Journal of
Software

Engineering

ISSN 1819-4311

@

Academic
Journals Inc. www.academicjournals.com

Tournal of Software Engineering 4 (4): 265-287, 2010
ISSN 1819-4311
© 2010 Academic Journals Inec.

A Test Case Generation Process and Technique
Nicha Kosindrdecha and Jirapun Daengde;

Autonomous System Research Laboratory,
Faculty of Science and Technology, Assumption University, Thailand

Abstract: This study aims to improve an automated test case generation method to
minimize a number of test cases while maximizing an ability to identify critical
domain specific requirements. Tt has been proven that the software testing phase
15 one of the most critical and inportant phases in the software development life
cycle. In general, the software testing phase takes around 40-70% of the effort, time
and cost. This area has been well researched over a long period of time.
Unfortunately, while many researchers have found methods of reducing time and
cost during the testing process, there are still a number of wmportant related issues
that need to be researched. This study introduces a new test case generation
process with a requirement prioritization method to resolve the following research
problems: (1) inefficient test case generation techniques with limited resources (2)
lack of an ability to identify critical domain requirements in the test case generation
process (3) inefficient automated test case generation techniques and (4) ignoring
a number of generated test cases. In brief, the contributions are to: (1) study a
comprehensive set of test case generation technicques since 1990, (2) compare
existing test case generation methods and address the limitations of each technique,
(3) introduce a new classification of test case generation techniques, (4) define a
new process to generate test cases by proposing a requirement prioritization
method and (5) propose a new effective test generation method.

Key words: Test case generation, testing research issues, test generation, test
generation method, requirement prioritization and test generation
process

INTRODUCTION

According to the waterfall software development life cycle (SDLC) below, basically there
are five phases in the cycle, which are: (1) requirements, (2) design, (3) implementation (also
known as development), (4) verification (also known as software testing) and (5)
maintenance. Software testing phase is the process of executing a program or system with
the intent of finding errors (Myers, 1979). Tt involves any activity aimed at evaluating an
attribute or capability of a program or system and determining that it meets its required
results (William, 1988). Software is not unlike other physical processes where inputs are
recelved and outputs are produced. Where software differs 1s in the manner in which it fails.
Most physical systems fail in a fixed (and reasonably small) set of ways. By contrast,
software can fail in many bizarre ways. Detecting all of the different failure modes for
software is generally infeasible.

Corresponding Author: Nicha Kosindrdecha, Autonomous System Reszarch Laboratory,
Faculty of Science and Technology, Assumption University, Thailand
Tel: 66023773687, 66898116163
265

J. Software Eng., 4 (4): 265-287, 2010

Obviously, software testing is an essential activity in the SDLC. In the simplest
terms, it provides quality assurance by observing the execution of a software system
to validate whether it behaves as intended and to identify potential malfunctions.
Testing is also widely applied by directly scrutinizing the software to provide realistic
feedback of its behavior. Earlier studies estimated that testing can consume fifty percent, or
even more, of the development costs (Beizer, 1990) and a recent detailed survey in the United
States (NIST, 2002) quantified the high economic impacts of an inadequate software testing
infrastructure.

In addition, Bentley (2005) stated that software testing is one of the most critical
and mmportant phases in software testing. For mstance, In June 1996 the first flight
of the European Space Agency's Ariane 5 rocket failed shortly after launching, resulting in
an uninsured loss of $500,000,000. The disaster was traced to the lack of exception
handling for a floating-point error when a 64-bit integer was converted to a 16-bit signed
mteger. This has proven that software testing is one of the most critical phases and cannot
be ignored.

Tt is concluded from this that the impact of inadequate testing can be root-cause
problems of: (1) increased failures due to poor quality (2) mereased software development
costs (3) increased time to market due to inefficient testing and (4) increased market
transaction costs (NIST, 2002).

In software testing, lan (Sommerville, 2000) stated that there are four processes, which
are: (1) design test cases (also known as test case generation process), (2) prepare test data,
(3) run program with test data and (4) compare results to test cases. The test case generation
process is a fundamental and the most critical process in the software testing process
(Sommerville, 2000; Bertolino, 2003; Prasanna et af., 2006). Bertolino (2003) stated that Test
case generation is a most challenging and an extensively researched activity”. Many test
case generation techniques have been proposed in order to facilitate generation and
preparation of test cases, such as Salas (Antonio et al., 2005; Offutt ef al., 1999, Heumamm,
2001; Turner et al., 2008). Tn addition, Kaner (2003) listed the purposes of test cases, for
mstance to find defects, maximize bug count and help managers make go/mo-go decisions.
These papers have shown that test cases and methods are one of the most challenging
processes during software testing phase. Also, they showed that the test case generation
process 1s an extensively researched activity and consumes a lot of time and cost. Therefore,
many researchers from 1950 to 2006 mentioned that automated test case generation is one
approach to reducing time and cost during the test case generation process. Many methods
have been proposed to identify a set of test cases, such as Sanjai’s work (Rayadurgam and
Heimdahl, 2001a), Hyungchoul’s work (Kim ef al., 2007; Chen ef al., 2008; Frohlich and
Link, 2000).

This study reviews test case generation methods researched since 1990, such as
random approaches, goal-oriented techniques, specification-based techmques, sketch
diagram based techniques and source code based techniques. Also, this study shows that
the outstanding research issues that motivated this study are: (1) existing test case
generation techniques assume explicitly that there are unlimited resources available during
the test case generation process, (2) existing methods lack the ability to identify and reserve
the critical domain requirements in the test case generation process and (3) not all existing
techniques concentrate on generating a minimal set of test cases with the maximal ability to
reveal faults.

266

J. Software Eng., 4 (4): 265-287, 2010

This study introduces a new test case generation process based on all existing test case
generation techniques. Also, this paper proposes a test case generation method to address
the above three research 1ssues.

LITERATURE REVIEW

This section surveys and describes the software testing process, a test case
generation process and all recent research of test case generation techniques. The following
paragraphs describe the general process of running software testing activities. This study
mncludes the software testing process provided by Ian (Sommerville, 2000), who 1s the author
of well-known software testing bools, as follows:

+ Design test cases: The purpose of this step is to generate and prepare a set of test
cases. Therefore, the outcome of this step 13 a set of test cases. A set of test cases may
be represented m Excel format, as Word documents or as a database

¢ Prepare test data: The purpose of this step is to generate and prepare test data for each
test case. The outcome of tlus step 1s a set of test data

+ Run program with test data: This is an execution test step. Test case and test data will
be run m this step. The result of this step 1s actual system output

* Compare results to test cases: This step 1s used to compare the system output to
expected output in the test case. The milestone of this step is a test report of running
the test case with test data

Sommerville (2000), the test case generation process (or the process of designing test
cases) is the first and the most important process in software testing. The test case
generation process is also known as a “test development” process in Pan’s work (Pan, 1999).
The test case generation process has always been fundamental to the testing process.
Bertoline (2003) articulated that the test case generation step is one of the most challenging
and extensively researched activities of software testing. There are many types of test case
generation techniques (Prasanna et al., 2005) such as random approaches, goal-oriented
technique, specification-based techniques, sketch diagram based techniques and source
code based techmques. In addition, there are many researchers who have investigated
generating a set of test cases for web-based applications (Tia et al., 2003; Ricca and Tonella,
2001; Wu and Offutt, 2002, Wu et al., 2004).

