Journal of
Software

Engineering

ISSN 1819-4311

@

Academic
Journals Inc. www.academicjournals.com

Journal of Software Engineering 5 (3): 78-90, 2011
ISEN 1819-4311 / DOI: 10.2923/52.2011.78.90
© 2011 Academic Journals Inc.

Multi Agent System Architecture Oriented Prometheus Methodology
Design to Facilitate Security of Cloud Data Storage

Amir Mohamed Talib, Rodziah Atan, Rusli Abdullah and Masrah Azrifah Azmi Murad

Department of IT, Information System, Faculty of Computer Science, University Putra Malaysia, 43400
UPM, Serdang, Selangor, Malaysia

Corresponding Author: Amir Mohamed Talib, Department of IT, Information System, Faculty of Computer Science,
University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

ABSTRACT

Security plays an important role in the development of Multi Agent Systems (MAS). However,
a careful analysis of software development processes shows that the definition of security
requirements is, usually, considered after the design of the system. This is, mainly, due to the fact
that agent oriented software engineering methoedologies have not integrated security concerns
throughout their developing stages. Designing a team of agents that can work together toward a
common goal is one of the challenges in the research area of agent-oriented software engineering.
Prometheus is an agent-oriented software engineering methodology. The Prometheus Design Tool
(PDT) is a graphical editor which supports the design tasks specified within the Prometheus
methodology for designing agent systems. The tool propagates information where possible and
ensures consistency between various parts of the design. The main purpose of this paper is to
design MAS architecture that can be used to facilitate confidentiality, correctness assurance,
availability and integrity of Cloud Data Storage (CDS) or cloud data center. The proposed MAS
architecture includes five types of agents: Cloud Service Provider Agent (CSFPA), Cloud Data
Confidentiality Agent (CDConA), Cloud Data Correctness Agent (CDCorA), Cloud Data Availability
Agent (CDAA) and Cloud Data Integrity Agent (CIDIA).

Key words: Cloud computing, agent-oriented methodology, cloud data storage, security, multi
agent system, prometheus methodelogy, prometheus design tool

INTRODUCTION

Security plays an important role in the development of MAS and 1s considered as one of the
main issues to be dealt for agent technology to be widely used outside the research community. As
a result, research on security for MAS is an important area within the agent research community.
However, the research has been mainly focused on the selution of individual security problems of
CDS.

Due to the complexity of CDS security tasks, the propoesed system is based on the integration
of different types of intelligent agents and hybrd architecture. The design and programming of
agents should be focused on maximizing their performance measure which embedies the criterion
for success of an agent’s behavior (Russell et al., 1995). Most important i1ssues that are required
include security of the agents and system (Bradshaw ef al., 2010; Hamidi and Mohammadi, 2008).
The interface should exhibit intelligent features that assist the cloud user in taking actions to
control the security process.

78

J. Software FKng., 5 (3): 78-90, 2011

The Prometheus Design Tool (PDT) 1s a freely available 1 (Padgham and Winikoff, 2002) tool,
running under Java 1.5, which supports the software designer who is using the Prometheus
methodology. PDT provides graphical support for the design phases of the methodology, allowing
the designer to enter and edit diagrams and descriptors for entities. PDT also enforces certain
constraints (e.g., that an action performed by an agent in the system overview diagram must also
appear in the relevant agent overview diagram) and alsc checks the design for various consistency
conditions. PDT also supports the design and development of intelligent multi-agent systems and
complements the Prometheus methodology (Padgham and Winikeff, 2002), although it can also be
used with other appreoaches. It is based on specific agent entities such as goals, plans, percepts,
actions and protocols and provides both direction and support to software engineers. It also includes
automated support for testing and for partial code production.

There are several researchers’ attempts to develop security related ontology (Wang and
Cuo, 2009; Stepanova et al., 2009; Denker ef al., 2005; Blanco et al., 2008; Schumacher, 2003;
Kim ef al., 2005; Jutla and Bodorik, 2005; Stallings, 2010; Venter and Eloff, 2003) ontology driven
and based MAS (Falasconi et @l.,, 1996; Tran and Low, 2008; Beydoun ef al., 2009; Sharp et al.,
2011), ontology based appreach (Noy and MeGuiness, 2001) and ontology based development
{Tsoumas and Gritzalis, 2006). In order to build ontology for security services, it 1s beneficial to
understand the need for ontology and some security ontology works. However, linkages to domain
CDS security are not emphasized. This 1s where this study shall close the gap. However, the main
contribution of this paper is the MAS architecture design shall be conceptualized using Prometheus
Design Tool to identify the types of agents and agent architecture that include the gap 1dentified
earlier.

