test
cases with practical factors. This study compares the proposed method to other existing test
case prioritization methods, which are: (a) random approach (b) Hema’s technique and (¢)
Alexey’s work. Consequently, this study reveals that the proposed method is the most
recommended method to reserve the large number of high priority test cases with the least
total time, during a prioritization process. However, there is an improvement to maintain and
reserve the acceptable numbers of test cases, carried out in the future worlks.

REFERENCES

Agrawal, H., IR. Horgan, EW. Krauser and S.A. London, 1993. Incremental regression
testing. Proceedings of the IEEE International Conference on Software Maintenance,
Sep. 27-30, Montreal, Quebec, Canada, pp: 348-357.

Aranha, E. and P. Borba, 2006. Measuring test execution complexity. Proceedings of the
International Workshop on Predictor Models in Software Engineering, (PMSE’06)
Informatics Center Federal University of Pernambuco, pp: 1-2.

Beizer, B., 1990. Software Testing Techniques. 2nd Edn., Van Nostrand Reinhold, New York,
ISBN: 0-442-20672-0, pp: 550.

Boehm, B. and 1..G. Huang, 2003. Value-based software engineering: A case study. Computer,
36: 33-41.

Brottier, E., F. Fleurey, 1. Steel, B. Baudry and Y L. Tracn, 2006, Metamodel-based test
generation for model transformations: An algorithm and a tool. Proceedings of
17th Intemational Symposium on Software Reliability Engineering, Nov. 7-10, Raleigh,
pp: 85-94.

Bryce, R.C. and C. Colbourn, 2006. Prioritized mteraction testing for pair-wise coverage with
seeding and constraints. J. Inform. Software Technol., 48: 960-970.

Bryce, R.C. and A M. Memon, 2007. Test suite prioritization by interaction coverage.
Proceedings of the Workshop on Domain Specific Approaches to Software Test
Automation: Tn Conjunction with the 6th ESEC/FSE Toint Meeting, Sept. 4, ACM,
New York, USA., pp: 1-7.

211

J. Software Eng., 4 (3): 193-214, 2010

Cadar, C. and D. Engler, 2005. Execution generated test cases: How to make systems code
crash itself. Proceeding of the 20th ACM Symposium on Operating Systems Principles,
March 25, Stanford University, USA., pp: 1-14.

Clempner, J. and J. Medel, 2006. Prioritizing information systems implementation using the
amalgamation of lattice structures. Inform. Technol. T., 5: 74-82.

Elbaum, 8., A.G. Malishevsky and G. Rothermel, 2000. Prioritizing test cases for regression
testing. Software Eng. Notes, 25: 102-112.

Elbaum, S., A. Malishevsky and G. Rothermel, 2002. Test case prioritization: A family of
empirical studies. TEEE Trans. Software Eng., 28: 159-182.

Elbaum, S., G. Rothermel, S. Kanduri and A.G. Malishevsky, 2004, Selecting a cost-effective
test case prioritization technique. Software Qual. J., 12: 185-210.

Graves, T.L., M.I. Harrold, I M. Kim, Ad. Porter and G. Rothermel, 2001. An empirical
study of regression test selection techniques. ACM Trans. Software Eng. Methodol.,
10: 184-208.

Gyimothy, T., A. Beszedes and 1. Forgacs, 1999. An efficient relevant slicing method for
debugging. Proceedings of ACM/SIGSOFT Foundations of Software Engineering,
November 1999, New York, USA., pp: 303-321.

Harrold, M.T., 2000. Testing: A roadmap. Proceedings of the International Conference on
Software Engineering, June 04-11, Limerick, Ireland, pp: 61-72.

Hoffman, D., 1999. Cost benefits analysis of test automation. Proceedings of the
SoftwareTesting Analysis and Review Conference, (STARC "99) Orlando, FL., TUSA.,
pp:1-14.

Jeffrey, D. and N. Gupta, 2006. Test case prioritization using relevant slices. Proc. 30th Ann.
Int. Comp. Software Appl. Conf., 1: 411-420.

Jones, I.A. and M.J. Harrold, 2001. Test-suite reduction and prioritization for modified
condition/decision coverage. Proceedings of the 17th TEEE International Conference
on Software Maintenance, Nov. 07-09, [EEE Computer Society Washington, DC, USA.,
pp: 92-92.

Kaner, I.D.C., 2006. Exploratory testing. Proceeding of the Quality Assurance Institute
Worldwide Annual Software Testing Conference, Nov. 17, Orlando, FL., pp: 1-47.
Karlsson, I. and K. Ryan, 1997. A cost-value approach for prioritizing requirements. IEEE

Software, 14: 67-74.