Random techniques determine a set of test cases based on assumptions concerning fault
distribution. Goal-oriented techniques identify test cases covering a selected goal such as
a statement or branch, irrespective of the path taken. Specification-based techniques design
a set of test cases from formal requirement specifications. Generating test cases of complex
software from non-formal specification can result in incorrect implementations leading to the
necessity to test them for conformance to its specification (Santiago et al, 2006). Sketch
diagram based techniques derive test cases from UML diagrams. The UML diagrammatic
technique is the most widely used in the software design phase. Many diagrams are used in
generating a set of test cases, such as use case diagram, activity diagram and state chart
diagram. Source code-based techniques (or Path-oriented techniques) generally use a control
flow graph to identify paths to be covered and generate appropriate test cases for those

paths.

267

J. Software Eng., 4 (4): 265-287, 2010

This section introduces a new 35 classification of test case generation techniques, as
follows.

Specification-based Test Case Generation Techniques

Specification-based techniques are methods to generate a set of test cases from
specification documents such as a formal requirements specification (Cunning and Rozenblit,
1999; Tran, 2001; Rayadurgam and Heimdahl, 2001a; Nilsson ef al., 2006, Tsai ef al., 2005),
Z-specification (Huaikou and Ling, 2000; Jia and Liu, 2002; Jia ef af., 2003) and Object
Constraint Language (OCL) specification (Antonio et al., 2006).

In fact, the specification precisely describes what the system is to do without describing
how to do it. Thus, the software test engineer has important information about the software’s
functionality without having to extract it from unnecessary details. The advantages of this
technique include that the specification document can be used to derive expected results for
test data and that tests may be developed concurrently with design and implementation. The
latter is also useful for breaking “Code now test later” practices in software engineering and
for helping develop parallel testing activities for all phases (Subraya and Subrahmanya,
2000).

The specification requirement document can be used as a basis for output checking,
significantly reducing one of the major costs of testing. Specifications can also be analyzed
with respect to their testability (Memon et al., 1999). The process of generating tests from
the specifications will often help the test engineer discover problems with the specifications
themselves. If this step is done early, the problems can be eliminated early, saving time and
resources. Generating tests during development also allows testing activities to be shifted
to an earlier part of the development process, allowmg for more effective planmng and
utilization of resources. Test generation can be independent of any particular implementation
of the specifications (Offutt ez al., 1999).

Furthermore, the specification-based technique offers a sumpler, structured and more
formal approach to the development of functional tests than non-specification based testing
techniques do. The strong relationship between specification and tests helps find faults and
can simplify regression testing. An important application of specifications in testing is to
provide test oracles.

The drawbacks of the specification-based techmque with formal methods are: (1) the
difficulty of conducting formal analysis and the perceived or actual payoff in project budget.
Testing is a substantial part of the software budget and formal methods offer an opportunity
to significantly reduce testing costs, thereby making formal methods more attractive from the
budget perspective (Liu et al,, 2001) and (2) there is greater manual effort or processes in
generating test cases, compared with techniques involving automatic generation processes.
This research reveals that many techniques have been proposed such as heuristics
algorithms (Cunning and Rozenblit, 1999; Kancherla, 1997), model checkers (Tran, 2001,
Rayadurgam and Heimdahl, 2001a;, Nilsson et af, 2006) and erarchy approaches
(Huaikou and Ling, 2000; Jia and Liu, 2002; Tia et al., 2003). The following paragraphs
describe existing specification-based techniques that have been proposed since 1997.

Antonio ef al. (2005) presented the underlying theory by providing a set of test cases
with formal semantics and translated this general testing theory to a constraint satisfaction
problem. A prototype test case generator serves to demonstrate the automation of the
method. Tt worls on Object Constraint Language (OCL) specifications. The OCT. is part of
the UML 2.0 standard. It is a language allowing the specification of formal constramnts in
context of a UML model. Constramts are primarily used to express mvariants of classes,

268

J. Software Eng., 4 (4): 265-287, 2010

pre-conditions and post-conditions of operations. These invariants become elements of test
cases. In their work, they aimed to generate test-cases focusing on possible errors during the
design phase of software development. Examples of such errors might be a missing or
misunderstood requirement, a wrongly implemented requirement, or a simple coding error.
In order to represent these errors, they introduced faults into formal specifications. The faults
are introduced by deliberately changing a design, resulting in wrong behavior possibly
causing a failure. They focused dedicatedly on the problem of generating test cases from a
formal specification. The problem can be represented as a Constraint Satisfaction Problem
(CSP). A CSP consists of a finite set of variables and a set of constraints. Each variable is
associated with a set of possible values, known as its domain. A constraint is a relation
defined on some subset of these variables and denotes valid combinations of their values.
A solution to a constraimnt satisfaction problem 1s an assignment of a value to each variable
from its domain, such that all the constraints are satisfied. Formally, the conjunction of these
constraints forms a predicate for which a solution should be found. To resolve the above
problem, they proposed to embed the test generation problem modeled as a CSP into a
specially designed and mmplemented Constraint System. But this 1s not a novelty because
this approach has been widely explored and implemented. The novelty in their approach is
the relation that they formalized between fault-based testing and constraint solving.

Offutt et al. (1999) presented a model for developing test inputs from state-based
specifications and formal criteria for test case selection. For state-based specification
technique, their paper used the term specification-based testing in the narrow sense of using
specifications as a basis for deciding what tests to run on software. Their proposed approach
1s related to Blackbum’s state-based functional specifications of the software, expressed
the language, T-Vec (Blackburn and Busser, 1996). It 1s used to derive disjunctive normal
form constraints, which are solved to generate tests. Also, their approach is related to
Weyuker et al. (1994) who presented a test case generation method from Boolean logic
specifications. Moreover, they mtroduced several criteria for system level testing. These
criteria are expected to be used both to guide the testers during system testing and to help
the testers find rational, mathematical-based points at which to stop testing. Tn those criteria,
tests are generated as multi-part, multi-step and multi-level artifacts. The multi-part aspect
means that a test case 15 composed of several components: test case values, prefix values,
verify values, exit commands and expected outputs. The multi-step aspect means that tests
are generated in several steps from the functional specifications by a refinement process. The
functional specifications are first refined into test specifications, which are then refined into
test scripts. The multi-level aspect means that tests are generated to test the software at
several levels of abstraction.

Kancherla (1997) used a form of specification-based testing that employs the use of an
automated theorem prover to generate test cases. A similar approach was developed using
a model checker on stat-intensive systems. The method applies to systems with functional
rather than stat-based behaviors. The approach allows for the use of mcomplete
specifications to aid in generation of tests for potential failure cases. He suggested a new
method of testing software based on the formal specification. He used the Prototype
Verification System (PV3) and its in-built theorem prover to derive test cases corresponding
to the properties stated in the requirements.

Cunning and Rozenblit (1999) were interested in the model-based codesign of real-time
embedded systems. Tt relies on system models at increasing levels of fidelity in order to
explore design alternatives and to evaluate the correctness of these designs. As a result, the
tests that they desire should cover all system requirements in order to determine if all

269

J. Software Eng., 4 (4): 265-287, 2010

requirements have been implemented in the design. The set of generated tests is maintained
and applied to system models of increasing fidelity and to the system prototype in order to
verify the consistency between models and physical realizations. In the codesign method,
test cases are used to validate system models and prototypes agamst the requirements
specification. In the study, they presented continuing research toward automatic generation
of test cases from requirements specifications for event-oriented, real-time embedded
systems. They used a heuristic algorithm to automatically generate test cases in their works.
The heuristic algorithm uses the greedy search method followed by a distance based search
if needed. The algorithm with pseudo code is addressed (Cunning and Rozenblit, 1999).

