Journal of
Software

Engineering

ISSN 1819-4311

@

Academic
Journals Inc. www.academicjournals.com

Tournal of Software Engineering 4 (3): 215-230, 2010
ISSN 1819-4311
© 2010 Academic Journals Inec.

Using Java Enums to Implement
Concurrent-Hierarchical State Machines

Jauhar Al
College of Engineering and Computer Science,
Abu Dhabi University, Abu Dhabi, UAE

Abstract: The aim of this study 1s to find an easy way for 1implementing
concurrent-hierarchical state machines into efficient and encapsulated Java code.
State Machine 15 one of the wnportant diagrams m Umfied Modeling Language
(UML). In UML, State Machine is used to represent reactive behavior of a class of
objects. Implementing a state machine has been difficult for programmers because
the commonly used Object-Oriented Programming languages do not provide any
explicit support. We present a new approach to implement state machines using
Java Enums. In our approach, each state 1s represented as an enum-value.
Hierarchical states and concurrent orthogonal regions within state machines are
implemented by linking the related emun-values to each other. Our approach offers
several benefits. First, using Java emums makes the resulting code compact, efficient
and easy to understand. Second, the structure of the state machine is obvious in
the implementation code. Third, the whole state machine's behavior 1s encapsulated
within a single class (called StateMachine). The proposed code can serve as a Java
umnplementation pattern for state machines.

Key words: State machine diagram, UM, object-oriented programming, java

INTRODUCTION

Unified Modeling Language (UML) (Booch et al., 2005, Rumbaugh et af., 2010; OMG,
2010) is a standardized modeling language for designing software systems. State Machine
1s an important UML diagram that 1s used to represent the behavior of a class of objects in
response to events or messages received from other objects. UML State Machine Diagram
is a variation of Harel's statechart (Harel, 1987) that incorporates hierarchical states
(OR-substates) and concurrent states (AND-substates) into the traditional state transition
diagram.

Implementing state machines 1s difficult for most programmers due to the lack of support
from object-oriented programming languages. Various approaches exist to implement state
machines at the application programming level. As discussed mn the Related work and
Discussion sections below, these approaches have several problems. Most of these
approaches do not handle concurrent-hierarchical states. Some approaches introduce too
many additional classes, requiring creating a new object whenever the current state changes.
This makes the result code very inefficient.

In this study, we present a new approach to efficiently implement state machines having
hierarchical and concurrent states. Our approach encapsulates the state machine behavior

215

J. Software Eng., 4 (3): 215-230, 2010

within the owner class and keeps the structure of the state machine obvious at the
programming level.

SIMPLE STATES

To demonstrate our approach, we use the example of a simple Air-Condition (AC)
Controller. Figure 1 shows the behavior of the AC controller. The controller will be in one of
three states: Off (default), FanOnly and AC. If Off 1s the current state and the PowerBut event
occurs, the state will change to FanOnly. Similarly, if FanOnly or AC is the current state and
the PowerBut event occurs, the stopFan action will execute and the state will change to Off.
The ACBut event will change the state from FanOnly to AC and vice versa. Whenever the
AC state 18 entered, the startCondenser action will execute. Similarly, whenever the AC state
is exited, the stopCondenser action will execute.

To implement the AC Controller's state machine, we use a nested class, called
StateMachine, inside the ACController]l class (Listing 1). The StateMachine class
encapsulates almost all aspects of the state machine. All actions in the state machine become
methods i the ACController] class (lines 10- 25). The ACController] and the StateMachine
classes have references to each other (lines 2 and 33), through which they can call each
other's methods. All events received by the ACController] are delegated to the StateMachine
(lines 28- 29).

Inside the StateMachine class, we use two Java enums: Event (line 45) and State
(line 48). The Event enum represents all events and the State enum represents all states in the
state machine. Each event and state becomes an enum value. For example, off (line 49) and
FanOnly (line 62) become enum values inside State. The state (line 34) reference inside
StateMachine represents the current state of the state machine.

Tava allows having methods and data members inside enums (Sun Microsystems, 2010).
Each enum value can override the methods. The State enum has empty entry (line 102) and
exit methods (line 103) . The AC state (line 79) overrides these methods because it has entry
and exit actions in the state machine (Fig. 1). The State enum has also an abstract method,
named process (line 101), which is overridden by all states. Tt is called by the StateMachine
on the current state whenever an event 13 delegated to the StateMachine (lines 41 and 42).

