Journal of
Software

Engineering

ISSN 1819-4311

@

Academic
Journals Inc. www.academicjournals.com

Journal of Software Engineering b (3): 108-115, 2011
ISSN 1819-4311 / DOI: 10.2923/5¢.2011.108.115
© 2011 Academic Journals Inc.

A Scheme Based Paradigm for Concurrent Programming

Nathar Shah and Visham Cheerkoot

Faculty of Information Technology, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor,
Malaysia

Corresponding Author: Nathar Shah, Faculty of Information Technology, Multimedia University, Jalan Multimedia,
63100 Cyberjaya, Selangor, Malaysia Tel: +6038312562530 Fax: +60383125264

ABSTRACT

Advances in computer architectures, namely the prevalence of muticore architecture have raised
challenges for software developers to take advantage of the parallelism. The paper introduces
synchromzation scheme based concurrent programming that is easy (i.e., GUI based construction),
robust and reusable. The synchronization schemes consist of several synchrenization units that can
be composed together. The schemes can then be applied to code to achieve required concurrency
and parallelism. This is done by configuring rather than coding. It is robust because the CScheme
engine is linked to a pluggable concurrency bug detection engine. Reusability can be achieved by
reusing the scheme on several similar nature problems. We illustrated the architecture of our
UScheme engine and discussed the components in it that fulfilled cur objectives. Few examples of
the synchronization schemes such as Single Threaded Execution Scheme, Reader Writer Scheme
and Thread Coordination Scheme together with their units were also build to prove our approach.

Key words: Concurrent programming, cbject-oriented programming, development environment,
programming paradigm, multithreading, scheme based programming

INTRODUCTION

Computer architecture has undergone significant changes in the past 10 years. Now the
burden 1is on the developers to explicitly parallelize their applications in order to take full
advantage of the increasing number of cores that each successive multicore generation will provide
(Adl-Tabatabai et «l., 2008)., Through this paper, we describe a software paradigm, named
CSchema that will relieve an applications developer from the issues of parallelization and
synchronization while still utilizing the full power of multicore CPUs that are available today. This
tool provides concurrency constructs that help te manage concurrent access to shared memory by
multiple threads.

The main contribution of our work is in devising a new paradigm for concurrent programming
that hinge on the concept of robustness and reusability. The concept is elaborated with a few
practical examples,

We make use of aspect-oriented programming (Kiczales et al., 1997) as the main approach to
our solution. This technique has proved to increase software modularity in practical situations
where object-oriented programming does not offer an adequate support.

Using Aspectd (The Aspectd Team, 2001), a Java based aspect oriented language; all the
synchronization concerns of a particular object-oriented program can be separated thereby
alleviating the need for a programmer to take care of synchronization issues while developing an

108

J. Software Eng., 5 (3): 108-115, 2011

object-oriented application. Such synchronization concerns can be configured using Aspectd’s
aspects. By using the CScheme tool, these synchronization aspects do not need to be developed by
the programmer. Instead, we provide Synchronization Schemes which are pre-configured templates
that define specific thread coordination and communication mechanisms. Moreover, each
Synchronization Scheme comprises of several Synchronization Units that can be further configured
to take care of specific synchronization issues. Furthermore, the provided Synchronization units
can be composed to build custom developer-defined Synchromization Schemes based on the

synchronization needs of the chject-oriented software that hefshe is developing.

SCHEME BASED CONCURRENT PROGRAMMING

A scheme can be defined as an organization or cutline of concepts that is applicable to a general
coneeption. Scheme-based programming is a type of programming that deals with schemes which
encapsulate a combination of semantics that can be applied to programs with similar needs. Such
needs may include synchronization features and security features amongst others. A
Synchronization Scheme can therefore be defined as a grouping and encapsulation of
synchronization concerns that can be used for implementing, abstracting and composing
synchronization features of an application. As such, programs with similar synchronization needs
can use the same scheme.