Tran (2001) focused on existing research in using model checking to generation test
cases. He touched on several areas, like the methodology of properly testing software, the
use of model checking to generate tests swits and specialization of specification to suit the
needs of test generation. A model checker is used to analyze a finite-state representation of
a system for property violations. If the model checker analyzes all reachable states and
detects no violations, then the property holds. However, if the model checker finds a
reachable state that violates the property, it returns a counterexample — a sequence of
reachable states beginning in a valid initial state and ending with the property violation. In
his technique, the model checker is used as a test oracle to compute the expected outputs
and the counterexamples it generates are used as test sequences. In summary, his approach
1s used to generate test cases by applying mutation analysis. Mutation analysis 1s a white-
box method for developing a set of test cases which is sensitive to any small syntactic
change to the structure of a program.

Rayadurgam and Heimdahl (2001 b) presented a method for automatically generating test
cases to structural coverage criteria. They showed how, given any software development
artifact that can be represented as a finite state model, a model checker can be used to
generate complete test cases that provide a predefined coverage of that artifact. They
provided a formal framework that 1s: (1) suitable for defimng their test-case generation
approach and (2) easily used to capture finite state representations of software artifacts such
as program code, software specifications and requirements models. They showed how
common structural coverage criteria can be formalized in their framework and expressed as
temporal logic formulae used to challenge a model checker to find test cases. Fmally, they
demonstrated how a model checker can be used to generate test sequences for modified
condition and decision (MC/DC) coverage. Their approach to generating test cases involves
using the model-checker as the core engine. A set of properties called trap properties
(Gargantini and Heitmeyer, 1999), is generated and the model-checker is asked to verify the
properties one by one. These properties are constructed in such a way that they fail for the
given system specification.

Nilsson et al. (2006) has proposed a model based method for generating test cases to
test timeliness by using heuristic driven simulation. Their appreach is perfectly suited to
generating test cases for small real-time systems that contain shared resources, precedence
constraints and few sporadic tasks. Conversely, in dynamic real-time systems there are many
sporadic tasks, making model-checking impractical. For these dynamic real-time systems,
they proposed an approach where a simulation of each mutant model 15 iteratively run and
evaluated using genetic algorithms with application specific heuristics. By using a
simulation-based method instead of model-checking for execution order analysis, the
combinatorial explosion of full state exploration is avoided. Furthermore, they conjectured
that 1t 1s easier to modify a system siumulation than a model-checker, to correspond to the
architecture of the system under test. In their paper, they focused on genetic algorithms.

270

J. Software Eng., 4 (4): 265-287, 2010

They included three types of functions needed to solve the specific search problem. Those
three functions are: (1) a genome mapping function, (2) heuristic cross-over functions and
(3) fitness function.

Sketch Diagram-based Test Case Generation Techniques

Sketch diagram-based techniques are methods to generate test cases from model
diagrams like UML Use Case diagram (Heumann, 2001; Ryser and Glinz, 2000; Nilawar
and Dascalu, 2003), UML Sequence diagrams (Javed et al,, 2007) and UML State diagrams
(Sinha and Smidts, 2005; Santiago efal, 2006, El-Far and Whittaker, 2001; Cavarra et al.,
2000; Reza et al., 2008; Kung et al., 2000, Shams et al., 2006, Andrews et al, 2004). The
following paragraphs survey current sketch diagram-based test case generation techmques
that have been proposed for traditional and web-based application for a long time.

A major advantage of model-based VandV is that it can be easily automated, saving time
and resources. Other advantages are shifting the testing activities to an earlier part of the
software development process and generating test cases that are independent of any
particular implementation of the design (Javed et al., 2007). The following paragraphs
describe existing specification-based techniques that have been proposed since 2000.

Heumann (2001) presented how using use cases to generate test cases can help launch
the testing process early in the development lifecycle and also help with testing
methodology. In a software development project, use cases define system software
requirements. Use case development beging early on, so real use cases for key product
functionality are available in early iterations. According to the Rational Unified Process
(RUP), a use case 1s used to fully describe a sequence of actions performed by a system to
provide an observable result of value to a person or another system using the product under
development. Use cases tell the customer what to expect, the developer what to code, the
technical writer what to document and the tester what to test. He proposed three-step
process to generate test cases from a fully detailed use case: (1) for each use case, generate
a full set of use-case scenarios (2) for each scenario, identify at least one test case and the
conditions that will make it execute and (3) for each test case, identify the data values with
which to test.

Ryser and Glinz (2000) raised the practical problems mn software testing as follows: (1)
lack of planming/time and cost pressure, (2) lack of test documentation, (3) lack of tool
support, (4) formal language/specific testing languages required, (5) lack of measures,
measurements and data to quantify testing and evaluate test quality and (6) insufficient test
quality. Their proposed approach to resolve the above problems is to derive test cases from
scenarios/UML use cases and state diagrams. In their work, the generation of test cases is
done in three stages: (1) preliminary test case and test preparation during scenario creation,
(2) test case generation from Statechart and dependency charts and (3) test set refinement
by application dependent strategies (intuitive, experience-based testing).

Nilawar and Dascalu (2003) were interested i testing web based applications. Web
based applications are of growing complexity and it is a serious business to test them
correctly. They focused on black box testing which enables the software testing engineers
to derive sets of mput conditions that will fully exercise all functional requirements. They
believed that black box testing is more generally suitable and more necessary for web
applications than other types of application. Furthermore, they proposed four steps to
generate test cases, based on J. Heumann’s four-steps (Heumann, 2001), as follows: (1)
prioritize use cases based on the requirement traceability matrix, (2) generate tentatively
sufficient use cases and test scenarios, (3) for each scenario, 1dentify at least one test case

271

J. Software Eng., 4 (4): 265-287, 2010

and the conditions and (4) for each test case, identify test data values. They also presented
that the test cases contains: a set of test inputs, execution conditions and expected results
developed for a particular objective.

Sinha and Smidts (2005) described a new model based testing technique developed to
identify critical domain requirements. The new technique is based on modeling the system
under test using a strongly typed Domain Specific Language (DSL). In the new technique,
mformation about domain specific requirements of an application are captured automatically
by exploiting properties of the DSL and are subsequently introduced in the test model. The
new technicue is applied to generate test cases for the applications interfacing with relational
databases and the example DSI.. Test suites generated using the new techniques are
enriched with tests addressing domain specific implicit requirements.

Santiago ef al. (2006) focused on test sequence generation from a specification of a
reactive system, space application software, in Statecharts (Harel, 1987) and the use of
PerformCharts (Vijaykumar et ¢l., 2002). In order to adapt PerformCharts to generate test
sequences, it has been associated to a test case generation method, switch cover,
umplemented within the Condado tool (Amaral, 2006). Condado 15 a test case generation tool
for FSM. The algorithm implemented in Condado is known as sequence of de Bruijn. The
steps in the algorithm are: (1) a dual graph is created from the original one, by converting arcs
mnto nodesm (2) by considering all nodes 1n the original graph, where there 1s an arc arriving
and another arc leaving, an arc 1s created m the dual graph, (3) the dual graph 1s transformed
into a “Eulerized” graph by balancing the polarity of the nodes and (4) finally, the nodes are
traversed registering those that are visited.

El-Far and Whittaker (2001) were interested in model-based testing and generating test
cases from fimte state machines. The difficulty of generating test cases from a model
depends on the nature of the model. Models that are useful for testing usually possess
properties that make test generation effortless. Sometimes generation processes can be
automated. For some models, one must go through combinations of conditions described in
the model. In the case of finite state machines, it 1s as simple as implementing an algorithm
that randomly traverses the state transition diagram. The sequences of arc labels along the
generated paths are, by definition, tests.