None of the existing agent oriented methodoelogies, to our knowledge, have been demonstrated
enough evidence to support claims of adequately integrate security modeling during the whele
software development stages. Only recently, some initial steps have been taken towards this
direction. Liu ef al. (2002) has initiated work that provides ways of modeling and reasoning about
non-functional requirements (with emphasis on security). Lau ef al. (2002) is also using the concept,
of a soft goal to assess different design alternatives and how each of these alternatives would
contribute positively or negatively in achieving the soft goal.

In recent years, Multi-Agent System (MAS) has been an active research topic. Due to the
difficulties in solving process planning and production scheduling problems using traditional
centralized problem solving methodology, MAS approach-a distributed problem-solving paradigm
is used as another attempt to solve the planning and scheduling problems. As a distributed
problem-solving paradigm, MAS breaks complex problems into small and manageable sub-problems
to be solved by individual agents co-operatively.

Prometheus have been chosen compared to other four methodologies (Tropos, MaSE, Use-Case
BDI and Gaia) because (a) it covers start-to-end development stages, (b) simple method, (c) easy
to understand, (d) mature or have been described in sufficient detail to be of real use, () provide
tool support and {f) comprehensive documentation for reference.

However, it is not advisable to follow the Prometheus methedology strictly to allow users to
choose relevant steps and parts to help solving their problem (Padgham and Winikoff, 2002). All
the methodologies discussed above (Gaia, Tropos, MaSE, Prometheus and Use-Case BDI) primarily
take an implementation point of view and focus heavily on developing a system rapidly. These
methodologies also fall short in non-functional capability considerations of system development. A
major decision to be made during the architectural design is what agents should be included.

79

J. Software FKng., 5 (3): 78-90, 2011

Several types of agents can be designed to support information security management
(Russell et al., 1995). In the proposed system, key agents should be the decision maker agent and
controller agent.

Some of the main methods and techniques for analyzing and designing an agent based system
have been described. Their framework focuses on four major aspects of a methodology: con-cepts
and properties, notations and modeling techniques, process and pragmatics Sturm and Shehory
{2004). This technique of evaluation can be viewed as a feature-based technique.

Yu and Cysneires (2002), compared three methodologies based upon an attribute-based
framework which addresses the same four major areas used by Sturm and Shehory (2004). In their
research, a case study based on some specific criteria has been selected and the evaluation of some
agent oriented methodologies is provided in the context of the proposed case study. Their evaluation
framework provides a set of questions to be discussed.

The study presented by Cernuzzi and Rossi (2002) checks the level to which some specific
qualitative features exist in a methodology using attributes tree, it calculates the level to which the
evaluated method meets the requirements of its users by assigning a weight to each feature of the
method, grading each feature and manipulating a weighted average grade.

CLOUD DATA SECURITY POLICIES IN CLOUD COMPUTING

A security policy 1s a set of rules for determining the maximum permissible access rights for a
particular process to a particular segment, given the attributes of both the process and the segment.
The following subsections describe several specific security policies that fall under these four goals
in our MAS architecture.

Confidentiality policy: In Cloud computing, confidentiality plays a major part especially in
maintaining control over organizations’ data situated across multiple distributed cloud servers. It
is a must when employing a Public cloud due to public clouds accessibility nature. Asserting
confidentiality of users’ profiles and protecting their data, that is virtually accessed, allows for cloud
data security protocols to be enforced at various different layers of cloud applications.

Cloud Data acecess control issue 1s mainly related to security policies provided to the users while
accessing the data. In a typical scenario, a small business organization can use a cloud provided
by some other provider for carrying out its business processes. This organization will have its own
security policies based on which each employee can have access to a particular set of data. The
security policies may entitle some considerations wherein some of the employees are not given
access to certain amount of data. These security policies must be adhered by the cloud to aveid
intrusion of data by unauthorized users (Bowers et al., 2009; Kormann and Rubin, 2000).

Access control regulates accesses to resources by principals. It is one of the most important
aspects of the security of a system. A protection state or pelicy contains all infermation needed by
a reference monitor to enforee access control. The syntax used to represent a policy is called an
access control model. In cur proposed Formula-Based Cloud Data Access Control (FCDAC),
principals are called cloud users. Cloud users get permissions to access resources via membership
in roles. Our approach focuses not only of providing a cloud user by a user name and password but,
by define and enforce expressive and flexible access structure for each cloud user as a logie formula
over cloud data file attributes.