All transitions from a state are implemented in the process method for that state. The
process method takes an event as parameter and chooses one case from the switch statement
depending on the event. Each case corresponds to one transition. For example, the first case
in the process method of the FanOnly state implements the transition on the ACBut event
(line 65). Inside each case (which corresponds to a transition), three methods are called in the
given order: (1) the exit method of the current state, (2) the action method (if any) for the
transaction and (3) the entry method of the new state.

off PowreBut o) ACBut AC
exit/startFan | FanOnly L err:fyfstartCondenser
‘inmBub’spran N /" ACBut S e
PowreBut/stopFan

Fig. 1: Simple state machmne diagram for air-condition controller

216

J. Software Eng., 4 (3): 215-230, 2010

Listing 1: ACController].java

public class ACControllerl {
StateMachine stateMachine;

ACControllerl){
stateMachine = new StateMachine(this);
/f ... other stuff’

}

/f The action methods
private void startCondenser() {
/* To be replaced with appropriate code */
Systemn. out.println("startCondenser executed"),
}
private void stopCondenser(){
/* To be replaced with appropriate code */

System. out.println(stopCondenser executed™);
}
private void startFan(){
/* To be replaced with appropriate code */
System. out.println ("startFan execiuted™);
}
private void stopFan(){
/* To be replaced with appropriate code */
System. out.printlnd”stopFan executed");

}

{f Events delegated to StateMachine
public void powerBut() { stateMachine.powerBut() }
public void acBut() {stateMachine.acBut();}

{f The StateMachine class

static class StateMachine {
ACControllerl context;
State state;

StateMachine{ACController] context){
this.context = context;
state = State. Off,//default

}

private void powerBut(){state.process(this, Event PowerBut); }
private void acBut(){state.process(this, Event. ACBut);}

/1 All of the events
enum Event {PowerBut, ACBut}

/f All of the states
enm State {
OfFT {
void exit(StateMachine sm) {sm.contesxt.startFan(y; }

void process(StateMachine sm, Event e){
switch(e){
case PowerBut:
this.exit(sm);
srm.state = FanOnly;
sm.state, entry (sm);

217

J. Software Eng., 4 (3): 215-230, 2010

Listing 1: ACController].java
void process(StateMachine sm,Event e){
switch(e){
case ACBut:

this.exit(sm);
sm. state = AC;
sm. state, entry (sm);
break;

case PowerBut:
this.exit{sm);
sm. context. stopFan();
sm. state = Off}
sm. state, entry (sm);

}
b
AC{
void entry(StateMachine sm) {
srm.contexct.startCondenser(); }
void exit(StateMachine sm) {
sm.context.stop Condenser();}

void process(StateMachine sm, Event e){
switchie){
case ACBut:
this. exit(sm);
smstate = FanOnly;
sim. state. entry(sm);
break;
case PowerBut:
this.exit(sm);
srn.contesct.stopFan();
sm.state = OfT
srm.state. entry (sm);

}
|

abstract void process(StateMachine sm, Event e);
void entry(StateMachine sm){ }
void exit(StateMachine sm){}
1/ end of enum State
1/ end of class StateMachine
1/ end of clags ACControllerl

HIERARCHICAL STATES

State machines may have hierarchical states where the substates inherit transitions from
1ts superstate. Figure 2 shows the behavior of the AC controller with a superstate (Running).
If the Running state 1s active, the controller will be either in FanOnly (default) or in AC state.
In any of the two substates, if the PowerBut event occurs, the state will change to Off. There
are entry and exit actions for the Running state as well.

Listing 2 shows the Java code corresponding to Fig. 2. To implement the state hierarchy,
we use the parent reference (line 119) imtialized by the constructor (line 120} in the State
enum. For example, the FanOnly constructor call (line 88) determines that Running is its
parent state. There is always a default case in the process method of any substate, which
calls the process method m the parent state (lines 96 and 114). This 13 how we make the
superstate transitions executable in the substates and give priority to the transitions from a
substate. To allow exiting from or entering to nested states, we put exitAll and enterState

218

J. Software Eng., 4 (3): 215-230, 2010

Running
PowerBut entry/startFan
exit/stopFan

FanOnly

PowerBut

ACBut

AC
entry/startCondenser
exit/stopCondenser

Fig. 2: State machine with hierarchical states

methods n the StateMachine class. They are called from the state's process method when
needed. The exitAll method ensures that the exit action for a substate 1s executed before its
superstate's exit action. Similarly, the enterState method ensures that the entry action of a

superstate executes before its substate's entry action.

