Journal of
Software

Engineering

ISSN 1819-4311

@

Academic
Journals Inc. www.academicjournals.com

Tournal of Software Engineering 4 (3): 231-243, 2010
ISSN 1819-4311
© 2010 Academic Journals Inec.

Metrics Suite for Component Versioning Control Mechanism in
Component-based Systems

Parminder Kaur and Hardeep Singh
Department of Computer Science and Engineering,
Guru Nanak Dev University, Amritsar-143005, India

Abstract: Version control 1s an important activity in the overall software
development. With the focus shifting to component-based systems in recent times,
use of version control techniques in component-based systems assumes a great
mmportance. Hence, every version control system needs a close momtoring and
control. Various open-source version control systems are analyzed and compared.
Tt is felt that there is a need to have a generic frameworlk, which can handle multiple
versions of different types of components. This study presents a framework for
managing configuration management issues related with component versioning
mechamsm and their implementation using developed Visual Version Control Toeol
(VVCT). A set of metrics for close monitoring and control of whole versioning
system is also suggested.

Key words: Software components, version control, version control tools,
component-based systems, component framework, visual version
control tool

INTRODUCTION

Object-Oriented Design (OOD) frameworks serve as better components in software
development as compared to the objects. In practical applications, objects assume to play
more than one role in more than one context and it 1s possible only with respect to OOD
frameworks (Coleman et al., 1994; Cook and Damels, 1994; Mauth, 1996, Cmkovic ef al.,
1999). Frameworks allow components that play different roles in different frameworks to be
composed by composing frameworks. Version Control (VC) systems help to manage multiple
versions of the same component in a given environment (Thomas and Hunt, 2003,
Collins-Sussman et al., 2006).

A typical component-based application is composed of several pre-existing components
while some other components like application-specific components are developed by
application developers. Every component used in a particular application evolves during
time. Moreover, sometimes multiple different components provide similar fimetionality and
out of them, some components can be substituted at a given place in the application
architecture (Gergic, 2003; Larsson, 2000).

The developed version control tool, VVCT, considers a software component as a
database or a text document, the different versions of which when created can be compared,
reconstructed and deployed. For development of this tool VBNET language is used as,

Corresponding Author: Parminder Kaur, Department of Computer Science and Engineering,
Guru Nanak Dev University, Amritsar-143005, India
Tel: 0183-2258802-09/3573, 9914-010452 Fax: 0183-2258531
231

J. Software Eng., 4 (3): 231-243, 2010

Microsoft’s Visual Basic Framework is specialized for visual composition of components
rather than for any particular runtime quality attribute. SQL Server 2005 1s taken as a database
repository, which stores the whole information related with different versions of the same
componennt.

Mostly common available open-source version control systems, like CVS and
Subversion (Thomas and Hunt, 2003; Collins-Sussman et al., 2006), work well with text
documents only, whereas the tool developed, presently provide versiomng support for two
different types of components i.e. text document as well as database component. Any
modification to these components, in the form of addition of new contents or deletion of
existing contents, creates new version of the related component, which is then stored in the
repository. The new versions as well as old versions can be assessed at any tume for further
use. This tool also supports the comparison of same database as well as text component
irrespective of any two different variants of the same version.

A metric suite is suggested at four levels i.e., Time-based metrics, Personnel metrics,
metrics at Framework level and metrics at Component level, in order to monitor and control
the working of a versioming process with developed Visual Version Control Tool (VVCT).

Component Frameworks

Component framework refers to a framework, which defines a set of rules for different
services, where evolution of new components takes place with new additions/modifications.
Component frameworks are the basis of component-based software systems that define rules
and guidelines so that components interact with each other and enable the modification of
components at run-time. The Life-cycle activities of software components and sharing of
resources between several components are handled by component frameworks. Component
frameworks allow components that play different roles in different frameworks to be
composed by composing framework (Crnkovic ef al., 1999).

The developed version control tool, VVCT, is implemented in NET framework as. NET
supports the multiple roles for a single component. NET can use multiple mterfaces for each
role of a component. VVCT uses aggregation mechanism to compose new frameworls with
the help of existing frameworks. Using aggregation, developed components can be reused
for different purposes or to compose new frameworks. New component frameworks can be
added at run-time by adding roles to a component.