Correctness assurance policy: Goal of correctness assurance to ensure cloud users that their
cloud data are indeed stored appropriately and kept intact all the time in the cloud to improve and

80

J. Software FKng., 5 (3): 78-90, 2011

maintain the same level of storage correctness assurance even if cloud users modify, delete or
append their cloud data files in the cloud.

In CDS, there are many potential scenarios where data stored in the cloud is dynamie, like
electronic documents, photos, or log files ete. Therefore, it is crucial to consider the dynamic case,
where a user may wish to perform various block-level operations of update, delete and append to
modify the data file. Our MAS architecture uses to secure and organize the CDS blocks as well as
proposes to facilitate the correctness of user’ data cloud security.

Availability policy: Availability is one of the most critical information security requirements in
Cloud computing because it is a key decision factor when deciding among cloud vendors as well as
in the delivery models. The service level agreement is the most important document which
highlights the trepidation of availability in cloud services and resources between the CSP and
client. Therefore by exploring the information security requirements at each of the various cloud
deployment and delivery models, vendors and organizations can become confident in promoting a
highly protected safe and sound cloud framework,

Integrity policy: Integrity of the cloud data has to deal with how secure and reliable the data
cloud computing. This could mean that you have provided secure backups, addressed security
concerns and increased the likelihood that your data will be there when you need it. In a cloud
environment a certification authority is required to certify entities involved in interactions, these
include certifying physical infrastructure servers, virtual servers, environments users and the
networks devices. Data integrity in the cloud system means to preserve information integrity (i.e.,
not lost or modified by unauthorized users). As data i1s the base for providing cloud computing
services, such as Data as a Service (DaaS), Software as a Service (SaaS), Platform as a Service
{(Paab), keeping data integrity 1s a fundamental task. The integrity requirement lies in applying
the due diligence within the cloud domain mainly when accessing data. Therefore ACID (atomicity,
consistency, isolation and durability) properties of the cloud’s data should without a doubt be
robustly imposed across all cloud computing deliver models.

PROMETHEUS METHODOLOGY OVERVIEW

Prometheus (Padgham and Winikoff, 2002), consists of three phases, as shown in Fig. 1; system
specification, architectural design and detailed design. The first phase, system specification, where
the system is specified using goals and scenarios; the system’s interface to its environment is
described in terms of actions, percepts and external data and functionalities are defined. The second
phase, architecture design, where agent types are identified; the system’s overall structure is
captured in a system overview diagram and scenarios are developed into interaction protocels. The
third phase, detailed design, where the details of each agent’s internals are developed and defined
in terms of capabilities, data, events and plans; process diagrams are used as a stepping stone
between interaction protocols and plans. But the use of the JACK development environment is
strongly recommended because both Prometheus and JACK are oriented toward BDI agent.
Prometheus development tool PDT provided an option to the developer to automatically generate

JACK skeleton java code.

System specification phase: The system specification phase focus on the analysis techniques.
For the purpose of clarity, some low level scenario details are ignored in this description to instead
concentrate on the big picture. The system specification phase focuses on system requirement

81

J. Software FKng., 5 (3): 78-90, 2011

=
£ < Initial functionalit;
3 Scenarios Ju I > . YL Key
3 System goals descriptors . ;
§ ué P — grlgetlall CdteSlgn
3 l ctions percepts | [Intermediate
O ™ '_ — T~ T T T) P design tool
= Data coupling Cross check
3 Tnteraction Aot ot —» derivers
= diagrams gent aoquaintance
% Messages Shared data
% Protocols ~ Jemmemremmemesnnnaneenaned| Agent descriptors
S I e NN
c ! !
%D Pr(:c'ess ------------------------- Agent overview |« » Capability
g ¥ /’L descriptors
el
L
g (: Ca‘;bility /) a— P4 Sav
A ovg iew [Event descriptors] (Data descriptions] (Plant descriptors]
A A A A

Fig. 1: The phases of the prometheus methodology

definition to capture the system goals and sub-goals. The system goals are the centre construct of
the system specification and are fundamental to AOS. The goals are systematically captured by
searching for intentional words in the initial system documents. Onee the main goals are identified,

the other goals and sub-goals can emerge by using, refinement techniques (asking how? and why)
{(Van Lamsweerde, 2001),

Architecture design phase: The architecture design phase will use the system specification
artefacts to build the system architecture. The system architecture will be developed in three main
steps. In the first step, the application agent types are specified; in the second step, the system
interactions are specified, in the third step, the system overviews are designed.