Cavarra et al. (2000) described a modeling architecture for the purposes of model based
verification and testing. Their architecture contains two components. The first component
of the architecture is the system model, written in UML; this is a collection of class, state and
object diagrams: the class diagram identifies the entities in the system; the state diagrams
explain how these entities may evolve; the object diagram specifies an initial configuration.
The second component, again written in UML, is the test directive; this consists of particular
object and state diagrams: the object diagrams are used to express test constraints and
coverage criteria; the state diagrams specify test purposes. The system model and the test
directives can be constructed using any of the standard toolsets, like Rational Rose.

Reza et al (2008) discussed a model-based testing method for web applications that
utilizes behavioral models of the software under the test (SUT) from Statechart models
originally devised by Harel (1987, 1988). Statechart models can be used both for modeling
and generating test cases for a web application. The main focus of their work 1s on the front
end design and testing of a web application. As such, they utilize the syntax of the web
pages to guide the specification of the Statecharts. Their approach is a systematic way to
test the front-end functionality of a web application. For the most parts, they are concerned
with verifying that the links, forms and images in the web application under test function
according to the specification documents. Furthermore, they address how to model the

272

J. Software Eng., 4 (4): 265-287, 2010

web application with Statechart diagrams in their work. To generate test cases from
Statechart diagram, they defined 5 test coverage criteria: (1) all-blobs, (2) all-transitions, (3)
all-transition-pairs, (4) all-conditions and (5) all-paths.

Source Code-based Test Case Generation Techniques

Source code-based techniques generally use control flow information to identify a set
of paths to be covered and generate appropriate test cases for these paths. The control flow
graph can be derived from source code. The result 1s a set of test cases with the following
format: (1) test case TD, (2) test data, (3) test sequence (also known as test steps), (4)
expected result, (5) actual result and (6) pass/fail status. The following paragraphs describe
the source code-based techniques that have been proposed since 1999.

Beydeda and Gruhn (2003) presented a novel approach to automated test case
generation. Several approaches have been proposed for test case generation, mainly
random, source code-based (or path-oriented), goal-oriented and intelligent approaches
(Pargas et al, 1999). Random techniques determine test cases based on assumptions
concerning fault distribution, e.g., (Avritzer and Weyuker, 1995). Source code-based
techmques generally use control flow mformation to identify a set of paths to be covered and
generate appropriate test cases for these paths. These techniques can further be classified
as static or dynamic. Static techniques are often based on symbolic execution eg.,
(Ramamoorthy et al., 1976), whereas dynamic techniques obtain the necessary data by
executing the program under test e.g., (Korel, 1990). Goal-oriented techniques identify test
cases covering a selected goal such as a statement or branch, irrespective of the path taken
e.g., (Pargas ef al., 1999). Intelligent techniques of automated test case generation rely on
complex computations to identify test cases e.g., (Gupta et al., 1998). Another classification
of automated test case generation techniques can be found in (Gupta et al., 1998). Their
algorithm proposed m this article can be classified as a dynamic path-oriented one. Its basic
idea is similar to that (Korel, 1990). The path to be covered is considered step-by-step, i.e.,
the goal of covering a path is divided into sub-goals, test cases are then searched to fulfill
them. The search process, however, differs substantially. In Bogdan’s work (Korel, 1990}, the
search process is conducted according to a specific error function. In their approach, test
cases are determined using binary search, which requires certain assumptions but allows
efficient test case generation. Tumer ef af. (2008) proposed an activity oriented approach.
Their approach is one possible approach to test web applications; it is a black-box test based
on user interactions with the web application. As web applications become more
sophisticated, the functionalities of web pages have become more intricate, convoluted and
loaded with links, buttons and multiple forms. Manual testing of such web applications,
though unavoidable, 1s grueling and often not reliable. Hence it is preferable to develop
automated tests that can expose failures and deviations from intended behavior. The user
interactions may be as simple as clicking a button or as complicated as filling several forms
to accomplish a task. Such likely user interactions are identified, analyzed and defined to
build an activity oriented testing model. This test model can be applied to functional testing
and load testing. Tt can also be used for data building (populating the application with data)
for the purpose of manual testing and intermediate client evaluations. An activity test
program utilizes the test model suitably for the above mentioned concerns and generates a
test report. A test report comprises a list of tests and statuses, which is one of passed, failed
or unreachable.

Yang et al. (1999) presented web application architecture to support testing of the web
application. The architecture covers application model extraction, test execution automation
and test design automation. Tn addition, practitioners normally use a graph-based application

273

J. Software Eng., 4 (4): 265-287, 2010

model to represent the behavior of web-based applications. They are interested in extending
the control flow graph (e.g., nodes, branches and edges) to model web applications. The
nodes in the control flow graph represent a programming module (e.g., single file such as
html, .egi and .asp). The branch could be the user branch and application branch. The user
branch represents the user selecting one of the hyperlinks from the browsed document in the
browser. The application branch represents the current programming module forwarding
control to other programming modules for further processing based on application logic. The
extended model 1s further used to generate test cases by applying the traditional flow-based
test cases generation technique. They adopt two path testing strategies: statement and
branch coverage for their environment. The TEEE software testing standard regards statement
coverage as the minimum testing requirement. Real world, practical program testing requires
both the statement and branch coverage. They declared four major steps for their testing
activities in their framework: (1) application model construction, (2) test case construction
and composition, (3) test case execution and (4) test result validation and measurement.

In the conclusion, the section shows that there are three major sources used for software
test engimeers to design and generate test cases, which are: (1) formal requirement
specifications, (2) sketch diagrams, like use case diagrams, activity diagrams and state chart
diagrams and (3) control flow graphs derived from the source code. Additionally, this paper
shows that many researchers proposed specification-based techniques and sketch diagram
based techniques. A few researchers concentrate on source code based techniques. All
existing test case generation techmiques have advantages and linitations. With regard to
using the test case generation techniques, there are a significant number of issues that need
to be addressed in next section.

RESEARCH CHALLENGES

This section discusses the details of research issues related to test case generation
techniques and research problems which motivated this study. Every test case generation
technique has weak and strong points, as addressed m the literature survey. In general,
referring to the literature review, the following lists major outstanding research challenges.

* Inefficient Test Case Generation Techniques with Limited Resources (e.g., Time,
Effort and Cost): The software testing phase of a project 1s often awarded lowest
priority. Typically, software testing engineers have a small amount of time, effort and
cost to plan and design test case, run test cases and evaluate test cases respectively.
Existing techniques are not effective for complex applications with limited resources
(e.g., ime, effort and cost), both traditional and web applications. An example of a
complex web application is an application with dynamic behavior, heterogeneous
representations, or novel control and data flow mechanisms

* Lack of Ability to Identify Critical Domain Requirements: The existing test case
generation techniques lack the capability to address domain specific requirements,
because those requirements are not explicitly discussed in the specification document.
For an example of this problem (Nilsson ef al, 2006), where a technique is proposed to
generate test cases for real-time systems

* Ignore Size of Test Case: Existing test case generation techniques aim to generate test
cases which maximize cover for each scenario. Sometimes, they generate very large test
cases which are impossible to execute given limited time and resources

274

J. Software Eng., 4 (4): 265-287, 2010
PROPOSED METHODS

This section introduces a new 2D-4A-4D process to design and prepare test cases. Also,
this section discusses a proposed method that resolves the above research problems. The
proposed method aims to: (1) prioritize a huge set of requirements in order to improve the
effectiveness of test case generation techniques while there are limited resources, (2) increase
the ability to cover more critical domaimn requirements during the generation process and (3)
minimize and generate a small set of test cases with high ability to reveal faults.

Test Case Generation Process

This section presents a new 2D-5A-4D process to generate a set of test cases
mtroduced by using the above comprehensive literature review and previous works
(Kosindrdecha and Daengdej, 2009).

Figure 1 describes an overview of existing test case generation process. The proposed
process shows that test case generation methods typically generate test cases from the
following sources: (1) requirement specification document, (2) UML diagram and (3) source
code. The following describes the process in details.