Component Configuration Management Issues

Working with frameworks provides various advantages like management of various
versions of same component but it also adds additional level of complexity (Larsson, 2000),
(Pieber and Spoerk, 2008). Frameworks are considered as composite entities/components,
where each entity/component has its own internal structure, which is built from components
or from their parts. A framework component has relations with other frameworks and can also
be composed from other frameworks. The creation of new compenent from existing
component framework/frameworks introduces configuration management problems in
following two cases:

+ Managing same component in more than one frameworlks

* Creating new framework from existing components and frameworks with respect to
versions and variants

232

J. Software Eng., 4 (3): 231-243, 2010

Case 1
Suppose there are two frameworks F, and F, along with relations R, and R,;. Both
frameworks share the component C,:

Fi=1{C;, C;: Ry} and F,= {C}, C;: Ry3}

Let a new property be added into the component C,, according to the new requirements
of framework 2. Tt leads to the creation of new revision or variant of the component C, say
C, o vgn INt0 the framework 2 ie.,

F;= {Ciauvaro Cs Rys) [Where VO ~initial version and var0 ~ initial variant]

To fulfill the emerging requirements, revisions can be performed on the same version of
the component. As a result, different variants of the version like Civymo . Crviw are
created in the repository. Any variant fulfilling the current requirements may be chosen and
committed as a next version of the component e.g.,

F; ={Civ Cs Ris} = {C vy C5 Rys) [where k refers to any variant of the same version of the
component|

In this situation, two possibilities can occur:

¢+ Framework specification will remain the same if change in component version is not
taken into consideration

¢ If change in component version considers with respect to the framework 1, then again
two possibilities can oceur 1.e., either it works well or it may fails. As the current version
of component C, 13 C, , framework automatically executes the latest variant i.e., C .
of component C,

To avoid this unpredictable situation, basic configuration methods like version
management of components and configuration management of frameworks can be used as
follows (Crnkovic et al., 1999):

+ A component should be identified by its name, version number and variant number

* A framework should also be identified by its name as well as version, so that new
framework version can be derived from existing variants of component versions as well
as by adding new components

The above said conditions suggest that new versions of frameworks can be configured
at the time of creation of new component as follows:

Fivi=1C v © i vearl - R} Frover = {C) vier o © i vearl - R}
F, vy {C ok, Cs vt Ria) B Vel T {C) vt vk Cn vt R}

This situation leads to a fact that more than one framework can share the different

variants of same version of the component and one framework can share the same
component with different versions along with their variants. If the other side is considered,

233

J. Software Eng., 4 (3): 231-243, 2010

it increases the number of generated frameworks. Therefore, it becomes necessary to limit the
number of desired configurations. This can be done by assembling the required versions of
components n a form of baseline and derive the frameworks from baselined component
versions. This concept 1s used by Crmkovic ef al. (1999) and proved this fact that number of
desired frameworks does not grow unnecessarily, if they are derived from baselined
component versions.

When a new role 1s assigned to a component, then a need exists to change the specific
part of the component. This change will affect only those frameworks, where that aspect is
included whereas other frameworks though containing the component, do not affected with
the change (an aspect is defined as a subset of a component and framework is defined as a
set of aspect versions with relations between aspects). Therefore, it is better to keep the
baselined versions/aspects under version control system. The following relations define this
process:

Cim= 1 A] wi where A1 {C)c Ciand F, = {[A] w (G Vk)]: le}

Case 2

In OOD framework, it 13 possible to design a new framework. This new framework acts
as a superset of classes and relations from the frameworks it 1s created. Component-based
systems also support this fact that a new component-based framework can be developed
with the help of existing frameworks along with newly added components. If it is created
during run-time, then the components from the selected frameworks include the new
framework. The proposed framework supports this fact. Tt creates a new framework by
selecting the components from available frameworks with different versions.