Specification of agent types: The objective of this step is to identify the types of agents embraced
by the required application. During step cne; agent descriptors will also be developed. This objective
will be reached through the implementation of low coupling and highly cohesion principals in the
diagram of system functionalities. The techniques are centre around the relationships between the
funetionalities and data related to these functionalities.

Developing system interactions: Specifying the system interaction (interactions between
agents) is the second step of the architecture design phase. The purpose of this step is to capture
the dyname aspects of the system, by developing interaction diagrams from a scenario, generalizing
interaction diagrams to interaction protocols then developing protocol and messages descriptors.
Prometheus Development Tool (PDT) has the capability to compile the protocol seripts allocated in
the system overview design and then generate the protocel diagram automatically.

Detailed design phase: Prometheus phases are integrated with each other. The detailed design
phase uses the system architecture artefacts and develops two main aspects: first the internal

individual agent capabilities and process; second the capabilities, plan and events analysis.

Capabilities: The first step in the detailed design is to compile the agent descriptor and agent
capabilities to develop the agent overview diagram.

82

J. Software FKng., 5 (3): 78-90, 2011

Process specification: The next step in building the individual agent 1s to identify the internal
process specification of a single agent and specify its activities structure. Prometheus does borrow
agent UML (AUML) activity diagram notation to present the process specifications. This means PDT
does not provide any support to the process diagram. However, the best method to start building
this task is to look into the protocols involved in the agent structure, the scenarios developed and
the goals of the agent.

Capabilities overview diagram: The last milestone in the detailed design phase is to turn the
analysis artefacts into the implementation platform and achieve Prometheus agent architecture,
which is based on the concept Belief-Desire-Intention (BDI). This will enforce the analysis process
to focus on the internal structure of the system capabilities. Each capability is then decomposed into

its lower level and the set of plans that provide the details of how to achieve the goals retrieved.

DESIGN BASED PROMETHEUS METHODOLOGY
PROPOSED MAS ARCHITECTURE

In MAS architecture, we proposed five types of agents: Cloud Service Frovider Agent (CSPA),
Cloud Data Confidentiality Agent (CDConA), Cloud Data Correctness Agent (CDCorA), Cloud Data
Availability Agent (CDAA) and Cloud Data Integrity Agent (CDIA). The proposed MAS overview
diagram illustrated in Fig. 2.

Figure 3 presents the agent overview diagram developed as an example using PDT detailed
design process. PDT has the ability to validate each design entity dynamically while the
development process is running.

The rest of agents are described as follows:

Cloud service provider agent (CSPA): Is the users’ intelligent. interface to the system and allow
the cloud users to interact with the security service environment. The CSPA provides graphical

interfaces to the cloud user for interactions between the system and the cloud user. CSPA act in the

m Correctness policy —
Get the formula input Block available rule Cloud communication module
\ 7‘ Kn ledgw b L= /
pOlIC) ruI ‘ —= _ —————
avallabl ~—— A‘ A Cloud coordination module

A=Y X

B——
Cloud register mo i CDConA P ¢ R el

m Cloud reasoning module
—

Nl Y —

— block-level operations input
Cloud servers mod W R "WP = >
' " .‘ | Cloud-restiirce fanagemeng m6dule

w wl'
“ @‘ m / ’ oud dlstnMotocol [No file distribution preparation avallabl
' 'AV’

CDAA el the cloud zone components input
d request managem

Avallablllty \ v
— —
policy rule Tresetrievel availablg File retrievel available

Get the file distribution preperation

—— <
[Backup available

ntegrity policy

—
(No backup available| rule A
Get the file retrievel

Fig. 2: Proposed MAS overview diagram

|File distribution preparation available|

83

J. Software FKng., 5 (3): 78-90, 2011

| Effective bridage between the cloud users and the rest of agent |

| Maintain same level of correctness assurance when the cloud data perform block-level operations

%. CDConA

| Provide the cloud users by new formula based cloud data access control |

| Tolerate multiple failures in distributed storage systems |

| Define the set of rules to backup the cloud data within a Cloud Zone using a logical grouping of cloud componenets|