In this study, we propose a scheme-based concurrent programming that makes use of
synchronization schemes. We provide a GUI tool to build such synchromization schemes. The
building blocks of our proposed synchronization schemes are called Synchrenization Units which
encapsulate synchrenization as well as thread interaction mechanisms. The pre-defined schemes
that we provide come with several synchronization units that can be used to configure different
implementations of the synchronization scheme. Moreover, compatible schemes can be composed
to build more complex ones, based on the synchronization needs of the programmer. Our GUIT tool
provides drag-and-drop faclity, thereby minimising the coding of an application’s synchronization
features. The code for the graphically created synchronization schemes is then auto-generated by
our engine and threads in the target program will only interact based on the mechanism
encapsulated by the applied scheme’s configuration. When developing a concurrency application,
there are a lot concurrency issues that can arise. These issues can be classified in two general
categories: shared data and thread coordination and performance 1ssues.

The 1ssues related to shared data can arise as a result of the following: modification of data by
multiple threads without proper locking thereby resultingin data corruption; sharing mutable static
variables across threads; synchronizing on a null variable; changing the instance on which we are
synchronizing on in one part of the program; synchronizing on string literals and autoboxed
values; synchronizing on a re-entrant lock; visibility issues such as protecting writes but not reads
thereby resulting in lost updates; improper guarding of non-atomic operations; use of non-atomic
64-bit. values; unsafe publication by publishing a reference to “this” in the constructor.

The problems that can arise as a result of improper thread coordination are due to: a call to
Thread stop()-causes all monitors to be unlocked; a call to Thread.suspend() or Thread.resume()-can
lead to deadleck; a call to Thread.destroy()-this is unsafe; a call to Thread.run()-this will never start.
a thread; improper use of wait{)/notify().

Performance issues in a multi-threaded program arise mainly because of deadlocks starvation

and live-locks.

109

J. Software Eng., 5 (3): 108-115, 2011

The Single Threaded Kxecution Scheme consists of two synchronization units, the Captured
Lock synchronization unit as well as the Shared Lock synchronization unit. Using this scheme,
issues related to Shared Data access by multiple threads can be solved. For example, they can be
used for the proper guarding of an object’s shared states against access by multiple threads
simultanecusly. Issues related to non-atomic operations can also be solved using this scheme.
Hence, this scheme can ensure visibility and atomicity of any guarded shared state.

Next, the Reader Writer Scheme can be used to coordinate access to a shared object by reader
and writer threads. Reader threads are not allowed to modify any state of a shared object. This
solves issues related to data corruption thereby ensuring visibility and atomicity. Moreover,
resource starvation can be eliminated by appropriate use of the synchronization units. The Reader
Writer Fair synchronization unit always assigns a released lock to the longest waiting threads.

Then, the Guarded Suspension Scheme provides solutions to issues related to liveness issues.
Livelocks due to spin-locks can be prevented using this scheme. Using this scheme, preconditions
can be specified upon which a thread can wait on if the requested resource is not available,
Moreover, once this shared resource is released, the appropriate waiting threads will be successfully
notified.

Lastly, the Threads Coordination Scheme provides mechanisms for coordinating threads
communication. It provides simpler ways, as compared to other synchrenization constructs such as
wait()motify(), for thread communication. As a result, the risks of deadlocks and livelocks are
minimized since issues related to wait() and notify() need not be taken care of. There are two
synchronization units, the Count Down Latech and the Cyelic Barrier. The former is useful when
a one-time thread coordination is required such as starting a set of threads together to achieve a
particular task. The CyeclicBarrier is generally more useful than CountDewnLatch in cases where
a multithreaded cperation occurs in stages or iterations and a single-threaded operation is required
between stageshterations, for example, to combine the results of the previous multithreaded portion.

The third-party open-source bug detection engine, CheckThread (Joe, 2009) that we are using
malkes use of static analysis to find concurrency bugs at compile time. It can detect whenever an
unsafe JDK class is being used in a concurrent program. It can also detect race conditions
whenever non-atomic operations are performed. Simple cases of deadlock situations can also be
reported. It also detects 1ssues related to threads coordination highlighted earlier in this section.