Suppose F,and F, are two frameworks as follows:

Fi={C, C;: Ry} F;={C, Cs: Ry}
And framework F; 1s obtained after combming these two frameworks as shown:
F,={C C, C: R Ris, Ry}
This composition worlks well as long as no change takes place in either framework. As
new revisions occur due to changes in requirements, a new version with its variant, of the

component C, 1s created in F, and keep the old version of the same component m F, then
both frameworks can be defined as:

Fi = {C vt o Cove Riz}
F, W= {C ek Cavi Risd

Two possible situations can occur while combining these two frameworks:
F3, i {Cl Vi+1owrk, CZVk CB,V‘I . RIZ, R‘l3> R'23}

And

FS, Vi {Cl Vivark, cl: Vit vark, CZVk CB,VI . RIZ, RlE) RZE}

234

J. Software Eng., 4 (3): 231-243, 2010

The first framework F, ., shows the creation of new framework with latest (new) version
of component C, and second framework consist both versions of C, component. Thus, the
proposed mathematical framework supports both possibilities and proves the fact that the
new framework can include either latest version of the component or both (latest as well as
previous) versions of the component. The support of handling more than one version also
resolves various configuration management issues. This proves the fact that more than one
versions of the same component can be handled by the developed framework, in the run-time
environment.

‘Working of Visual Version Control Tool (VVCT)

Visual Version Control Tool (VVCT) refers to a framework, which can handle multiple
versions of a component, where each version can have multiple variants. Tt provides all rules
to guarantee good structuring of components and enough services to work properly.

Compoenents handled by VVCT consist mainly of interfaces and implementation bodies.
Server components provide their services through their interfaces, which act as contacts
between client and server components. Components are stored in the form of a family where
the term family refers to a logical orgamzation of components and their mterfaces, as shown
inFig. 1. Each component has its own version tree. Any version, along with any variant, can
be accessed at any time. This framework also supports the merging of components from
different versions and stores them as a new framework. This new framework contams
components from older versions as well as newly added components and then stored in the
repository with starting version say zero. Any modification in this version leads to the next
Version.

’ (Variantn)
Selected as a baseline for next
_@ version l.e., VO, varl
AN =

__________ - Modified variant o

. V1, varl
'(Vatiantn)

Selected as a baseline for next
version i.e., V1. varl
=D

————l - Modified variant of
Vk. var0

Fig. 1: Dafferent versions of a compenent, along with their variants, n form of a version tree

235

J. Software Eng., 4 (3): 231-243, 2010

VVCT also supports handling of multiple versions of text documents. Multiple versions
can be accessed from the repository and comparisons can be performed. Differences between
various versions of text files can also be compared.

VVCT has a repository manager, as shown in Fig. 1, which stores information with
respect to components, their revisions and their interfaces. A component 1z mdexed
according to the interface it implements. A specific component, along with its version
history, can be requested directly from the repository. Any variant of the existing version can
become the baseline of the next version.

Few screen snapshots related with the working of VVCT are shown with the help of
following figures. Tnitial screen consist the preview of two types of components, one is
database component and other 1s text component as shown in Fig. 2 and 3.

VVCT also supports handling of multiple versions of text documents. Multiple versions
can be accessed from the repository and comparisons can be performed. Differences between
various versions of text files can also be compared.

VVCT has a repository manager, as shown m Fig. 1, which stores information with
respect to components, their revisions and their interfaces. A component is indexed
according to the mterface it implements. A specific component, along with its version
history, can be requested directly from the repository. Any variant of the existing version can
become the baseline of the next version. Few screen snapshots related with the working of
VVCT are shown with the help of following figures. Initial screen consist the preview of two
types of components, one is database component and other is text component as shown in
Fig. 2 and 3.