Fig. 3: Agents overview diagram

Get the block-level operations input

| Display the security result l

Get the cloud zone components input Get the formula input

Get the result

[Receive the security reports and/or alarms from the rest of other agents to respect J

—>% Get the file distribution preperation

Designing user interfaces that prevent the input of invalid cloud data]

[Provide the secdrity service tasks

~— 3)
onn cloud user
> "
Get the file retrieval

——
Knowledge base

(Translate the attack in terms of goals]

Fig. 4: Detail design of CSPA architecture

system under the behavior of CSP. CSPA has the following actions as illustrated in CSPA
architecture (Fig. 4):

* Provide the security service task according to the authorized service level agreements (SLAs)
and the original message content sent by the CDCorA, CDConA, CDAA and CDIA

* Display the security pelicies specified by CSP and the rest of the agents

* Designing user interfaces that prevent the input of invalid cloud data

* Receive the security reports and/or alarms from the rest of other agents to respect

* Translate the attack in terms of goals

* Monitor specific activities concerning a part of the CDS or a particular cloud user

« Creating security reports/alarm systems

Cloud data confidentiality agent (CDConA): This agent facilitates the security policy of
confidentially for CDS. Main responsibility of this agent 1s to provide a CDS by new access control
rather than the existing access control lists of identification, authorization and authentication. This
agent provides a CSP to define and enforce expressive and flexible access structure for each cloud
user (Talib et al., 2011a). Specifically, the access structure of each cloud user is defined as a logic
formula over cloud data file attributes and is able to represent any desired cloud data file set. This

new access control 1s called as:

84

J. Software FKng., 5 (3): 78-90, 2011

Cloud register module

Get the formula input w

Cloud resource management module

Formula access control available

-
Cloud request management

[Provide formula-based cloud data access comlol

[Sending security reports and/or alarms to CSPA]

i Cloud communication module

Cloud coordmatlon module

Inform cloud user

Conhdentlallt
policy rule

Knowledge base

Cloud reasoning module No formula access control availablef

Fig. 5: Detail design of CDConA architecture
¢« Formula-based cloud data access control (FCDAC)

This agent is also notifies CSPA in case of any fail caused of the techniques above by sending
security reports and/or alarms.

Formula-Based Cloud Data Access Control (FCDAC) and also named as a SecureFormula it's
an access policy determined by our MAS architecture, not by the CSPs. It’s also define as access 1s
granted not based on the rights of the subject associated with a cloud user after authentication but
based on attributes of the cloud user. In ocur system, CDConA provide access structure of each cloud
user by defining it as a logic formula over cloud data file attribute. SecureFormula is an additional
confidentiality layer used by our system to verify that the cloud users’ login page 1s a genuine.

If you are a cloud user, you are required to register first to the system and write your valid
email and enter your SecureFormula during your first login. Your SecureFormula will be sent to
your email. Be ensured that, your SecureFormula is not your password. Do not set your
SecureFormula to be the same as your password.

Sign in from your computer:

+ Enter your Cloud User ID
* Verify that your SecureFormula image 1s correct
« Confirm by entering your password

Our confidentiality layer guaranteed that, even if your password is correct and your
SecureFormula is incorrect, then you will not be able to login.

The architecture of CDConA consists of five modules, as shown in Fig. 5. Cloud Communication
Module provides the agent with the capability to exchange information with other agents, including
the CDConA, CDCorA, CDAA, CDIA and CSPA. Cloud Register Module facilitates the registration
function for CDConA. Cloud Request Management Module allows the agent to act as the request-
dispatching center. Cloud Resource Management Module manages the usage of the cloud resources.
Cloud Reasoning Module is the brain of the CDConA. When the request management module and

85

J. Software FKng., 5 (3): 78-90, 2011

Get the block-level operations input

[Sending security reports and/or alarms to CSP4 Cloud communication module

[Provide block-level operations
Inform CSPA

Cloud reasoning module

Cloud coordination module

f

Knowledge base

Correstness policy
rule

——
—— No block available]
Cloud servers module
Inform cloud user

Fig. 6: Detail design of CDCorA architecture

resource management module receive requests, they pass those requests to reasoning module by
utilizing the information obtained from the knowledge base and the confidentiality poliey rule

{Talib et al., 2011a).

Cloud data correctness agent (CDCorA): This agent facilitates the security policy of correctness
assurance for CDS. Main responsibility of this agent is to perform various block-level operations
and generate a correctness assurance when the cloud user performs update operation, delete
operation, append to modify operation or insert operation. This agent notifies C5PA in case of any
fail caused of the techniques above by sending security reports and/or alarms.