DESIGN OF PROPOSED PARADIGM

Cscheme tool provides the ability to incrementally build Synchronization Schemes which
encapsulate synchronization constructs and thread interaction mechanisms. The ultimate goal is
to separate concurrency concerns from the normal coding of resource classes by defining and
configuring such concerns with minimal extra lines of code. We also provide a graphical user
interface that greatly helps to ease the process scheme building and configuration through features
such as drag-and-drop.

An overview of the design of our CScheme system 1s provided in the component diagram
overleaf.

An application usually consists of resource classes, utility classes and driver classes amongst
others. This is depicted by component A on the component diagram. Usually, the resource classes
encapsulate several states, some of which need to be updated atomically for consistency and to
prevent lost updates. Therefore, for a concurrent application, the objects of resource classes need
to be properly guarded from simultaneous access by multiple threads. Any failure to ensure proper

110

J. Software Eng., 5 (3): 108-115, 2011

synchronization during multi-threaded access to a shared object will result in havoc during
program execution. We therefore provide a simple way to mark resource class attributes that can
be the subject of concurrent modification. We provide an annotation (@SharedField, shown in
component B) to mark such states. This is done manually by the developer.

In arder to detect all the shared fields, we make use of static analysis (Ayewah ef al., 2008) to
analyze the source code as well as the byte-code of the resource classes. The static analysis libraries
that we make use of are the Byte Code KEngineering Library (BCEL) (Dahm 2001) and Chiba
(1998). Through static analysis, we can easily determine whenever an attribute, tagged with the
“‘@Sharedlield” annotation, will be modified in a method.

Figure 1 presented CScheme component diagram. Component G, the resource class analyzer,
implements these functionalities by making use of the afore-mentioned libraries. This component
1s also used to mark the methods that make use of the shared fields. The usage of these marked
methods 1s explained later in the paragraphs below.

Synchronization Schemes creation and configuration are done by making use of the GUI
{Fig. 2) that comes with our tool. Component D gives an overview of this process. The drag and drop
features provided by the GUI aids the programmer to build a scheme by selecting the appropriate
synchromzation unit and configuring it with the required information based on his synchronization
needs, Some schemes along with their associated synchronization units are shown in

component C.

Selected

A: Ighent-clode i C: Schemes
Utility classed <" 455
A AResourcgs clasfes | Readerwriterscheme | [Single threaded execulation
Selected Synchronization units hronization units
Fair Non- Captured| Shared
- fair lock lock ...More
D: Scheme building schemes....
Stllleallcfsd v It'nnﬁguralimironfig\lralio F‘onfig\lraliorlronfigm‘alimt
Scheme [Jmts Configured
selection onfiguration|

Monthly annotated with Rbsource classes Ui
Toaded generator Generates ;

B: Annotations

— Scheme code
A 4 U“‘-E; 1 Java and aspect) |«
(@Shared Sch lated 1 d checker code generation | ¢
field

(scheme

I: Check thread

N|

annotations ogddd Engine

Generates, Loaded
Single threaded Scheme code|(Aspect+Java) ol
(Check thread| execution scheme f :Lhe:nf
annotations annotations Analyzed resource classes loaded | =— cmprate Loake:
Reader writer — I\h
me =ded 'aming% Solmion%
annotations 8 d

G: Resource class
analyzer

Generates

<
- CheckedWefient-code

cheme related
generators
Check thread
annotations

enerators
A

Ly [Resource
class
Lp| | processor

[Annotated client-code Loaded

J: @ececution

Resource
class loader

Loaded

v

Loaded

Scheme
loader

Resource-

scheme
binding

Fig. 1: Cscheme component, diagram

111

J. Software Eng., 5 (3): 108-115, 2011

|| Main Gui Application l - S— - [|
[addResource |
Resour ce 1| Resour ce 2
Resource onizationSchemesProjectisr r i Contraller.java | | Chooss Resource | |STE Scheme =
[STE Captured Lock_ | Configure || Check Compatbity cess Resource | [AddUnit

[STE Shared Lock

Console:

Fig. 2: The GUI interface of CScheme

All scheme configurations are stored in an XML file (component E) so that the scheme building
component can make use of these configuration data along with the pre-configured scheme
templates {(component F) to generate the desired synchronization scheme as Aspectd and Java code
{output of component D). Some of the schemes that we provide, the Guarded Suspension Scheme
and the Thread Coordination Scheme, have preconfigured templates thatis they have already been
pre-populated with synchronization and thread coordination mechanisms that can be applied to
any class that will make use of such schemes. The remaining configuration of these schemes is
determined from component K (user-defined configurations in the XML file).