[Visual Version Control Tool
[Database task | Text file task
Show Versions Ctrl+5
Merge Tables Cirl+n
Update Versions cil+U
Configure Cirl+C
Compare Versiongs Col4v
Export Ctrl+Shift+E
Rename Version Cri+R
Show Detailled Version

Exit Ctri+E

Fig. 2: Snapshot of various possible operations on database component

Save text data Alt+5
Show text data Alt+D

Compare textdats Alt+C

Show Detal Text Data
Exit Ctrl+E

Fig. 3: Snapshot of Various Possible Operations on Text Component

236

J. Software Eng., 4 (3): 231-243, 2010
Different operations that can be performed are as follows:

* Display of available variants of selected versions of components according to the
specified path and their contents

+ Comparison of different variants of same version of a component,

¢+ Developing a new framework by merging the components of different versions along
with new additions (Fig. 4)

+ Updating of versions after committing a change

+ Display of available versions of text document according to the specified path and
display of contents according to the selected version

. Compare different versions of a selected text file (as shown in Fig. 5)

* Creation of a log table in the form of text file with respect to the changes done m a text
document as well as database structure

VVCT Versus other Version Control Tools

This section provides the comparison of VVCT, with different commercial as well as
open-source version control tools with respect to various parameters. The several categories
and sub-categories, considered for comparison, are discussed in Table 1. The detailed
mformation with respect to these terms, as stated in Table 1, is available at http://better-
scm. berlios.de/comparison/comparisor. htm 1.

Metrics Used For Version Control in VVCT

In order to momtor and control the working of a versiomng process with Visual Version
Control Tool (VVCT) and to implement the proposed model, the followmng set of metrics,
divided in four major categories-time-based metrics, personnel metrics, metrics at component
level and metrics at framework level, is suggested in its initial forms:

L Bkt el feld

Cragte New Framework
I
;b-u--mlm-
F T T T R 2| i b
i P O i M
2 - W - [r—. i "
it P] s e Sy L N
[Wk T e E Pl ymam, Sy
L _I.a.l wantede - weank n .
| [y oA et vy} S Sy v
® B
b Seacwd i
eyt bierstonars | Bnciench bumier iosingmy Lo ot Sebe o by Bt Lond
| e—
R = (=]
e] | Dacc | Finkd Harm
iy g v— L]
[sanans
e Sy e
o i e a [istes Trpm
1 v
e L i i <)
|83
T

Fig. 4: Creation of New Framework with available versions and new additions

237

J. Software Eng., 4 (3): 231-243, 2010

=, Delilieeich FelSip

Compare TestFle Yersiors

Pl rame [T,

ey w ¥ EB

Fig. 5: Comparison of two versions of same text files after making new additions

Table 1: Comparison of VVCT with commercial as well as open-gource version control systems

Tools
Visual
Categories CVSs Subversion source safe Perforce Vesta VVCT
Repository operations
Atomic Commits No Yes No Yes Yes Yes
Intelligent Merging after Renames No Yes No Partial Unknown Yes
File and Directory Copies No Yes Yes Yes Yes No
Remote Repository Replication Indirectly Yes Indirectly Yes Yes Yes
Propagating Changes to No Yes Indirectly No Yes No
Parent Repositories
Repository Permissions Limited Yes Yes Yes Yes Yes
Change sets Support No Partial No Yes Not exactly Yes
Tracking Line-wise history Yes Yes Not Directly Yes No Yes
Features
Ability to work on one database/ Partial Partial Partial Partial Partial Yes
directory of the repository
Tracking Uncommitted Changes Yes Yes Yes Yes Yes No
Per-file Commit Messages No No Yes No Not exactly Yes
Technical status
Documentati on Excellent Very Good — Medium Very Good Quite Very
Thoroughly Good
Ease of Deployment Good Good Very Good Very Good Medium to Very
Good Good
Command Set Simple Easy Little Very Little Not used
difficult extensive difficult
Networking Support Good Very Good Good Good Very Good Good
Portability Good Excellent Good Excellent Good Good
Automatic backup Yes Yes Yes Yes Yes Yes
User Interface
Web Interface Yes Yes No Yes Yes No
Graphical User Interface Very Very Standalone Very Good Standalone Very
Good Good GUI Windows Good
GUI
Simplicity of Use Many Simple Very simple Simple Simple Very
Commands to simple

complicated use

238

J. Software Eng., 4 (3): 231-243, 2010

Time-based Metrics

The time-based metrics suite consists following metrics:

Total number of versions of a component 1.e., Total Num Ver
Total number of variants to a version 1.e., Num Vari Ver
Average number of variants to a version