There are two processes in the test case generation technique, which break down briefly
as follows:

Define

This is a first process that allows software testing engineers to gather, analyze and
define all pre-requisite and required information, such as requirements, constraints and type
of testing. There are four sub-processes described shortly as follows:

Table 1 describes the first proposed process in details. Tt contains five columns:
sub-process, purpose, description, input and output. The sub-process is a sequential
process to analyze requirements before generating test cases. The purpose 1s a goal that
each process aims to achieve. The description describes a short summary of what the
process is and means to software test engineers. The input is a required pre-requisite for
each process while the output is an outcome of each process.

Requirement L. A_nalyzet
specification requiremen
ispecification|

/
4. Analyze “Define" 2. Analyze
UML type of testing . model
iagrams

diagram
L 3. Analyze
program/
Program/ source code
source code

test scenario

1. Design %

Input
4. Desi . 2. Desi
| other efesrlr%:nts "Design” inpufillirell
A set of
test cases 3. Design
/
test sequence

Output

Notes: L__/J Input/Output I:l Process :_E Sub-process

Fig. 1: 2D-4A-4D process to generate test cases

275

J. Software Eng., 4 (4): 265-287, 2010

Table 1: The first process in “2D<4A4D" test case generation process

Sub-process Purpose Description Input Cutput
Analyzerequirements < To be able to perform black-box Software test engineersneed to . Requrrement v Understanding of requiremnents,
specification testing actiwities walk through and understand Functien censtraints and an overview
+ To understand requirements or all requirernents or function Specification of how to test in general
finction specification document 1n the specification Document
+ To verify and validate between
the requirements and system
Analyze model + To be able to perform black-box Software test engineers have Detailed design ~ Understanding of information
diagrams testing activities to analyze the detail design diagrarms in the diagrams in crderto be
« To get better understand the diagrams, such as UML able to derve tests from them
design diagrams Use Case diagram, UML
« To verify that the behavior of Activity diagram and State
systermn is match to the design Chart diagram
Analyze program/ « To be able to perform white-box Software test engineers have Available of Understanding of the testing
source code testing actiwities to analyze and walk through program or strategy/approach for which cr
+ To be able to understand and program/source code in source code how many line of code in the
help software developer to test order torun a white-box program should be tested In
program/source code testing activities addition, another output should
be a centrol flow graph
transformed fram source code
Analyze type « Tobeable to identify which type Software test engineersneed Requirement Understanding a type of testing
of testing of testing should be executed to analyze and identify which Specification in order to prepare a proper
+ To allow to design test type of testing should and Diagrarms testing strategy or plan
strategy or plan for each testing be executed
type (e, functionality,
performance and security)
Table 2: The second process m 2D-44-4D test case generation process
Sub-Process Purpose Description Input Cutput
Design test + To design a high level scenario Software test engineers haveto Requirement A set of test scenarios
scenario for testing design many testng scenarios Specification,
+ To be ableto use as a reference to cover all requirements or Diagrams and
to verify the requirements and functien Source Code

testing scenario

+ To design a set of input data used
during a test execution phase

+ To design a realistic input data,
both of positive and negative data

+ To design a special case of
input data (e.g. special characters
or special combinaticn of symbols
and characters)

Design input data

Software test engineers haveto
design rmany sets of mput
data that are used for testing

« Requirement.
Specification
and Bource
Code

« A set of test
SCenarios

Many sets of input data

Design test « To design a sequence of testing Software testing engneershave =« Requiremnent MMany set of test sequences
sequence activities to design a set of test sequence Specification
« To understand test steps of each or steps for each test scenarios and Detailed
test scenario Diagrams
« Asetof
test scenarios
Design other To complete designing a set of Software test engineers rmust # set of test A complete set of test case
elements test cases complete a set of test cases by SCenarios
adding additional required
elerments, such as actual results,
dependencies, business impact
and defect 1d
Design

This 1s a second process that aims to design, prepare and generate all elements in a set
of tests, such as test data, test sequence and dependencies of each test case. This process

contains the following sub-processes:

Table 2 describes the second proposed process in details. It also contains five columns:
sub-process, purpose, description, mput and output. The sub-process i1s a sequential
process to prepare and generate all test elements, such as test scenario, test sequence and
test data. The purpose is a goal that each process aims to achieve. The description describes
a short summary of what the process 1s and means to software test engineers. The mput is

a required pre-requisite for generating test cases while the output 1s a testing artifact.
The above process can help software test engineers to design, prepare and generate all
elements in a set of test cases. It can ensure that all elements are well-prepared. In addition,

276

J. Software Eng., 4 (4): 265-287, 2010

this process contains all required important or critical elements that can be used in the
general commercial mdustry, such as test scenario, test case, test data, test sequence and
dependencies of each test case.

Test Case Generation Technique

Many researchers mentioned that prioritizing requirements 1s one of the most important
activities during the software testing process, particularly in large complex projects, for
mstance Karl’s work (Wiegers, 1999), Donald’s study (Firesmith, 2004) and Nancy’s recent
work (Mead, 200%).

Karl confirmed that software testing engieers (or even developers) do not always know
which requirements are the most important to the customers. Not only this, but customers
also cannot judge the cost and techmical difficulty associated with the requirements. In fact,
most of projects have limited resources such as time, human resources and cost
(Firesmith, 2004). Tt 1s difficult to meet the customer’s expectation with limited resources.
Firesmith (2004) has proposed the requirement prioritization techmgques in order to prioritize
and schedule requirements which are most important. Also, there are many benefits of
prioritizing requirements such as improved customer satisfaction and a greater ability to
address all critical requirements and to prioritize nvestments.

Mead (2008) recommended the requirements prioritization process, because it is an
unportant activity. There 1s a recommendation that all stakeholders select candidate
prioritization techniques, develop selection criteria to pick one and apply it to decide which
security requirements to implement when. During the prioritization process, the stakeholders
can verify that everyone has the same understanding about the requirements and further
examine any ambiguous requirements. After everyone reaches consensus, the results of the
prioritization exercise will be more reliable.

The above literature review shows that existing test case generation techmques derive
test cases directly from requirements, specification requirement documents or diagrams.
None of them are concerned with prioritizing a huge set of requirements. Practically, there are
a huge set of requirements in the software development, particularly in large complex
software. Thus, priontizing requirements before preparing and generating test cases 1s one
of the most important activities, which software test engineers can not ignore.

The following proposes a new process to generate a set of test cases, by adding an
additional process, called 2D-5A-4D. Tt is included the requirement prioritization process, as
follows:

Figure 2 introduces a new test case generation process. This study proposes to insert
an additional process in order to maximize critical domain specific requirements while
minimizing a number of test cases during testing process. The requirement prioritization
process contains primarily two major processes: (1) requirement classification by MoSCoW
method and (2) requirement prioritization by using cost-valued approach.

The following describes a process flow in details, during the requirement prioritization
process:

From the Fig. 3, the steps can be shortly described as follows:

Check whether requirements are critical domain requirements or not by using MoSCoW
method (Tierstein, 1997). If they are not critical, then flag those requirements as low priority.
This is because the current test case generation techniques may ignore the critical domain
requiremmnents (Sinha and Smidts, 2005; Nilsson et al., 2006).

If requirements are critical domain requirements, then classify those requirements
according to the types identified m the literature survey, which are: Functionality,
performance and security requirements.

