Journal of
Software

Engineering

ISSN 1819-4311

@

Academic
Journals Inc. www.academicjournals.com

Journal of Software Engineering b (3): 102-107, 2011
ISSN 1819-4311 / DOI: 10.2923/5¢.2011.102,107
© 2011 Academic Journals Inec.

Practice Based Guidelines for Effective Software Architecture of Web

Based Applications

Parminder Kaur and Hardeep Singh

Department of Computer Science and Engineering, Guru Nanak Dev University, Amritsar-143005, India

Corresponding Author: Parminder Kaur, Department of Computer Science and Engineering, Guru Nanak Dev
University, Amritsar-143005, India

ABSTRACT

Software architecture i1s emerging as an important discipline for engineers of software. Software
architects have been limited by a lack of standardized ways to represent architecture as well as
analysis methods to predict whether an architecture will result in an implementation that meets
the requirements. Architects alse have had little guidance in how to go about designing the
architecture, which decisions should be made first what level of detail the architecture should
encompass, how conflicting concerns should be satisfied and what range of 1ssues the architecture
should cover. This study makes an attempt to illustrate architectural design guidance in form of
functional dimensions and structural dimensions required to identify the requirements as well as
overall structure of a user-interface system.

Key words: Software architecture, architectural design, design space dimensions, functional

dimensions, structural dimensions, architectural styles, architectural patterns

INTRODUCTION

Software architecture is emerging as a natural evolution of design abstractions for engineering
the software. The success of a software system depends on a good architectural design. As the size
and complexity of software systems increase, the design and specification of overall system structure
become more significant issues than the cheoiece of algorithms and data structures for computation.
Software architectural patterns and styles deal with various structural 1ssues like organization of
a system as a composition of components, global control structures, the protocols for communiecation,
synchronization and data access, the assignment of functionality to design elements, the
composition of design elements, physical distribution, scaling and performance, dimensions of
evolution and selection among design alternatives (Taylor et al., 2009; Garlan and Shaw,
1994, 2010).

Architectural design guidance helps in formulating design rules that indicate good and had
combinations of choices and use them to select an appropriate system design based on functional
as well as structural dimensions (Lane, 1990a, b).

Software architecture encompasses the structures of large software systems, where every
system comprises of elements and the relations among them. “The software architecture of a

program or computing system is the structure or structures of the system, which comprise software

102

J. Software Eng., 5 (3): 102-107, 2011

Requirements, Hardware

desired VO \ architecture

Domain analysis, qualities Domain analysis, »| Domain analysis,
requirement analysis requirement analysis requirement analysis
risk analysis < risk analysis < risk analysis
Modifications \ _ _) Modifications
to A to hardware
requirements architecture

Software Implementation
architecture constraints

Domain analysis,
requirement analysis

risk analysis

Fig. 1: Relation of software architecture to cther development activities (Hofmeister ef al., 2000)

End-user functionality Programmers software management

Logical view Deployment view

xxh* .
v a"' S~ A4

Progress view .| Physical view

Integrators, performances, scalability Topology, communications

Fig. 2: The ‘4+1’ view model (Muskens, 2002)

elements, the externally visible properties of those elements and the relationships among them,
{Bass et al., 2003). According to Boehm (1995), If a project has not achieved a system architecture,
including its rationale, the project should not proceed to full-scale system development. Specifying
the architecture as a deliverable enables its use throughout the development and maintenance
process. Jacobson et al. (1999) defines software architecture as “An architecture is the set of
significant decisions about the organization of a software system, the selection of the structural
elements and their interfaces by which the system i1s composed, together with their behavior as
specified in the collaborations among those elements, the composition of these structural and
behavioral elements into progressively larger subsystems and the architectural style that guides
this organization these elements and their interfaces, their collaboration and their composition”.
Fig. 1 shows that how software architecture fits in with other development tasks.

As its essence, software architecture is defined as a set of principal design decisions made about
the system. The ‘4+1’ view model is depicted in Fig. 2 (Muskens, 2002), which consists of logical
view, development wview, process view and physical view along with use cases or scenarios
which can be considered as fifth view. For each view, most of the design decisions are
independent of other views but there are some decisions that are affected by the views that are

designed later.