Listing 2: ACController2.java

public class ACController2 {
StateMachine stateMachine;

ACController2(){
stateblachine = new StateMachine(this);
ff ... other stuff
}
{f The action methods
private void startCondenser() {
/* To be replaced with appropriate code */
Sy stermn. out.println(” startCondenser executed");
}
private void stop Condenser(){
/* To be replaced with appropriate code */
Sy stermn. out.printlndstop Condenser executed");
}
private void startFan(){
/* To be replaced with appropriate code */
Sy sterm. out.println("startFan executed™);
}
private void stopFan(){
/* To be replaced with appropriate code */
Sy stermn. out.printlndstopFan executed™);

}

/f Bwvents delegated to stateMachine
public void powerBut() {stateMachine.powerBut();}
public void acBut() {stateMachine.acBut(};}

{f The StateMachine class

static class StateMachine {
ACController2 context;
State state;

StateMachine(ACController2 context){
this.context = context;
state = State. Off* //default

}

private void powerBut(){state.process(this, Event. PowerBut); }
private void acBut() {state.process(this, Event. ACBut); }

private void enterState(State... states){

219

J. Software Eng., 4 (3): 215-230, 2010

Listing 2: ACController2.java

for (State s: states) s.entry(this);
state = states[states.length-1];
}

private void exitAll(State child, State parent){
State s = child;
while (true) {
5. exit(this);
if (s = parent) break;
§ = s.parent;
}
}

/1 All of the events
enum Event {PowerBut, ACBut}

/1 All of the states
enum State {
Off (null){
void process(StateMachine sm, Event e){
switch(e){
case PowerBut:
this. exit({sm);
sm.enterState(Running, FanOnly);
}
}
b
Running(mull){
void entry(StateMachine sm) {
sm.context.startFan(); }
void exit(StateMachine sm) {
sm.context.stopFan(); }

void process(StateMachine sm, Event e){
switch(e){
case PowerBut:
sm. exitAll(sm.state, this);
sm.enterState(Off);
}
}
b

FanOnly(Running){
void process(StateMachine sm,Event e){
switch(e){
case ACBut:
this. exit(sm);
sm.enterState(AC);
break;
default:
parent.process(sim, €);
}
}
I

ACRuming){
void entry(StateMachine sm) {
srm.context.startCondenser(); }
void exit(StateMachine sm) {
sm.context.stop Condenser(); }

void process(StateMachine sm, Event e){
switch(e){

220

J. Software Eng., 4 (3): 215-230, 2010

Listing 2: ACController2.java
case ACBut:
this. exit({sm);
sim. enterState(FanOnly);
break;
default:
parent.process(sim, €);

}
}
I

State parent;
State(State p){parent = p;}
abstract void process(StateMachine sm, Event e);
void entry(StateMachine sm){}
void exit(Statehachine sm){}
1/ end of enum State
1/ end of class StateMachine
}// end of class ACController2

CONCURRENT STATES

State machines may have concurrent substates, which means that all the substates are
active when their superstate is active. Figure 3 shows the AC Controller's behavior with
concurrent states. When the AC is in Running state, both ACMode and Speed regions
(concurrent substates) are active. In the ACMode region, either FanOnly or AC will be
active. Similarly, in the Speed region, either Low or High will be active.

To implement concurrent states, few things are added to the StateMachine nested class
(Listing 3). Like the state reference (which represents the current state in the state machine),
two more references (line 43) are mcluded to represent the current state in each concurrent
region. When the current state 1s Runmng, the acmode and speed references will refer to the
current active state in the ACMode and Speed regions, respectively.

Running
entry/startFan

exit/stopFan
ACMode
PowerBut

ACBut AC

FanOnly entry/startCondenser
m exit/stopCondenser
ACBut
_______ ST T
PowerBut
SpeedBut/speedUp

Low | High

\ < SpeedBut/speedDown /

Fig. 3: State machine with concurrent states

221

J. Software Eng., 4 (3): 215-230, 2010

Like the enterState method, two more methods are included, which allow to enter nested
states in each region (lines 64 and 71). These methods are called whenever the Running state
becomes active (lines 97- 99).

The Running's process method delegates the events it receives to the process methods
of the acmode and speed (lines 117- 120). Tn the process method of the ACMode, transitions
change current state within the acmode region only (line 152). This way, transitions within
the regions are implemented.