277

J. Software Eng., 4 (4): 265-287, 2010

- 1. Analyze ! i 2. Analyze
Requirement O ! X
. . and prioritize | requirement
specification . i P
requirement ; jspecification

— 3. Anal
5. Analyze | vpefipe" . Analyze

UML type of testing model
diagrams

diagram
L — E 4. Analyze
program/ g)

Program/ source code

source code
1. Design
test scenario

Input
4. Design . 2. Design
"Design" ;

A set of < Jiother elements input data

test cases 3. Design
/ ;
test sequence
Output

Notes: D Input/Output I:l Process i_ -E Sub-process

Fig. 2: A New 2D-5A-4D test case generation process

O—» Must-Have, Could-have
Should-Have and Wish-Have
Req = {rl, r2,...,r}

Classify critical Must-Have N L ()
domian requirements

requirements

Y

Must-Have
requirements

Req' = {rl', r‘2,...,r‘n}é>

Fig. 3: Flow chart of proposed requirement prioritization method

The functionality requirements are assigned ligh priority whereas other types of
requirements can be assighed medium. This is because many researchers have proven that
functionality testing is one of the most important topics in software testing.

Afterward, compute the implementation cost using a cost-value approach. To implement
each requirement, developing and testing phases are required. Therefore, the followimng
formula has been proposed to compute the total cost for each requirement:

TC=(WValuel *Costlmp) + (Wvalue2*CostTest)

278

J. Software Eng., 4 (4): 265-287, 2010

Where:

TC . The total cost for each requirement

Wrvaluel : A weight value that is assigned for cost of implementation

Costlmp : The total cost of inplementation, such as analysis, design and develop
WrvalueZ : A weight value that is assigned for cost of implementation

Cost test : The total cost of testing, including planming, designing and evaluating

Apply the concept of the numeral assignment technique by assigning each requirement
a number on a scale of 1 to 5 to indicate its importance.
Calculate weight value for each requirement by the following formula:

WV = (TCy*(lmp)
Where:

WV A weight value
TC : The total cost mentioned in step 4
Imp : An mmportance mdicator stated in step 5

Priontize requirements by weight value.
EVALUATION
This section describes an experiments desigr, measurements and results.

Experiments Design
A comparative evaluation method is proposed in this experiment design. The high-level
overview of this experiment design can be found as follows:

* Prepare Experiment Data: Before evaluating the proposed methods and other methods,
experiment data must be prepared. In this step, 50 requirements and 50 use case
scenarios are randomly generated

¢ Generate Test Scenarios and Test Cases: A comparative evaluation has been carried
out between the proposed test scenario algorithms, Heumann's technique (Heumann,
2001), Ryser’s method (Ryser and Glinz, 2000), Nilawar’s algorithm (Nilawar and Dascalu,
2003) and the proposed method, called 2D-3A-4D, presented in the previous section. Tt
includes a prioritization requirement algorithm prior to generating the set of test
scenarios and test cases

¢+ Evaluate Results: In this step, the comparative generation methods are executed by
using 50 requirements and 50 use case scenarios. These methods are executed 10 times
to find the average percentage of critical domain requirement coverage, the size of test
cases and total generation time. In total, there are 500 requirements and 500 use case
scenarios executed in this experiment

Measurement Metrics

The section lists the measurement metrics used in the experiment. This paper proposes
to use three metrics, which are: (1) size of test cases, (2) total time and (3) percentage of
critical domam requirement coverage. The following paragraphs describe details of three
proposed metrics.

279

J. Software Eng., 4 (4): 265-287, 2010

Size of Test Cases

This 1s the total number of generated test cases, expressed as a percentage, as follows:
% Size= (# Size / # of Total Size)*100
Where:

¢ % Size is the percentage of the number of test cases

¢ # of Size is the number of test cases that each method generates

¢ #oftotal size is the maximum number of test cases in the experiment, which is assigned
1,000

Total Time

This is the total number of times the generation methods are run in the experiment. This
metric 18 related to the time used during the testing development phase (e.g. design test
scenario and produce test case). Therefore, less time 1s desirable. It can be calculated using
the following formula:

Total = Preparation time + Compile time + Running time
Where:

+ Total is the total amount of times consumed by running generation methods

¢ Preparation time is the total amount of time consumed by preparation before generating
test cases

* Compile time is the time to compile source code/binary code in order to execute the
program

* Running time is the total time to run the program under this experiment

Percentage of Critical Requirement Coverage

This 1s an mdicator to identify the number of requirements covered in the system,
particularly critical requirements and critical domain requirements (Sinha and Smidts, 2005).
Due to the fact that one of the goals of software testing is to verify and validate requirements
covered by the system, this metric is a must. Therefore, a high percentage of critical
requirement coverage 1s desirable. It can be calculated using the following formula:

% CRC = (# of Critical/# of Total)*100
Where:

* % CRC 1s the percentage of critical requirement coverage
» #of Critical 1s the number of critical requirements covered
» #of Total 1s the total number of requirements

RESULTS AND DISCUSSION

This section shows an evaluation of the results of the above experiment. This section
presents a graph that compares the above proposed method to the other three existing test

280

J. Software Eng., 4 (4): 265-287, 2010

case generation techniques, based on the following measurements: (1) size of test cases, (2)
critical domain coverage and (3) total time. Those three teclmiques are: (1) Heumman's
method, (2) Ryser’s work and (3) Nilawar's approach. There are two dimensions in the
following graph: (1) horizontal and (2) vertical axis. The horizontal represents three
measurements whereas the vertical axis represents the percentage value.

Figure 4 showed an evaluation of results and compares a number of test cases, critical
domain specific requirement coverage and total generation time. The above graph showed
that the above proposed method generates the smallest set of test cases, at 80.80% whereas
the other techniques exceed 97%. Those techniques generated a larger set of test cases than
the set generated by the proposed method. The literature review revealed that the smaller set
of test cases is desirable. Also, the graph showed that the proposed method consumes the
least total time during a generation process. Tt used only 30.20%, which was slightly less than
the others. Finally, the graph presented that the proposed method scores best in critical
domain coverage. Its percentage was much greater than other techniques™ percentage, over
30%. The following table ranked test case generation techniques used in the experiments,
based on the above measurements, 1 being the first and 4 the last.

Table 3 shows a ranking of each comparative test case generation method. In the table,
1t 18 concluded that our proposed method is the most recommended method to miniumize
number of tests and generation time while maximizing coverage of critical domain specific
requirements.

This section discusses the above evaluation result. Our experiment found that our
proposed method is the most recommended test case generation technique to minimize
a number of test cases. Also, our experiment showed that our method is the best method

1204
B Heumann's methods
97.80 98.00 B Ryser's method
100+ i 97.00 O Nilawar's methods
30.80 0 Our proposed method
80]
(%)
)
& i
g 60 53.20
L
[=%}
404 31.82
30.48 31.61 30.20
19.
20- 20.20 1
0+ " T - - .
Size of test cases Critical domain coverage Total time

Measurements

Fig. 4: Evaluation of results of test case generation methods

Table 3: Test case generation techniques ranking table

Methods Size of test cases Critical domain coverage Total time
Heumman'’s method 3 2 2
Ryser’s method 4 3 4
Nilawar’s method 2 4 3
The proposed method 1 1 1

281

J. Software Eng., 4 (4): 265-287, 2010

comparing to other methods, like Heumann, Ryser and Nilawar. Obviously, those methods
generate larger number of test cases. The following shows a comparison result in term of
numbers of test cases:

Figure 5 compares four test case generation techmques in term of numbers of test cases.
The horizon axis represents a number of test cases. The proposed method is by far better
than other three methods. Generally, test case generation methods with the smallest number
of test cases are desirable.

The following represents a comparison between a number of test cases and coverage
of critical domain specific requirements. The horizon axis presents as a number of test cases
while the vertical gives domain specific requirement coverage.