The architecture of the CDCorA consists of four modules, as shown in Fig. 6. Cloud
Communication Module provides the agent with the capability to exchange information with CSPA.
Cloud Coordination Module provides the agent with the following mechanisms. If the data 1s
updated then the data encryption is performed. If the data is deleted then the data encryption is
performed. If the data is Append then the data encryption is performed. If the data is inserted then
the data encryption is performed. Cloud Reascning Module calculates the necessary amount of
cloud resources to complete the service based on the required Service Level Agreements (SLA) by
utilizing the information obtained from the knowledge base and the correctness assurance policy
rule. Cloud Servers Module performs the block-level operations of encryption and decryption when
the cloud user update, delete, append and insert his/her data.

In CDS, there are many potential scenarios where data stored in the cloud 1s dynamie, like
electronic documents, photos, or log files ete. Therefore, it is crucial to consider the dynamic case,
where a cloud user may wish to perform various block-level operations of update, delete and append
to modify the data. Our proposed correctness assurance protecol is not geing to be genuine if there
is absent of SecureFormula. So in case of: Update operation: The cloud user needs to enter hisfher
SecureFormula plus 00, Delete operation: The cloud user needs to enter his/her SecureFormula plus
01, Append operation: The cloud user needs to enter histher SecureFormula plus 10 and Modify
operation: The cloud user needs to enter his/her SecureFormula plus 11.

Cloud data availability agent (CDAA): This agent facilitates the security policy of availability
for CDS. Main responsibility of this agent is to receive and display the security issues that offer by

86

J. Software FKng., 5 (3): 78-90, 2011

Get the file distribution
preperation —0Get the tlle I
Sendm‘7 security reports and/or alarms to CSPA

/

Provide file retrieva

perparation available

etrieval

Provide file distribution preperation]

T Nofiedistributt
toTT

perparation available

nx
I

Knowledge base

o file refrieval availabls ile retrieval availabl

Fig. 7: Detail design of CDAA architecture

its sub-agents of CDDPA and CDREA. CDAA facilitate two new techniques of file distribution
preparation and file retrieval (Talib ef al., 2011h).

This agent is also notifies CSPA in case of any fail caused of the techniques above by sending
security reports and/or alarms.

Cloud data availability is to ensure that the cloud data processing resources are not made
unavailable by malicious action. Our MAS architecture 1s able to tolerate multiple failures in cloud
distributed storage systems.

To ensure the availability, we explain the notions of global and local cloud attack blueprints.
To detect intrusions, the CDAA receives a set of goals representing the global cloud attack
blueprints. To recognize this global cloud attack blueprint, 1t must be decomposed in local cloud
sub-blueprints used locally by the different agents distributed in the CDS. In general agents can
detect only local cloud attacks because they have a restricted view of the CDS. So, we make a
distinction between a global cloud attack blueprint and lecal cloud sub-blueprints. A global cloud
blueprint is an attack blueprint, derived from the security policies specified at a high level by the
CSPs, that the MAS must detect and the detection of this blueprint will be notified only to CDAA.
A local cloud blueprint 1s a blueprint derived from the global cloud blueprint but that must be
detected by local agents. For a CDAA over-viewing the global cloud attack blueprint the probability
of an attack is equal to 1, while for the local agent 1t 1s below 1 (Talib et al.,, 2011b).

The architecture of the CDAA consists of three modules, as shown in Fig. 7. Cloud
Communication Module provides the agent with the capability to exchange information with CDAA
and CSPA. Cloud Servers Modules provides the agent with the following mechanisms: (1) disperse
the data file redundantly across a set of distributed servers and (2) enable the cloud user to
reconstruct the original data by downloading the data vectors from the servers. Cloud Reasoning
Module provides the CDAA with the specific mishehaving server(s) and server colluding attacks by
utilizing the information obtained from the knowledge base and the availability policy rule.