Onee, the schemes that the developer created graphically has been generated as their respective
Aspectd and Java codes, they need to be applied to the target resource classes. In order to determine
which parts of the resource class that will be affected by the applied scheme, the resource class
needs to be marked using annotations to specify those parts. We make use of component (3, the
resource class analyzer, to determine methods in which shared fields may be subject to concurrent.
access by threads. Once, these methods have been determined, we can make use of component H
to generate the necessary annotations based on the configured schemes. However, such methods
{and the resource class as well) may still contain concurrency bugs. Therefore, we provide a reliable
bug detection mechanism by making use of a third-party open-source teool called CheckThread
{Joe, 2009), shown as component [. The latter makes use of static analysis as well to catch
concurrency bugs, such as detection of race conditions or the use of unsafe collections, at compile
time. It also provides solutions to the most common concurrency bugs if they are detected in the
client-code. The CheckThread annotations are auto-generated in the component H using the static
analysis done in component G.

Onece all the required annotations have been generated in the resource class, the latter will be
weaved with the generated scheme codes by the Aspectd weaver during execution and
consequently any multi-threaded access to resource objects and their shared states will be dictated
by the applied synchronization scheme.

Schemes and synchronization units description

Single threaded execution scheme: Some methods access data or other shared rescurces in a
way that produces incorrect results if concurrent calls to a method accessing the data or another
resource at the same time. The Single Threaded Execution scheme solves this problem by
preventing concurrent calls to the method from resulting in concurrent executions of the method.

112

J. Software Eng., 5 (3): 108-115, 2011

When to use this scheme: A class has methods that update or set instance or class variables; a
method manipulates external resources that support only one operation at a time; the class’s
methods may be called concurrently by different threads.

There are 2 Synchronization Units associated with the Single Threaded Execution Scheme. STE
Shared Lock-uses the monitor of the target object for synchronization. STE Captured Lock-uses
the scheme’s aspect monitor to control the access to all captured joinpoints/methods that match the
pattern defined for STE Captured Lock. Moreaver, this scheme allows the user to select any specific
method from the Resource class to foree it to follow the synchronization pattern encapsulated by

the STE Captured Lock.

Annotations generated by single threaded execution scheme and its synchronization
units

Class-level annotations: @5ingleThreadedSchemeCapturedLiockManaged-for a Resource class
that has been configured with the STE Captured Lock Synchronization Unit. And
@SingleThreadedSchemeSharedLockManaged-for a Resource class that has been configured with
the STE Shared Lock Synchronization Unit.

Method-level annotations: @CapturedLock-for methods in a Resource class that has been
configured with the STE Captured Lock Synchremzation Unit. These methods have been identified
by the Resource Class Analyzer component of the engine.@SharedLock-for methods in a Resource
class that has been configured with the STE Shared Lock Synchrenization Unit. These methods
have been identified by the Resource Class Analyzer component of the engine.

Reader writer scheme: This scheme allows concurrent read access to an object but require
exclusive access for write operations. It coordinates concurrent calls to methods that read or change
an object’s shared, mutable state,

When to use this scheme: There is a need for read and write access to an object’s state
information; any number of read operations may be performed on the object’s state information
concurrently. However, read operations are guaranteed to return the correct value only if there are
no write operations executing at the same time as a read operation; write operations on the chject’s
state information must be performed one at a time, to ensure their correctness; there will be
concurrently initiated read and write operations; allowing concurrently initiated read operations
to execute concurrently will improve responsiveness and throughput.

There are 2 Synchronization Units associated with the Reader Writer Scheme: RW Fair and RW
Non-Fair.