Figure 6 shows that our proposed method generate and mimmize a number of test cases
while preserving a high ability to cover domam specific requirements. Also, 1t 15 shows that
our method is by far better than other existing test case generation methods in term of a
number of tests and coverage.

Heumann's method

Ryser's method

Proposed

method Nilawar's method

< >

A No. of test cases Larger

Smaller

Fig. 5: A comparison result in term of numbers of test cases

=
ae
=

Proposed Existfing tests case generation methods
method Proposed tests case generation methods

Heumann's — Ryser's

method method

Nilawar's
method

=
]
=

Domain specific requirement coverage

Smaller

ANo. of test cases

Fig. 6: A comparison between a rmumber of tests and domain requirement coverage

282

J. Software Eng., 4 (4): 265-287, 2010

High Nilawar's Ryser's
method method

2 Existing tests case generation methods
*: Proposed tests case generation methods
S
s
5
£
L
5
E
2
Proposed Heumann's
Low| method method
Smaller Larger

A No. of test cases

Fig. 7: A comparison between a number of tests and total generation time

The following displays and compares a number of test cases and a total generation time
among four test case generation techmques. The horizon axis represents a number of test
cases. The vertical presents the total time.

Figure 7 shows that our proposed method is the most recommended methods for the
smallest number of test cases and the lowest total generation time. We found that
Heumarm'’s method 1s also the most recommended methed for the lowest total time, but
unfortunately it generates a larger number of test cases comparing to our method.

CONCLUSIONS AND FUTURE WORK

This study proposes a new test case generation process, called “2D-4A-4D”. The new
procedure contains two main processes: (1) definition and (2) design. The first process is
composed of four sub-processes, called 44, which are: (1) analyze requirement specification,
(2) analyze design diagrams, (3) analyze source code and (4) analyze type of testing. The
second process is also composed of four sub-processes, called 4D, which are: (1) design test
scenario, (2) design input data (3) design test sequence and (4) design other elements in the
set of test case. There are many research challenges and gaps in the test case generation
area. However, this study concentrates on resolving the following research problems: (1) an
inefficient test case generation method with limited resources, (2) inability to identify and
cover critical domain requirements and (3) an ignorance of a size of test cases. This paper
proposes an effective test case generation process by adding an additional prioritization
process into the “2D-4A-4D” process. The new process aims to improve the ability to: (1)
generate test cases with limited resources, (2) include more critical domain requirements and
(3) minimize the size of test cases. The new process is called “2D-5A-4D”. This study
proposes to compare to other three test case generation techniques, which are: Heumnmann's
work, Ryser’s method and Nilawar’s teclmique. As a result, tlus study found that the
proposed method performs best at generating the smallest size of test cases with maximum
critical domain coverage and the least time consumed in the test case generation process.
The future work 1s to evaluate with large scale of data and commercial systems.

REFERENCES

Amaral, 2006, A SMS. Test case generation of systems specified in Statecharts.
M.S. Thesis, Laboratory of Computing and Applied Mathematics, INPE, Brazil.

283

J. Software Eng., 4 (4): 265-287, 2010

Andrews, A.A., J. Offutt and R.T. Alexander, 2004. Testing web applications. Software and
Systems Modeling, http:/cs.gmu.edu/~offutt/classes/821 -webtest/papers/webtest-
821.pdf.

Antonio, P., P. Salas and B.K. Aichermig, 2006. Automatic test case generation for OCL: A
mutation approach, Proceedings of 5th International Conference Quality Software,
Tanuary 2006, TEEE Computer Society, pp: 64-71.

Avritzer, A. and E.J. Weyuker, 1995, The automatic generation of load test suites and the
assessment of the resulting software. IEEE Transactions Software Eng., 21: 705-716.

Beizer, B., 1990. Software Testing Technicues. 2nd Edn., Van Nostrand Reinhold, New Yorl,
ISBN: 0-442-20672-0, pp: 550.

Bentley, I.E., 2005. Software testing fundamentals—concepts, roles and terminology. SUGI30,
Wachovia Bank, Charlotte NC, SUGI 2005 Paper 141-30.

Bertolino, A., 2003. Software testing research and practice. Proceedings of the 10th
International Workshop on Abstract State Machines, March 3-7, Taormina, Italy,
244-262.

Beydeda, S. and V. Gruln, 2003. BINTEST-Binary search-based test case generation.
Proceedings of Computer Software and Applications Conference, November 2003,
Leipzig Univ., Germany, pp: 28-33.

Blackburmn, M. and R. Busser, 1996. T-VEC: A tool for developmg critical systems.
Proceedings of the Annual Conference on Computer Assurance, (ACCA’96), IEEE
Computer Society Press, pp: 237-249.

Cavarra, A., C. Crichton, J. Davies, A. Hartman, T. Jeron and .. Mounier, 2000. Using TUMI.
for automatic test generation. Oxford Umversity Computing Laboratory, Tools and
Algorithms for the Construction and Analysis of Systems, TACAS'2000.

Chen, J., Y. Lu and X. Xie, 2008. Testing approach of component security based on dynamic
fault tree. Inform. Technol. J., 7: 769-775.

Cunning, S.J. and J.W. Rozenblit, 1999. Automatic test case generation from requirements
specifications for real-time embedded systems. IEEE Int. Conf. Syst. Man Cybernetics,
5: 784-789.

El-Far, IXK. and TA. Whittaker, 2001. Model-based software testing.
http://143.225.25.115/~flammim/materiale/Model-based% 20T esting /ModelBased
Software T esting . pdf.

Firesmith, D., 2004. Prioritizing requirements. J. Object Technol., 3: 35-47.

Frohlich, P. and I. Link, 2000. Automated test case generation from dynamic models. Lecture
Notes Comput. Sci., 1850: 472-491.

Gargantini, A. and C. Heitmeyer, 1999. Using model checking to generate tests from
requirements specifications. ACM SIGSOFT Software Engineering Notes, 24 146-162.

Gupta, N., AP. Mathur and M.T.. Soffa, 1998. Automated test data generation using an
iterative relaxation method. ACM SIGSOFT Software Eng. Notes, 23: 231-244.

Harel, D., 1987. Statecharts: A visual formulation for complex system. Sci. Comput. Program,
8:232-274.

Harel, D., 1988. On visual formalisms. Commun. ACM., 31: 514-530.

Heumann, J., 2001. Generating test cases from wuse cases. Rational Software.
http://www.1bm.com/developerworks/rational/library/content/RationalEdge/jun0l /Ge
nerating TestCasesFromUseCasesTune01 . pdf.

Huaikou, M. and I.. Ling, 2000. A test class framework for generating test cases from 7
specifications. Proceedings of 6th IEEE International Conference on Complex Computer
Systems, Sept. 11-15, Tokyo, Tapan, pp: 164-164.

284

J. Software Eng., 4 (4): 265-287, 2010

Javed, A.Z., P.A. Strooper and G.N. Watson, 2007. Automated generation of test cases using
model-driven architechure. Proceeding of the Second International Workshop on
Automation of Software Test, May 20 - 26, Mmneapolis, USA, 150-151.

Jia, X, and H. Ly, 2002. Rigorous and automatic testing of web applications. Proceedings of
6th TASTED International Conference on Software Engineering and Applications, May
2002, Honolulu, USA., pp: 654-668.

Jia, X., H. L and L. Qin, 2003. Formal structured specification for web application testing.
Proceedings of the Midwest Software Engineering Conference, (MSEC"03), Chicago,
USA., pp: 88-97.

Kancherla, M.P., 1997. Generating test templates via automated theorem proving. Technical
Report, NASA Ames Research Center.

Kaner, I.D.C., 2003. What 13 a Good Test Case?. Florida Institute of Technology, USA.