Cloud data integrity agent (CDIA): This agent facilitates the security policy of integrity for
CDS. It is used to enable the cloud user to reconstruct the original cloud data by downloading the
cloud data vectors from the cloud servers. Main responsibility of this agent is backing up the cloud
data regularly from “CloudZone” and sending security reports and/or alarms to CPSA when:

87

J. Software FKng., 5 (3): 78-90, 2011

Get the cloud zone components input

[Sending security reports and/or alarms to CSPA]

S —
Cloud communication module

Cloud resource management module

——
No backup available

—— —
Backup available

Inform CSPA

e —
Cloud reasoning module

Fig. 8: Detail design of CDIA architecture

Backup the cloud data

Integrity policy
role

Inform cloud user

Knowledge base

+ Human errors when cloud data is entered

* EKrrors that cceur when cloud data is transmitted from one computer to another
+ Software bugs or viruses

¢« Hardware malfunctions, such as disk crashes

Our propoesed integrity layer named as CloudZone. In CloudZone, we introduce the first
provably-secure and practical backup cloud data regularly that provide reconstruct the original
cloud data by downleading the cloud data vectors from the cloud servers.

CloudZone requirements

+ CloudZone only backs up the MS SQL databases. It does not back up other MS SQL files such
as program installation files, etc

« CloudZone does not support compenent-based backup

+ CloudZone does not use Visual SourceSafe (VSS) for backup and restore

+ CloudZone supports backup and recovery of Windows Oracle 10 g

With CloudZone cloud backup, you can select any of the following as backup objects:

* Oracle Server 10 g running on Windows
+ Microsoft SQL Server 2000, 2005 and 2008
* Microsoft Exchange Server 2003 and 2007

The architecture of the CDIA consists of three modules, as shown in Fig. 8. Cloud
Communication Module provides the agent with the capability to exchange information with CDIA,
CDConA, CDCorA, CDAA and CSPA. Cloud Resources Management Modules provides the agent
with the following mechanmsms. If the CDIA registered as CDIA-VIP then back-up of the data is
performed successfully. If the CDIA did not register as CDIA-VIP, it asks the cloud user to back-up
the data manually. Cloud Reasoning Module shows the reasons of in case the result of the back-up
the data is failed by utilizing the information obtained from the knowledge base and the integrity

policy rule.

88

J. Software FKng., 5 (3): 78-90, 2011

CONCLUSION

When choosing a methodology for a problem, considering the complexity of methodologies is
necessary. Methodologies which propose large and complex models in their development phases or
ones which have lots of dependencies between their models may be unsuitable for analyzing and
designing a system.

It can be concluded that based on the characteristics of CDS security, security based multi-agent
system architecture supports faster security of cloud resources irrespective of its location and resolve
a task based on planning algorithms using intelligence agents.

The system 1s based on multi-agent system architecture, consisting of CDConA, CDCorA, CDAA,
CDAA and one effective bridge agent CSPA (Cloud Service Provider Agent). The agent is designed
using Prometheus methodology.

REFERENCES

Beydoun, G., G. Low, H. Mouratidis and B. Henderson-Sellers, 2009, A security-aware metamodel
for multi-agent systems (MAS). Inform. Software Technol., 51: 832-845,

Blanco, C., J. Lasheras, K. Valencia-Gare, E. Fernandez-Medina, A. Toval and M. Piattini, 2008,
A systematic review and comparison of security ontologies. Comput. Inform. Sei., 1: 813-820.

Bowers, K. D., A. Juels and A. Oprea, 2009. HAIL: A high-availability and integrity layer for cloud
storage. http:/leprint.iacr.org/2008/489 pdf

Bradshaw, J.M., N. Suri, M. Kahn, P. Sage, D. Weishar and R. Jeffers, 2010, Terrafcrming
Cyberspace: Toward a policy-based grid infrastructure for secure, scalable and robust execution
of Java-based multi-agent systems. http://www . neotake.com/ebook/terraforming-cyberspace-
toward-a-policy-based-gri/xzwhbow). html

Cernuzzi, L. and G. Rossi, 2002, On the evaluation of agent oriented meodeling methods.
Proceedings of the Workshop on Agent Oriented Methodology, November, 2002, Seattle, WA,
USA., pp: 21-30.

Denker, (i, .. Kagal and T. Finin, 2005, Security in the semantic web using owl. Inform. Security
Technical Report, 10: 51-58,

Falasconi, 8., G. Lanzola and M. Stefanelli, 1996, Using ontologies in multi-agent systems.
Proceedings of the 10th Workshop on Knowledge Acquisition for Knowledge-Based Systems,
November 9-14, 1996, Banff, Canada.

Hamidi, H. and K. Mchammadi, 2006, Modeling fault tolerant and secure mobile agent execution
in distributed systems. Int. J. Intell. Inform. Technol., 2: 21-36.

Jutla, D.N. and P. Bodorik, 2005, Sociotechnical architecture for online privacy. Security Privacy,
3:29-39.