Listing 3: ACController3.java

public class ACController3 {
StateMachine stateMachine;

ACController3){
stateMachine = new StateMachine(this);

}

/f The action methods
private void startCondenser() {
/* To be replaced with appropriate code */
Systemn. out.println("startCondenser executed"),
}
private void stop Condenser(){
/* To be replaced with appropriate code */
System. out.println ("stopCondenser executed™);
}
private void startFan(){
/* To be replaced with appropriate code */
Systemn. out.println("startFan executed");
}
private void stopFan(){
/* To be replaced with appropriate code */
Systemn. out.println("stopFan executed™);
}
private void speedUp(){
/* To be replaced with appropriate code */
System. out.println("speedUp executed™);
}
private void speedDown(){
/* To be replaced with appropriate code */
Systemn. out.println("speedDown executed™);
}

/f Events delegated to stateMachine

public void powerBut() {stateMachine. powerBut(); }
public void acBut() {stateMachine.acBut(};}

public void speedBut() {stateMachine.speedBut(); }

/f The StateMachine class
static class StateMachine {
ACController3 context;
State state;
State acmode, speed;

StateMachine{ACController3 context)
this.context = context;
state = State. Off* //default

}

private void powerBut() {
state.process(this, Event. PowerBut); }
private void acBut() {
state.process(this, Event. ACBut); }

222

J. Software Eng., 4 (3): 215-230, 2010

Listing 3: ACController3.java

private void speedBut() {
state.process(this, Event.SpeedBut); }

private void enterState(State... states){
for (State s: states){
s.entry (this);

state = states[states.length-1];
}

private void enterACMode(State... states){
for (State s: states){
s.entry (this);

acmode = states|states.length-1];

}

private void enterSpeed(State... states){
for (State s: states){
s.entry (this);

speed = states[states.length-1];
}

private void exitAll(State child, State parent){
State s = child;
while (true) {
5. exit(this);
if (s = parent) break;
§ = s.parent;
}
}

/f All of the events
enum Event {PowerBut, ACBut, $peedBut}

/1 All of the states
enum State {
Off (null){
void process(StateMachine sm, Event e){
switch(e){
case PowerBut:
this. exit({sm);
sm.enterState(Running);
sm.enterACMode(ACMode FanOnly);
sm.enterS peed(Speed,Low);
}
}
b

Running(null}{
void entry(StateMachine sm) {
srm.contexct.startFan(); }
void exit(StateMachine sm) {
srm.contesct.stopFan(); }

void process(StateMachine sim, Event e)f
switch(e){
case PowerBut:
sm.exitAll(sm.acmode, ACMode);
sm.exitAll(sm.speed, this);
sm.enterState(Off);
break;

223

J. Software Eng., 4 (3): 215-230, 2010

Listing 3: ACController3.java

case ACBut:
case SpeedBut:
sm.acmode.process(sm, €);
sm.speed.process(sim, e);
}
}
b

ACMode(Running){
void process(StateMachine sm,Event e){}

b

FanOnly(ACMode){
void process(StateMachine sm,Event e){
switch(e){
case ACBut:
this. exit({sm);
sm.enterA CMode(AC);
break;
default:
parent.process(sim, €);
}
}
h

AC(ACMode){
void entry(StateMachine sm) {
sm.context.startCondenser(); }
void exit(StateMachine sm) {
sm.context.stop Condenser(); }

void process(StateMachine sm, Event e){
switch(e){
case ACBut:
this. exit({sm);
sm.enter ACMode(FanOnly);
break;
default:
parent.process(sim, €);
}

}
3

Speed(Running){
void process(StateMachine sm, Event e){}

b

Low(Speed){
void process(StateMachine sim,Event e){
switch(e){
case SpeedBut:
this. exit(sm);
sm. context.speedUp();
sm.enterSpeed(High);
break;
default:
parent.process(sim, €);
)
}
b

High(Speed){
void process(StateMachine sm,Event e){

224

J. Software Eng., 4 (3): 215-230, 2010

Listing 3: ACController3.java
switch(e){

case SpeedBut:
this. exit({sm);
s context.speedDown();
sm.enterS peed(Low);
break;

default:
parent.process(sin, €);

}
}
¥

State parent;
State(State p){parent =p;}
abstract void process(StateMachine sm, Event e);
void entry(StateMachine sm){}
void exit(Statehachine sm){}
1/ end of enum State
1/ end of class StateMachine
1/ end of clags ACController3

CODE TESTING

We have tested the code and the StateMachine nested class works as expected.
Listing 4 shows the test code for ACController3. java (Listing 3). Listing 5 shows the output
trace of the test code.