Kim, .M., A. Porter and G. Rothermel, 2000. An empirical study of regression test application
frequency. Proceedings of the 22nd International Conference on Software Engineering,
Tune 04-11, ACM, New York, USA., pp: 126-135.

Kim, I M. and A. Porter, 2002. A history-based test prioritization technique for regression
testing in resource constrained environments. Proceedings of the 24th International
Conference on Software Engineering, May 19-25, ACM Press, pp: 119-129.

Konda, K.R., 2005. Measuring defect removal accurately. Software Test Performance, 2: 35-39.

Korel, B. and A M. Al-Yami, 1998. Automated regression test generation. Software Eng.
Notes, 23: 143-152.

Korel, B. and J. Laski, 1991. Algorithmic software fault localization. Proc. 24th Ann. Hawaii
Int. Conf. Syst. Sci., 20: 246-252.

Kosindrdecha, N. and 5. Roongruangsuwan, 2007. Reducing test case created by path
oriented test case generation. Proceedings of the ATAA Conference and Exhibition,
(ATAACE'07), Rohnert Park, California, UUSA., pp: 1-1.

Leffingwell, D. and D. Widrig, 2003. Managing Software Requirements: A Use Case
Approach. 2nd Ed., Addison-Wesley, Boston, MA., pp: 124-125.

212

J. Software Eng., 4 (3): 193-214, 2010

Leon, D. and A. Podgurski, 2003. A comparison of coverage-based and distribution-based
techniques for filtering and prioritizing test cases. Proceedings of the 14th International
Symposium on Software Reliability Engineering, Nov. 17-21, IEEE Computer Society
Washington, DC, USA., pp: 442-453.

Leung, HK.N. and I.. White, 1991. A cost model to compare regression test strategies.
Proceedings Conference on Software Maintenance, Nov. 15, IEEE Computer Society
Press, pp: 201-208.

Lormans, M. and A. van Deurser,, 2005. Reconstructing requirements coverage views from
design and test using traceability recovery via LSI. Proceedings of the 3rd International
Workshop on Traceability in Emerging forms of Software Engineering, Nov. 08, ACM
New York, USA., pp: 37-42.

Malishevsky, A., G. Rothermel and S. Elbaum, 2002. Modeling the cost-benefits tradeoffs for
regression testing techniques. Proceedings of the International Conference on Software
Maintenance, Oct. 03-06, IEEE Computer Society, Washington, DC., USA., pp: 204-204.

Malishevsky, A.G., IR. Ruthruff, G. Rothermel and S. Elbaum, 2006. Cost-cognizant test case
prioritization. Technical Report TR-UNL-CSE-2006-0004, Department of Computer
Science and Engineering, University of Nebraska-Tincoln.
http: /citeseerx.ist. psu.eduviewdoc/summary? deoi=10.1.1.112.9150.

McMaster, S. and A. Memon, 2005. Call stack coverage for test suite reduction. Proceedings
of the 21st IEEE Intermational Conference on Software Maintenance (ICSM’05),
Sept. 26-29, Budapest, Hungary, pp: 539-548.

McMaster, S. and A. Memon, 2006. Call stack coverage for GUI test-suite reduction.
Proceedings of the 17th IEEE Intemational Symposium on Software Reliability
Engineering, Nov. 7-10, Raleigh, NC., pp: 33-44.

Mogyorodi, G., 2001. Requirements-based testing: An overview. Proceedings of the 35th
International Conference and Exhibition on Technology of Object-Oriented Languages
and Systems, July 29-Aug. 03, Santa Barbara, Califorma, pp: 286-295.

NIST., 2002. The economic impacts of inadequate infrastructure for software testing.
http:/Awrww nist. gov/director/planning /upload/report02-3. pdf.

Nilawar, M. and S. Dascalu, 2003. A UMIL-based approach for testing web applications.
University of Nevada, Reno, http:/www.imamu.edu.sa/DContent/IT Topics/
A%20UML-Based%20A pproach%20for%20T esting %020Web%20A pplications. pdf.

Offutt, AT, T. Pan and I M. Voas, 1995. Procedures for reducing the size of coverage-based
test sets. Proceedings of the 12th International Conference on Testing Computer
Software, Tune 1995, Washington, DC., pp: 111-123.

Onoma, K., W.T. Tsai, M. Poonawala and H. Suganuma, 1998. Regression testing in an
industrial environment. Comm. ACM, 41: 81-86.

Qu, B, C. Nie, B. Xuand X. Zhang, 2007a. Test case prioritization for black box testing. Proc.
31st Ann. Int. Comp. Software Appl. Conf., 10: 465-474.