Kim, A., J Luc and M. Kang, 2005, Security ontology for annotating resources. Comp. Sei.,
3761: 1483-1499.

Kormann, D.P. and A.D. Rubin, 2000, Risks of the passport single signon protocol. Comput.
Networks, 33: 51-58.

Liu, L., E. Yu and J. Mylopoulos, 2002, Analyzing security requirements as relationships among
strategic actors. Proceedings of the 2nd Symposium on Requirements Engineering for
Information Security, October 16, 2002, Raleigh, North Carclina, pp: 1-14.

Noy, N.F. and L.D. MecGuiness, 2001. Ontology development 101: A guide to creating your 1st
ontology. Standard Knowledge Systems Laboratory Technical Report KSL-01-05 and standard
Medical Informatics Technical Report SMI-2001-0880.

89

J. Software FKng., 5 (3): 78-90, 2011

Padgham, L. and M. Winikoff, 2002. Prometheus: A methodology for developing intelligent agents.
Proceedings of the 1st International Joint Conference on Autonomous Agents and Multiagent
Systems: Part 1, July 15-19, 2002, Bologna, Italy, pp: 37-38.

Russell, 8.J., P. Norvig, J.F. Canny, J M. Malik and D.D. Edwards, 1995. Artificial Intelligence: A
Modern Approach. Prentice Hall, Englewood Cliffs, NeJ., USA.

Schumacher, M., 2003, Security Engineering with Patterns: Origins, Theoretical Model and new
Applications. Springer-Verlag, New York, USA., ISBN-13: 9783540407317, Pages: 208,

Sharp, B., A8, Atkins and H. Kothari, 2011. An ontology based multi-agent system to support
HABIO outsourcing framework. Expert Syst. Appl. Int. J., 38: 6949-6956.

Stallings, W., 2010, Cryptography and Network Security: Principles and Practices. 5th Edn.,
Prentice-Hall, Upper Saddle River, New Jersey, ISBN-10: 0136097049, pp: 744.

Stepanova, D., S, Parkin and A. van Moorsel, 2009, A knowledge base for justified information
security decision-making. Newcastle University, http:./fwww .techrepublic.com/whitepapers/a-
knowledge-base-for-justified-information-security-decision-making/1174737.

Sturm, A. and O. Shehory, 2004. A framework for evaluating agent-oriented methodologies.
J. Autonomous Agents Multi-Agent Syst., 8 131-164,

Talib, A.M., K. Atan, E. Abdullah and M.A.A. Murad, 2011a. Ensuring security and availability
of cloud data storage using multi agent system architecture. Proceedings of the 3rd Malaysia
Joint Conference on Artificial Intelligence, July 20722, 2011, UNITEN Putrajaya Campus,
Malaysia.

Talib, A.M., R. Atan, R. Abdullah and M.A.A. Murad, 2011b. Towards new data access control
technique based on multi agent system architecture for cloud computing. Proceedings of the
International Conference on Digital Information Processing and Communications, July 7-9,
2011, Czech Republie, Ostrava,

Tran, Q N.N. and G. Low, 2008. MOBMAS: A methodology for ontelogy-based multi-agent systems
development. Inform. Software Technol., 50: 697-722,

Tsoumas, B. and D. Gritzalis, 2006, Towards an ontology-based security management. Proceedings
of the 20th International Conference on Advanced Information Networking and Applications,
April 18-20, 2006, Vienna, pp: 985-992,

Van Lamsweerde, A., 2001. Geal-criented requirements engineering: A guided tour. Proceedings
of the 5th TEEE International Symposium on Requirements Engineering, August 27-31, 2001,
Toronto, Ont., Canada, pp: 249-262,

Venter, H.5. and J.H.P. Eloff, 2003. A taxonomy for information security technologies. Comput.
Security, 22: 299-307,

Wang, J.A. and M. Gue, 2009. OVM: An ontology for vulnerability management. Proceedings of
the 5th Annual Workshop on Cyber Security and Information Intelligence Research: Cyber
Security and Information Intelligence Challenges and Strategies, April 13-15, 2009, Knoxville,
TN, USA.

Yu, K. and L.M. Cysneiros, 2002, Agent-oriented methodologies-Towards a challenge exemplar.
Proceedings of the 4th International Workshop on Agent-Oriented Information Systems, May
27-28, 2002, Toronto.

90

	JSE.pdf
	Page 1