RW Fair-this Synchronmization Unit is based on the implementation of the java.util.concurrent.
locks.reentrantreadwritelock. This SBynchronization Unit ensures that threads contend for entry
using an approximately arrival-order policy. When the currently held lock (encapsulated by the
Synchronization Unit) is released either the longest-waiting single writer thread will be assigned
the write lock, or if there is a group of reader threads waiting longer than all waiting writer threads
that group will be assigned the read lock. RW Non-Fair-when this Synchronization Unit 1s used,
the order of entry to the Resource class that is bonded by this scheme i1s unspecified, subject to

reentrancy constraints.

113

J. Software Eng., 5 (3): 108-115, 2011

Annotations generated by single reader writer scheme and its synchronization units
Class-level annotations: @ReaderWriterFairSchemeManaged— for a Resource class that has
been configured with the RW Fair Synchronization Unit. @Reader Writer Non-Fair Scheme
Managed -for a Resource class that has been configured with the EW Non-Fair Synchronization
Unit.

Method-level annotations: @Write only-for methods in a resource class that have been 1dentified
by the resource class analyzer component of the engine that write to and/or read fields that have
been annotated with the @sharedfield annotation and @readonly -for methods in a Resource class
thathave been identified by the resource class analyzer component of the engine, that only read
fields that have been annotated with the @SharedField annotation.

Thread coordination scheme: This synchronization scheme provides thread coordination
mechanisms that can be used in situations when: (a) there is a need to start several threads at the
same time; (b) there is a need to wait for several threads to finish; (¢) a multithreaded operation
proceeds in multiple stages; (d) a single-threaded operation is required between stages of a
multithreaded operation.

This synchronization scheme provides two synchronization units to achieve the
above-mentioned requirements. The first synchronization unit under this synchronization scheme
is a Count Down Latch and it can be used in situations (a) and (b). The second synchronization
unit 1s a Cyelic Barrier and it caters for situations (¢) and (d).

For this synchrenization scheme, client code need not be annotated as in this case, classes are
generated and the developer can code the multithreaded logic of his application in methods
provided by these generated classes. Traditionally, it has been mentioned that concurrency is a
crosscutting concern that tangles in application code (Kiczales et al., 1997).

CONCLUSION

This study is significant to innovatively apply the separation technique to build a new
programming paradigm, named CScheme for concurrent/parallel programming. The work is
important as it device a new paradigm for productive concurrent programming based on software
engineering attributes such as robustness, reusability and configurability. The perils of concurrent/
parallel programming can be left to the expert concurrency programmers to develop the
synchronization scheme and ordinary programmers can reuse the schemes to take advantage of
the parallelism required in the prevalent parallel architectures in the consumer machines.

REFERENCES

Adl-Tabatabai, A R., C. Kozyrakis and B. Saha, 2006, Unlocking concurrency. Queue-Comput.
Archit., 4: 25-33.

Ayewah, N., D. Hovemeyer, J.1D. Morgenthaler, J. FPenix and W. Pugh, 2008. Using static analysis
to find bugs. IEEE Scoftware, 25; 22-29,

Chiba, 8., 1998, Javassist: A reflection-based programming wizard for Java. Proceedings of the
ACM OOFSLA'98 Workshop on Reflective Programming in C™ and Java, October 1998,
International Business Machines Corporation, Japan.

Dahm, M., 2001. Byte code engineering with the BCEL API. Technical Report B-17-98, Freie

Universitat Berlin, Institut fur Informatik, Germany.

114

J. Software Eng., 5 (3): 108-115, 2011

Joe, C., 2009. Cool concurrency with CheckThread. eclipse CON™, http:/eclipsecon.crg/2009/
sessions?id=307

Kiczales, (5., J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J M. Loingtier and J. Irwin, 1997,
Aspect-oriented programming. Proceedings of the European Conference on Object-Oriented
Programming, 1997, New York, pp: 220-242,

The Aspectd Team, 2001. The Aspectd™ programming guide. Xerox Corporation, 2002-2003, Palo
Alto Research Center, USA. www.eclipse.orglaspectj/docireleased/progguidefindex.html

115

	JSE.pdf
	Page 1