N
AvgNumVari_ver= "y NumVari_ver/Total NumVer

=1

Total time to generate all variants of same version 1.e., Total Time Variant

jij
Total Time Variant =2Time Vari

=1

Timne gap between the generation of two variants of same version 1.e., TimeVari
Average time gap between the generation of two variants of same version i.e.,

Avg Time Variance = Total TimeVari/NumVari_ver

Distribution of changes over various phases of development 1.e., PhaseDistribution
Average distribution of changes over various phases of development i.e.,

AvgDistriPhase = Total No. of changes made over all phases/Total no. of phases

N
Avg Distri Phase = " PhaseDistribution/N

I=1

Total time to release the version 1.e., TotalTimeVer
Average time taken for release of a version i.e., AvgTimeVer

AvgTimeVer = TotalTimeVer/TotalNumVer

Personnel Metrics

The metrics suite that can be defined at personnel level is as follows:

Total number of persons involved in version process i.e., TotalPersons

Total number of changes involved in version process 1.e., TotalChanges

Total number of changes done by every person in absolute, individually ie.,
ChangePersons

Total number of changes done by every person in every phase of development ie.,
PersonPhaseT otal Changes

Average number of changes committed by the persons in a team i.e., AvgChangePerson
AvgChangePerson = TotalChanges/TotalPersons

Metrics at Framework Level

The metrics suite that can be defined at framework level is as follows:

No. of components n a framework 1.e., NumCompFrame
No. of relations in a framework 1.e., NumRelaFrame

239

J. Software Eng., 4 (3): 231-243, 2010

¢ Complexity of relations in a framework between various components ie
CplexRelaFrame
* No. of evolving/evolved frameworks 1.e., NumEvoFrame

i

Metrics at Component Level
The metrics suite that can be defined at component level is as follows:

+ Complexity of a component 1.e., CplexComp
¢+ Change of complexity over two successive versions i.e., ChangeCplexVer
¢ Change in internal attributes of a component with respect to

* Number of modifications done over successive versions Le., NumModSuccVer

¢ Change insize i.e., ChangeSize

+ Change in Cohesiveness i.e., ChangeCohesive

*+ Change in Coupling pattern (Complexity of Coupling/Coupling in Complexity
Pattern) 1.e., ChangeCoupling

Case Study

In order to illustrate the use of the proposed set of metrics, a small component-based
system 1s chosen whose development has been monitored. This system 1s a library
management system composed of seven different components i.e., Person, Member, Student,
Teacher, Booklssue, Book and Subject. The system was developed by a team of five persons
loosely involved in every developmental activity from establishing the set of requirements
component by component till the testing of the component It has been a deliberate
sequential process followed by the developers in order to study not only the behavior of the
individual components but also that of the persons involved. Tt is a controlled set of an
experiment specifically designed for study of the use of the proposed set of metrics. The
results obtained can be represented with the help of graphs as shown below:

+ Tofind average number of variants to a particular version (Fig. &)

* To find average tume gap between the generation of two variants of same version
(Fig. 7)

¢+ Tofind average distribution of changes over various phases of development (Fig. &)

Average No, of variants

T e . 8
u\@“"x ab‘“‘j’ B cwﬂ‘“ & L\""g‘.,(,b"’" gl o>

Version No,

Fig. 6: Average No. of variants to a version

240

J. Software Eng., 4 (3): 231-243, 2010

Average variants generation time
5O SO e e b
chhobohbhoabs
1 i ! 1 1 1 1 1 1

AD A A9 B 45y

A% 9
o\@ﬂ\cﬂ-m 0.3@@1 cﬂt@ﬂ oiw gbw rﬂ@ﬁ
Effort

Fig. 7: Average time gap between the generations of two variants of same version

L2
L
1
Lid
Lo

3L6
25
25-1 223

3 204 176
15

Components
Fig. 8: Average distribution of changes over various phases of development

ORequirement @ Coding
O Design B Average
45+ g =

140

™
5] afi® T
3048

Change distribution
[]
38
20

cl c2 c3 c4
Components

Fig. 9: Distribution of changes over various phases of development

+ To find average distribution of changes over various phases of development with
respect to component C1 to C7 (Fig. 9)