Qu, X, M.B. Chohen and K.M. Woolf, 2007b. Combinatorial interaction regression testing:
a study of test case generation and prioritization. Proceedings of the TEEE International
Conference on Software Maintenance, Oct. 2-5, University of Nebraska-Tincoln, Lincoln,
Pp: 255-264.

Qu, X, M.B. Cohen and G. Rothermel, 2008. Configuration-aware regression testing: an
empirical study of sampling and prioritization. Proceedings of the 2008 Tnternational
Symposium on Software Testing and Analysis, JTuly 20-24, ACM, New York, UJSA.,
pp: 75-86.

Rajib, R., 2006. Software test metric. QCON.

213

J. Software Eng., 4 (3): 193-214, 2010

Roongruangsuwan, S. and J. Daengdej, 2009. Test case reduction. Technical Report 25521,
Assumption University, Thailand.

Rothermel, G. and M.J. Harrold, 1996. Analyzing regression test selection techniques. IEEE
Trans. Softw. Eng., 22: 529-551.

Rothermel, G. and M.T. Harrold, 1997. A Safe, efficient regression test selection technique.
ACM Trans. Softw. Eng. Methodol., 6: 173-210.

Rothermel, G., M.J. Harrold, J. Ostrin and C. Hong, 1998. An empirical study of the effects of
minimization on the fault detection capabilities of test suites. In Proceedings of the 14th
TEEE International Test Conference on Software Maintenance, Nov. 16-20, Bethesda,
Maryland, pp: 34-43.

Rothermel, G., ML.J. Harrold, J. von Romne and C. Hong, 2002. Empirical studies of test-suite
reduction. J. Software Test. Verificat. Reliability, 12: 219-249.

Rothermel, G., R.H. Untch, C. Chu and M.J. Harrold, 1999. Test case prioritization: An
empirical study. In Proceedings of the 15th IEEE International Conference on Software
Maintenance, Aug. 30-Sept. 03, Oxford, England, pp: 179-188.

Rothermel, G., RH. Untch, C. Chu and M.J. Harrold, 2001a. Prioritizing test cases for
regression testing. TEEE Trans. Software Eng., 27: 929-948.

Rothermel, G., 8. Elbaum, A. Malishevsky and P. Kallakuri, 2001b. The impact of test suite
granularity on the cost-effectiveness of regression testing. Proceedings of the
International Conference Software Engineermng, May 2001, Umversity of Nebraska-
Lincoln, pp: 230-240.

Srikanth, H. and I.. Williams, 2005. On the economics of requirements-based test case
prioritization. Proceedings of the 7th International Workshop on Economics-Driven
Software Engineering Research, May 15-15, ACM New York, NY, USA . pp: 1-3.

Srikanth, H., I.. Williams and J. Osborne, 2005. System test case prioritization of new and
regression test cases. Proceedings of the 4th International Symposium on Empirical
Software Engneering, Nov. 17-18, IEEE Computer Society, pp: 10-10.

Tai, K.C., 1980. Program testing complexity and test criteria. [EEE Trans. Software Eng.,
SE-6: 531-538.

Tonella, P., P. Avesani and A. Susi, 2006. Using the case-based ranking methodology for test
case prioritization. Proceedings of the 22nd IEEE International Conference on Software
Maintenance, Sept. 24-27, Phuladelphia, Pennsylvama, pp: 123-133.

Tsui, F., O. Karam and 8. Triele, 2008. A test complexity metric based on dataflow testing
technicue. Internal Report, School of Computing and Software Engineering, Southern
Polytechnic State University, July, 2008.

Yu, Y., I.A Tones and M.T. Harrold, 2008. An empirical study of the effects of test-suite
reduction on fault localization. Proceedings of the 30th International Conference on
Software Engineering, May 10-18, ACM, New Yorl, pp: 201-210.

Zhang, X., B. Xu, C. Nie and L. Shi, 2005. Test suite optimization based on testing
requirements reduction. Int. J. Electronics Comput. Sci., 7: 9-15.

Zhang, X., B. Xu, C. Nie and I.. Shi, 2007. An approach for optimizing test suite based on
testing requirement reduction. J. Software, 18: 821-831.

Zhang, X, B. Xu, Z. Chen, C. Nie and L. L1, 2008. An empirical evaluation of test suite
reduction for boolean specification-based testing. Proceedings of the 8th International
Conference on Quality Software, Aug. 12-13, TEEE Computer Society, Washington, DC.,
USA., pp: 270-275.

214

	JSE.pdf
	Page 1