Listing 4: ACController3Test.java
import java.io.*;
public class ACController3Test{
static PrintStream out;
static ACController3 ac = new ACController3();

public static void main(String[] a) throws IOException {
String log = "OutputLog.txt";
System. out.println("Cuatput is written to: " + log);

FileOutputStream fos = new FileOutputStream(log);
out = new PrintStream (fos);
Systern.setOut(out);

out.printin Current. State: " + ac.stateMachine.state);
sendBEvent(A CController3. StateMachine. Event. A CBut);
sendBEvent(ACController3. StateMachin e Event. PowerBut);
sendEvent(ACController3. StateMachine. Event. PowerBut);
sendEvent(ACController3. StateMachine. Event. PowerBut);
sendEvent(ACController3.StateMachine. Event. ACBut);
sendBEvent(A CController3.StateMachine. Event.SpeedBut);
sendEvent(ACController3. StateMachine. Event. PowerBut);
sendEvent(ACController3. StateMachine. Event. PowerBut);
sendBEvent(A CController3.StateMachine. Event. A CBut);
sendEvent(ACController3.StateMachine. Event. ACBut);
sendEvent(ACController3.StateMachine.Event.SpeedBut);
}
static void sendEvent(ACController3.StateMachine. Event e){
out.println("\n--> Event Occured: "+ e);
switch (e)f
case PowerBut: ac.powerBut();break;
case ACBut: ac.acBut(); break;
case SpeedBut: ac.speedBut();

225

J. Software Eng., 4 (3): 215-230, 2010

Listing 4: ACController3Test.java

out.printin" Current state: " + ac.stateMachine. state);
if (ac. stateMachine. state —

ACController3. StateMachine. State. Running) {
out.printin("tACMode state: " + ac.stateMachine.acmode);
out.println("tSpeed state: " + ac.stateMachine. speed);

)
}
}

Listing 5: Output from the test code

Current State: Off

--> Event Occured: ACBut
Chrrent state: Off

--= BEvent Occured: PowerBut

startFan executed

Current state: Running
ACMode state: FanOnly
Speed state: Low

--= BEvent Occured: PowerBut
stopFan executed
Chrrent state: Off

--= BEvent Occured: PowerBut

startFan executed

Chrrent state: Running
ACMode state: FanOnly
Speed state: Low

--= BEvent Occured: ACBut

startCondenser executed

Chrrent state: Running
ACMode state: AC
Speed state: Low

--= BEvent Occured: SpeedBut

speedUp executed

Current state: Running
ACMode state: AC
Speed state: High

--= BEvent Occured: PowerBut
stopCondenser executed
stopFan executed

Current state: Off

--> Event Occured: PowerBut

startFan executed

Current state: Running
ACMode state: FanOnly
Speed state: Low

--> Event Occured: ACBut

startCondenser executed

Current state: Running
ACMode state: AC
Speed state: Low

--> Event Occured: ACBut
stopCondenser executed
Current state: Running

226

J. Software Eng., 4 (3): 215-230, 2010

Listing 5: Output from the test code
ACMode state: FanCnly
Speed state: Low

--> Event Occured: SpeedBut

speedUp executed

Current state: Running
ACMode state: FanCnly
Speed state: High

RELATED WORK

The UML state machine 1s an improved version of finite state machine (FSM). The
earliest technique to implement finite state machines is to use switch statement (Aho and
Ullman, 1979). Based on the current active state, it performs a jump to the code for processing
the event. States are represented as data values. This techmque works well for classical flat
state machines and is mostly used in non-object-oriented procedural languages.

In object-oriented systems, the behavior of a class of objects is implemented as a set of
methods in the class. For classes having complex behavior, the methods will perform
differently depending on the current state of the object. An object-oriented extension to the
state machine has been done by Coleman et al. (1992). They mtroduced mheritance into state
machines and linked class methods to the transitions in the corresponding state machine.