The number of variants/version and the time/average time spent delivering a
variant/version indicates the complexity/length of the job in generation of a version. Greater
the number of variants, theoretically, those versions should take greater amount of time to
be delivered as 1s the case with component C3 (Fig. 6, 7). However, components C3 and C5

241

J. Software Eng., 4 (3): 231-243, 2010

show a reverse trend which might be due to the complexity and the nature of changes
involved. Therefore, the time to release the version is affected by the number, type and the
complexity of the changes involved. Average distribution of changes with respect to each
component, over various phases of development 1s shown i Fig. 8.

Another input in the development of the various components with respect to the time
to release of the varants comes from the distribution of the errors across various
development phases. Component C3 (Fig. 9) took maximum average time to develop because
of the greater number of errors encountered in the requirement phase which means it took
longer time to get the requirements stabilized. However, the components having spent lesser
time 1n stabilizing the requirements but more time 1n other phases like Design, Coding, took
overall lesser time to be released. This lighlights the importance of the early stabilization of
requirements. In case of Component C5, the most of the time seems to be spent on the
stabilizing Requirements and Design and it actually got developed in swrprisingly little
coding effort which is according to the trend that stabilized Requirements and Design
actually can reduce the coding effort, as is also shown in the case of components C3 and C6
(Fig. 9).

CONCLUSIONS

Component-based systems are becoming increasingly important in software
development. The continuous change m these types of systems, demand for an efficient
version control mechanism. In this paper, an effort has been made to present a component
framework for version management, which 1s used as a basis of developed version-control
tool. A mathematical model is presented which enables the handling of multiple frameworks
independently as well as when merged together. More than one framework can share the
different variants of same version of the component and any one framework can share the
same component with different versions along with their variants.

The properties of the developed version control tool have been discussed and
compared with other systems of same type. A supporting set of metrics is also presented to
effectively support the working of the proposed compenent framework and version control
tool. However, the developed tool as well as proposed set of metrics needs validation. The
next step 1s to use a wide range of empirical data for validation as well as to undertake a
deeper probe mnto the working of the metrics.

REFERENCES

Coleman, D., P. Arnold, 8. Bodoff, C. Dollin, H. Gilchrist, F. Hayes and P. Jeremaes, 1994.
Object-Oriented Development: The Fusion Method. Prentice-Hall, Englewood Cliffs,
New Jersey.

Colling-Sussman, B., B.W. Fitzpatrick and C.M. Pilato, 2006. Version Control with Subversion.
For Subversion 1.3, Create Space Publisher, UK.

Cook, S. and I. Daniels, 1994. Designing Object Systems. Prentice-Hall, New Jersey.

Crkovie, I, M. Larsson and K.K. Lau, 1999. Compenent configuration management for
frameworks. http://www.cs.man ac.uk/~kung-kiu/pub/wsac99 pdf.

Gergic, I, 2003, Towards a versiomng model for component-based software assembly.
Proceedings of the intemational Conference on Software Maimntenance, Sept. 22-26,
ICSM IEEE Computer Society, Washington, DC., pp: 138-13R.

242

J. Software Eng., 4 (3): 231-243, 2010

Larsson, M., 2000. Applying configuration techniques to component-based systems. Ph.D.
Thesis, Department of Computer Engineering, Malardalen University.

Mauth, R., 1996. A better foundation: Development frameworks let you build an application
with reusable objects. BYTE 21(9):40LS 10-13, Sept. 96.

Pieber, A. and T. Spoerk, 2008. A comparative analysis of state-of-the-art component
frameworks for the TAVA programming language. Informatikpraktilum I, SS 08.
http://cocoon.ifs. tuwien.ac.at/lehre/praktikumsarbeiten/2008 pieber component fra
meworks.pdf.

Thomas, D. and A. Hunt, 2003. Pragmatic Version Control Using CVS. The Pragmatic
Programmers, USA., ISBN-10: 0974514004.

243

	JSE.pdf
	Page 1