Few common software architectures: The success of a software system depends on a good
architectural design. There are a number of common software architectural styles and patterns
such as pipelines, client-server organization, layered architecture, component-based architecture,
message bus architecture and Service-Oriented Architecture (SOA) (Garlan et al., 1992;

103

J. Software Eng., 5 (3): 102-107, 2011

Tahble 1: Commeon software architectures

Category Architecture styles

Communication Service-Oriented Architecture (SOA), message bus, pipes and filters, event-based, implicit invocation
Deployment Client/Server, N-Tier, 3-Tier

Domain Domain driven design

Data-centered Repositories

Structure Component-based, object-oriented, layered architecture

Virtual machines Interpreters

Shaw, 1990, 1991, 1993; Allen and Garlan, 1992: Erich et al., 1995; Pree, 1995). Table 1 lists the
major areas of focus and the corresponding software architectures (Garlan and Shaw, 1994),

Design space dimensions: The notion of design space is useful in its own right as a shared
vocabulary for describing and understanding systems for specific domains. A multidimensional
design space helps in classifying system architectures. Kach dimension deseribes variation in one
system characteristics or design choice. A specific system design corresponds to a point in the design
space, identified by the dimensional values that describe its characteristics and structure. Lane
(1990a) discussed two major types of dimensions i.e., functional dimensions and structural
dimensions. Functional dimensions identify the requirements for user-interface system that most
affect its structure. It deals with the requirements of particular applications, users, [/0 devices to
be supported, constraints imposed by the surrcunding computer system, key decisions about the
user-interface behavior, development cost considerations and degree of adaptability of the system.
Structural dimensions deals with the decisions that determine the overall structure of a user-
interface system. It deals with the issues like how system functions are divided into modules, the
interfaces between modules, information contained within each module, data representations used
within the system and dynamic behavior of the user-interface code.

In order to study the practices followed by the undergraduate students with respect to the
various architectural features for the development of different web-based applications. Two primary
dimensions of software architecture namely functional dimensions and structural dimensions were
considered as the benchmarks for evaluating these projects. A total of 30-35 projects with respect
to different types of applications, were taken into consideration as part of the study. The various
features available in these projects are listed in the Table 2 and Table 3 against the
threshold features.

It has been conclusively found that the majority of the projects make use of at the most six to
seven features of architectural dimensions. This ecan be attributed to a number of reasons
namely:

¢ The lack of awareness of various architectural practices among the students

* International ignorance of various architectural features because of paucity of time and
resources. Thereby compromising on the overall application quality

+ Lack of the specification of exact requirements with respect to the architecture of the overall
application

¢ The ad-hoc development approaches result in degradation of overall software architecture over

a period of time

104

J. Software Eng., 5 (3): 102-107, 2011

Tahble 2: Functional dimensions for web-based user-interface systems

Projects/functional dimensions P1 P2 P3 P4 Ps P P7 P8 P9 Plo P11 P11 P13 Pl4
External event handling

+ Noexternal events v v v v v v v v

+ Process events while waiting for input v v v Vv v
+ HExternal events preempt user commands

User customizability

+ High v v

+ Medium v v v v v v v v
+ Low v v v

User interface adaptability across devices

+ Nane v v v v v v v v v

* Local behavior changes v v v v
+ (Global behavior changes

+ Application semantics changes

Computer system organization

* Uniprocessing

+ Multiprocessing v v v v v v

+ Distributed processing v v v v v v v
Basic interface class

+ Menu selection v v v v v v v v Vv Vv v v

+ Form filling v v v v v v Vv Vv v v v
+ Command language v

+« Natural language v v v

+« Direct manipulation v v

Application portability across user interface styles

« High

+ Medium v v v v v v v v Vv v v
« Low

Tahble 3: Structural dimensions for web-based user-interface systems

Projects/structural dimensions P1 P2 P3 P4 P5 P66 P7T P8 P9 P10 P11 P12 P13 Pl4
Application interface abstraction level

+ Moanolithic progra

+ Abstract device v

+ Toolkit v v v v v v v v v Vv v v
+ Interaction manager with fixed data types

» Interaction manager with extensible data types

+ Extensible Interaction manager

Abstract device variability

+ Ideal device v

+ Parameterized device v v v v v v vV v v v
+ Device with variable operations

+ Ad-hoc device v v

Notation for user interface definitions

+ Implicit in shared user interface code v v v
+ Implicit in application code v
+ HExternal declarative notation v

+ Hxternal procedural notation v v v v v v v

105

J. Software Eng., 5 (3): 102-107, 2011

Tahle 3: Continued

Projects/structural dimensions P1 P2 P3 P4 P5 Ps P7 P8 P9 P10 P11 P12 P13 Pl4
+ Internal declarative notation