Rumbaugh (1993) proposes an object-oriented approach to implement state machines.
He suggests using class-imheritance to represent state hierarchy. The State pattern
(Gamma et al., 1995) guides how to implement multi-state classes. Each state 13 implemented
as a different object, which changes at muntime. Tt does not handle state hierarchy and
concurrency. Sane and Campbell (1995) say that states can be represented as classes and
transitions as operations. They implement embedded states by making a table for the
superstate and do not consider concurrent states. MOODS (Ran, 1996) 1s a complex variant
of the State Pattern. In this variant, the state class hierarchy uses multiple inheritance to
model nested states.

All and Tanaka (1998) use classes to represent mdividual states and methods to
represent events/transitions. They implement state hierarchy with class mheritance. Their
resulting code has too many classes and a class’ behavior is not encapsulated within the
class.

Douglass (1998) proposed the State Table Pattern to implement state machine diagrams.
States and transitions are modeled as classes. Gurp and Bosch (1999) developed a framework
of few classes to instantiate and execute finite state machines (FSM). The FSM is not hard
coded in the source code. Instead, it is read from an XML file and appropriate objects are
created from the framework classes that together represent the FSM. Each state is
represented as an object (not a class) and actions as attributes.

Kohler et al (2000) presented an approach for code generation from state machines.
Their approach adapts the idea of generic array based state-table but uses object structure
to represent state-table at runtime. They use objects to represent states of a state machine
and attributes to hold the entry and exit actions. Knapp and Merz (2002) described a set of
tools called Hugo for the code generation of TMI. State Machine Diagram. A generic set of
Java classes provides a standard runtime component for the state machine. Every state of a
state machine 1s represented by a separate object, which provides methods for activation,
deactivation, imitialization and event handling. Events, guards and actions are also
implemented as classes.

227

J. Software Eng., 4 (3): 215-230, 2010

Chauvel and Jezequel (20035) discuss different approaches to implement state machines.
For more efficient code, they suggest to use enumerated values to represent states and
events. To handle hierarchical states, they suggest first flattening the state hierarchy. For
more flexible code, they suggest to use the State pattern (Gamma et al., 1995).

There are many tools (Tiella et al., 2007; JTakimi and Elkoutbi, 2009) that generate
executable code from state machines. However, the papers do not give details of how states,
events and transitions are represented in the generated code.

DISCUSSION

We represent states and events as Java enums, which makes the code efficient. Java
enums are loaded when the enclosing class 15 loaded. Its performance 13 comparable to
primitives. State hierarchy is represented as enum hierarchy and concurrent states are
represented by using the concept of object composition. Java does not support enum
inheritance explicitly. We used a parent reference in the State enum to handle state hierarchy.

As noted by Chauvel and Jezequel (2005), representing states as enumerations 1s more
efficient than using state classes. They suggest using enumeration for flattened state
machines only. We use Java enums to implement all types of state machines including
concurrent-hierarchical ones. We immprove performance (by using enums) without
compromising on flexibility (by using enums-hierarchy).

JTava enums, after compilation, are equivalent to objects. Therefore all the approaches
(Rumbaugh, 1993; Gamma et al., 1995; Sane and Campbell, 1995; Ran, 1996, Ali and Tanaka,
1998; Douglass, 1998; Gurp and Bosch, 1999; Knapp and Merz, 2002) which suggest
representing states as classes (or objects) are i the support of our approach

Among the many approaches we have reviewed, only few (Ran, 1996; Ali and Tanaka,
1998) support concurrent-hierarchical state machines. However the resulting code has too
many classes, 15 less efficient and 1s not encapsulated in the owner class. Our proposed code
15 well-structured and the state machine details are obvious in the resulting source code. This
makes it easy to reverse-engineer the code back to a state machine, if needed. Furthermore,
validating the code against the corresponding state machine is straight-forward. In fact, the
code can be generated automatically because there 1s almost a one-to-one correspondence
between state machine elements and our proposed code.

In our proposed code, the behavior of a class, represented by the corresponding state
machine, is completely encapsulated inside the class and implemented as a nested class. In
principle, the nested StateMachine class and all its members should be private. In the
example listings, we did not declare them private so that the test code (Listing 5) can work
properly. The StateMachine class is static because Java enum types are static by default and
they require a static environment.

Other Elements in State Machines

The UML. State Machine Diagram allows events having arguments. In the above listings,
we represented each event with an enum-value inside Event enum. This approach is not
suitable for events having arguments. Events having arguments can be implemented as
separate empty methods like entry and exit methods i the State enum. If a state has
transition on that event, the state enum-value will override the method.