Kim, H., S. Kang, . Baik and I. Ko, 2007. Test cases generation from UML activity diagrams.
Proceedings of &8th ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing, July 30-Aug. 1, Qingdao,
China, pp: 556-561.

Korel, B., 1990. Automated software test data generation. TEEE. Trans. Software Eng.,
16: 870-879.

Kosindrdecha, N. and J. Daengdej, 2009. Test case generation techniques. Techmcal Report
25531. Assumption University, Thailand.

Kung, D.C., C.H. Liu and P. Hsia, 2000. An object-oriented web test model for testing web
applications. Proceedings of the First Asia-Pacific Conference on Quality Software,
(APC(QS’00), Los Alamitos, pp: 111-111.

L, CH.,D.C. Kung, P. Hsia and C.T. Hsu, 2001. An object based data flow testing approach
for web applications. Int. J. Software Eng. Knowledge Eng., 11: 157-179.

Mead, N.R., 2008. Requirements Prioritization Introduction. SEL., Pittsburgh, Pennsylvania.

Memon, AM., M.E. Pollack and M.L. Soffa, 1999. Using a goal-driven approach to generate
test cases for GULs. Proceedings of the 21st International Conference on Software
Engineering, May 16-22, Los Angeles CA, 693-694.

Myers, G.I., 1979. The Art of Software Testing. John Wiley and Sons, NY.

NIST, 2002. The economic mmpacts of nadequate infrastructure for software testing.
http:/Awrww.nist. gov/director/planning /upload/report02-3. pdf.

Nilawar, M. and S. Dascalu, 2003. A UMIL-based approach for testing web applications.
M.Sc¢. Thesis, University of Nevada, Reno

Nilsson, R., T. Offutt and I. Mellin, 2006. Test case generation for mutation-based testing of
timeliness. Electronic Notes Theor. Comput. Sci., 164: 97-114.

Offutt, AJ, Y. Xiong and S. Liu, 1999. Criteria for generating specification-based tests.
Proceedings of the 5th International Conference on Engineering of Complex Computer
Systems, Oct. 18-22, Washington, USA.., pp: 119-119.

Pan, I, 1999. Software testing. (18-84%b Dependable Embedded Systems). Electrical and
Computer Engineering Department, Carnegie Mellon University. http:/www.ece.cmu.
edu~koopman/des s99/sw_reliability/presentation. pdf.

Pargas, R.P., M.J. Harrold and R R. Peck, 1999. Test-data generation using genetic algorithms.
Software Testing Verification Reliability, 9: 263-282.

Prasanna, M., SN. Sivanandam, R. Venkatesan and R. Sundarrajan, 2005. A survey on
automatic test case generation. Acad Open InternetT., 15: 1-6.

Ramamoorthy, C., 8. Ho and W. Chen, 1976. On the automated generation of program test
data. IEEE. Trans. Software Eng., 2: 293-300.

285

J. Software Eng., 4 (4): 265-287, 2010

Rayadurgam, 5. and M.P.E. Heimdahl, 2001. Coverage based test-case generation using
model checkers. http://74.125.155.132/scholar?q=cache:GvcivzIR4-
wl:scholar.google.com/+Coverage+Based+Test-Caset+Generationtus ing+Model+
Checkers.andhl=enandas _sdt=2000.

Rayadurgam, S. and M.P.E. Heimdahl, 2001. Test-sequence generation from formal
requirement models. Proceedings of the 6th TEEE International Symposium on High
Assurance Systems Engineering, Oct. 22-24, Boca Raton, Florida, pp: 23-23.

Reza, H., K. Ogaard and A. Malge, 2008 A model based testing techmque to test web
applications using statecharts. Proceedings of 5th International Conference on
Information Technology: New Generations, April 7-9, Las Vegas. pp: 183-188.

Ricea, F. and P. Tonella, 2001. Analysis and testing of web applications. Proceedings of the
23rd Intemational Conference on Software Engimeering, (ICSE’01), Toronto, Ontario,
Canada, pp: 25-34.

Ryser, I. and M. Glinz, 2000. SCENT: A method employing scenarios to systematically derive
test cases for system test. Techmical Report, http:/portal acm.org/citation.
cfm?1d=901553.

Santiago, V., A.5.M. Do-Amaral, N.L. Vijaykumar, M.D.F., M.attiello-Francisco, E. Marting
and O.C. Lopes, 2006. A practical approach for automated test case generation using
statecharts. Proceedings of the 30th Annual Intemational Computer Software and
Applications Conference, Sept. 17-21, IEEE Computer Society, pp: 183-188.

Shams, M., D. Krishnamurthy and B. Far, 2006. A model-based approach for testing the
performance of web applications. Proceedings of the 3rd International Workshop on
Software Quality Assurance, Nov. 6, New York, USA ., pp: 54-61.

Sinha, A. and C.S. Smidts, 2005. Domain specific test case generation using lugher ordered
typed languages from specification. Ph.D. Thesis, University of Maryland

Sommerville, 1., 2000. Software Engineering. 6th Edn., Addison-Wesley, England.

Subraya, B.M. and S.V. Subrahmanya, 2000. Object driven performance testing in Web
applications. Proceedings of the First Asia-Pacific Conference on Quality Software, Oct.
30-31, Hong Kong, China, 17-26.

Tierstein, T.M., 1997. Managing a designer/2000 project. NYOUG Fall’97 Conference, 1997.

Tran, H., 2001. Test generation using model checking. European Conference on Software
Maintenance and Reengineering, CSMR2001, http://www.cs.toronto.edu/~-chechik/
courses00/csc2] 08/projects/4.pdf.

Tsai, W.T., X. Wei, Y. Chen, R. Paul and B. Xiao, 2005. Swiss cheese test case generation for
web services testing. [EICE-Trans. Inform. Syst., 88: 2691 -2698.

Tumer, D.A., M. Park, J. Kim and J. Chae, 2008. An activity oriented approach for testing web
applications. Proceedings of the 23rd TEEE/ACM International Conference on
Automated Software Engineering, Sept. 15-19, Washington, USA., pp: 411-414.

Vyaykumar, N.L., 3.V. De-Carvalho and V. Abdurahiman, 2002. On proposing statecharts to
specify performance models. Int. Trans. Operat. Res., 9: 321-336.

Weyuker, E., T. Goradia and A. Singh, 1994. Automatically generating test data from a
boolean specification. TEEE. Trans. Software Eng., 20: 353-363.

Wiegers, K.E., 1999. First things first: Prioritizing requirements. http: //www.processiumpact.
com/articles/prioritizing. pdf.

William, H.C., 1988. The Complete Guide to Software Testing. 2nd Edn., QED Information
Sciences, Inc., Wellesley, TUSA.

Wu, Y. and J. Offutt, 2002. Modeling and testing web-based applications. http://citeseerx.ist.
psu.eduiviewdoc/download?doi=10.1.1.11 .4485andrep=repl andtype=pdf.

286

J. Software Eng., 4 (4): 265-287, 2010

Wu, Y., I. Offutt and X. Du, 2004. Modeling and testing of dynamic aspects of web
applications. Technical Report TSE-TR-04-01, http:/citeseerx.ist. psu.edw/viewdoc/
download?do1=10.1.1.132.9723andrep=repl andtype=pdf

Yang, I.T., IL. Huang, F.J. Wang and W.C. Chu, 1999. Constructing control-flow-based
testing tools for web application. 11th Software Engineering and Knowledge
Engineering Conference (SEKC’99), June 1999.

Yang, I.T., L. Huang, F.J. Wang and W.C. Chu, 2002, Constructing an object-oriented
architecture for web application testing. J. Inform. Sci. Eng., 18: 59-84.

287

	JSE.pdf
	Page 1