+ Internal procedural notation v v v v v v v
Basis of communication

+ Events v v v v v v v v v v
+ Pure state

+ State with hints v v

+ State plus events v v

Control thread mechanism

+ None v v

+ Standard processes v v

+ Lightweight processes
+« Non-preemptive processes
+ Hvent handlers v v v v v v v v v v

+ Interrupt service routines

CONCLUSIONS AND FUTURE WORK

In order to develop a good quality software based on a strong architecture it is suggested that
the corresponding practices be exhaustively taught to the developers of various applications. Their
effective implementations must also be effectively demonstrated. This shall remove the gap between
the acquired levels of competence in this area and desired levels at the application development
level. However, this should all be the part of overall application development environment which
includes different processes like requirement engineering and the translation of the software
architecture into effective design and code.

There 1s a requirement. to supplement these results with the study of applications from other
domains like database applications, file-based applications and the function-based applications.

ACKNOWLEDGMENT
We thankfully acknowledge the contribution of various students of cur department towards
this study.

REFERENCES

Allen, R. and D. Garlan, 1992. A formal approach to software architectures. Proceedings of the IFIP
12th World Computer Congress, September 7-11, 1992, Elsevier Science FPublishers,
Madrid, Spain.

Bass, L., P. Clements and E. Kazman, 2003, Software Architecture in Practice. 2nd Edn.,
Addison-Wesley Publishing Co., Boston, Massachusetts, ISBN: 0-321-15495-9,

Boehm, B., 1995. Engineering context. Froceedings of the 1st International Workshop on
Architectures for Software Systems, April 24-25, 1995, Seattle, Washington.

Erich, G., H. Richard, J. Ralph and V. John, 1995. Design Patterns: Elements of Reusable
Object-Oriented Design. Addison Wesley, Reading, MA, USA.

Garlan, D., M. Shaw, C. Okasaki, C. Scott and R. Swonger, 1992, Experience with a course on
architectures for software systems. Proceedings of the 6th SKI Conference on Software
Engineering Education, October B-7, 1992, Springer-Verlag.

Garlan, D. and M. Shaw, 1994. An Introduction to Software Architecture. Vol. 94-168, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA.

106

J. Software Eng., 5 (3): 102-107, 2011

CGrarlan,). and M. Shaw, 2010. Software Architecture, Perspectives on an Emerging Discipline.
PHI Learning Pvt. Ltd., New Delhi.

Hofmeister, C., E. Nord and D. Soni, 2000. Applied Software Architecture. Addison-Wesley
Professional, Reading, MA, USA, ISBN: 9780201225713, Pages: 397,

Jacobson, 1., G. Booch and J. Rambaugh, 1999. The Unified Software Development Process.
1st Edn., Addison-Wesley Longman, MA., USA., ISBN-10: 0-201-57169, Pages: 512,

Lane, T.G., 1990a. Studying software architecture through design spaces and rules. Technical
Report, CMU/SEI-90-TR-18, ESD-90-TR-219, Software Architecture Design Principles Project,
Carnegie Mellon University, http://’www sel.cmu.edu/reports/90tr018 pdf.

Lane, T.G., 1990b. User interface software structures. Ph.D. Thesis, Carnegie Mellon University.

Muskens, J., 2002, Software architecture analysis tool. Master Thesis, Technische Universiteit
Eindhoven, Department of Mathematics and Computing Science.

Pree, W., 1995. Design Patterns for Object-Oriented Software Development. Addison-Wesley FPub.
Co., Reading, Massachusetts, ISBN: 9780201422948, Pages: 268,

Shaw, M., 1990, Toward higher-level abstractions for software systems. Data Knowledge Eng.,
5:119-128.

Shaw, M., 1991, Heterogeneous design idiems for software architecture. Software Proceedings of
the Sixth International Workshop on Specification and Design, October 25-26, 1991,
Como, Italy, pp: 158-165.

Shaw, M., 1993, Software Architectures for Shared Information Systems. In: Mind Matters:
Contributions to Cognitive and Computer Science in Honor of Allen Newell, Steier, ID. and
T. Mitchell {(Eds.). Erlbaum, Hillsdale, NJ.

Taylor, E.IN., N. Medwidovic and K.M. Dashofy, 2009, Software Architecture: Foundations, Theory
and Practice. John Wiley and Sons, Chichester, ISBN: 9780470167748, Pages: 712,

107

	JSE.pdf
	Page 1