In the examples, we have not shown internal events within states and guard conditions
on transitions. An imternal event causes an action to be executed without changing the
current state. A guard represents a boolean expression on a transition. The transition will

228

J. Software Eng., 4 (3): 215-230, 2010

execute only when the event of the transition occurs and the guard condition is true. They
can easily be accommodated m the proposed code. For internal events, the corresponding
switch-case in the process method should call only the action method related to the event.
It should not change the curmrent state. For transitions having guard conditions, the
corresponding code in the switch-case of the process method should be enclosed in an if
statement.

CONCLUSIONS

State machine implementation is an important and difficult task in software development.
Commonly used programming languages do not support state machines at the language
level. Our approach to implement state machines by using Java enums works well for
hierarchical and concurrent states. The resulting code is well-structured, efficient and keeps
the state machine structure obvious at the code level. We expect that the proposed code will
serve as a Java implementation pattern for state machines.

REFERENCES

Aho, A and I. Ullman, 1979. Principles of Computer Design Addison Wesley,
Massachusetts.

Ali, I. and J. Tanaka, 1998. An object oriented approach to generate executable code from the
OMT-based dynamic model. J. Integrated Des. Process Technol., 2: 65-77.

Booch, G., R. Tames and T. Tvar, 2005. The Unified Modeling Language User Guide. 2nd Edn.,
Addison Wesley Professional, New York, ISBN: 0-321-26797-4.

Chauvel, F. and I. Jezequel, 2005. Code generation from UMIL Models with semantic variation
points. Proceedings of the 8th International Conference MoDELS 2005, Oct. 2-7,
Montego Bay, Jamaica, pp: 54-68.

Coleman, D., F. Hayes and S. Bear, 1992. Introducing objectcharts or how to use statecharts
1n object-oriented design. IEEE Trans. Software Eng., 18: 8-18.

Douglass, B.P., 1998. Real Tune UML - Developing Efficient Objects for Embedded Systems.
Addison-Wesley, Massachusetts.

Gamma, E., H. Richard, R. JTohnson and T. Vlissides, 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Massachusetts.

Gurp, I.V. and J. Bosch, 1999. On the implementation of finite state machines. Proceedings
of the 3rd Amnual IASTED International Conference on Software Engineering and
Applications, Oct. 6-8, Scottsdale, Arizona, pp: 1-15.

Harel, D., 1987. Statecharts: A visual formalism for complex systems. Sci. Comput. Program.,
8:231-274.

Jalami, A. and M. Elkoutbi, 2009. Automatic code generation from UML statechart. Int. I.
Eng. Technol,, 1: 165-168.

Knapp, A. and S. Merz, 2002. Model checking and code generation for UML state machines
and collaborations. Proceedings of the 5th Workshop on Tools for System Design and
Verification, (WTSDV’02), Reisenburg, Germany, pp: 59-64.

Kohler, H., U. Nickel, I. Niere and A. Zundorf, 2000. Integrating UML diagrams for
production control systems. Proceedings of the 22nd International Conference on
Software Engineering, (ICSE’00), Limerick, Treland, pp: 241-251.

OMG, 2010. Unified modeling language. http://www.omg.org/spec/TIMIL/.

229

J. Software Eng., 4 (3): 215-230, 2010

Ran, A., 1996. MOODS: Models for Object-Oriented Design of State. In: Pattern Languages
of Program Design 2, Vlissides, I M., I.O. Coplien and N.L. Kerth (Eds.). Addison-
Wesley, Boston, USA.

Rumbaugh, T., 1993. Controlling code: How to implement dynamic models. J. Object-Oriented
Programming, &: 25-30.

Rumbaugh, J., T. JTacobson and G. Booch, 2010. Unified Modeling Tanguage Reference
Manual. Znd Edn., Addison Wesley, New York.

Sane, A. and R. Campbell, 1995. Object-oriented state machines: Subclassing, composition,
delegation and genericity. ACM SIGPLAN Notices, 30: 17-32.

Sun Microsystems, 2010. The java tutorial. http://java.sun.com/docs/books/tutorial/java/
JavaOO/enum.html.

Tiella, R., A. Villafiorita and S. Tomasi, 2007. FSMCH, a tool for the generation of java code
from statecharts. Proceedings of the 5th International Symposium on Principles and
Practice of Programming in Java, Sept. 5-7, Lisboa, Portugal, pp: 93-102.

230

	JSE.pdf
	Page 1

