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ABSTRACT

Test case generation is one of the most important and costly steps in software testing. the
techniques for automatic generation of test cases try to efficiently find a small set of cases that allow
an adequacy criterion to be fulfilled, thus, reducing the cost of software testing and resulting in
more efficient testing of software products. In this study, we analyze the application of different
machine learning methods for automatic test case generation task. We desecribe in this study how
these algorithms can help in white-box testing. Different algorithms, consists of random, GA, MA
and a proposed hybrid method called GA-NN, are then considered and studied in order to
understand when and why a learning algorithm 1s effective for a testing problem. For the
experiments we use a benchmark program, called Triangle classifier. Finally, the evaluations and
some open research questions are given.
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INTRODUCTION

Software testing is an important activity of the Seftware Development Life Cyecle (SDLC).
Software testing helps in building the confidence of a developer that a program does what it 1s
intended to do so. In other words, software testing 1s the process of executing a program with
intends to find errors (Biswal et al., 2010). A software test consists of a set of test cases, each of
which is made up of the input of the program, called test data and the output that must be obtained
{Alba and Chicano, 2008). In structural testing the test case generator uses the structural
information of the program to guide the search of new input data {for this reason it is also called
white-box testing). Usually, this structural information gathered from the control flow graph of the
program (Singh and Kumar, 2010),

Crenetic Algorithm as a Metaheuristic that uses global search, is easy to apply to a wide range
of optimization problems. Software testing is also an optimization problem with the objective that
the effort consumed should be minimized and the number of faults detected should be maximized
(Singh, 2004),

In this study, we analyze the application of Genetic Algorithm for automatic test case
generation problem. We also apply Memetic Algorithm, using a local search technique called Hill
Clhimbing in each generation of Genetic algorithm. For the fitness function, we use the average of
three factors, including likelihood, close to boundary and branch coverage as proposed in
{Arcuri and Yao, 2008) and analyze the results. Then we propose a technique that uses the
features of efficient test cases to generate population of next generation in genetic algorithm. For
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this purpose, we use neural network as an estimator for the fitness of test suits. We called this
hybrid method GA-NN. We implemented all mentioned algorithms and analyze the results on a
benchmark problem, called Triangle classifier.

Several approaches have been used for the automation of test cases generation for
program based structural testing. Among these approaches, metaheuristic search techniques
{Genetic Algorithms, Genetic Programming, Simulated Annealing, Tabu Search, Scatter Search,
ete.) are mostly used. The application of metaheuristic algorithms to solve problems in Software
Engineering was proposed by the SEMINAL network (Software Engineering using Metaheuristic
Innovative Algorithms) and is widely explained by Clarke et af. (2003). One of these applications
is software testing, in which the testing problem is treated as a search or optimization problem, as
1s shown in several surveys (Mantere and Alander, 2005; McMinn, 2004). Besides, this problem 1is
ideal for the application of metaheuristic techniques (Harman and Jones, 2001). The most widely
used metaheuristic technique in this yield is Genetic Algorithms (Goldberg, 1989). This technique
is based on the principles of genetics and Darwin's theory of evelution. Jones et al. (1998),
Miller et al. (2006), Pargas et al. (1999) and Sthamer (1996) used Genetic Algorithms to obtain
branch coverage, Michael ef al. (2001) to achieve condition-decision coverage, Ahmed and
Hermadi (2008), Bueno and Jino (2002), Lin and Yeh (2001) and Watkins and Hufnagel (2006)
to reach path coverage, Wegener ef al. (2001) to obtain several coverage criteria, Girgis (2005) to
obtain def-use coverage and Gong ef al. (2011) to obtain Multiple Paths Coverage.

GA-based test case generation: Genetic algorithms (Arcur and Yao, 2008) represent a class of
adaptive search techniques and procedures based on the process of natural genetics and Darwin's
principle of the survival of the fittest. There is a randomized exchange of structured information
among a population of artificial chromosomes. GAs is a computer model of biological evolution.
When GAs is used to selve optimization problems, good results are obtained surprisingly quickly.
Genetic algorithm searching mechanism starts with a set of solution called a population. One
solution in the population i1s called a chromosome. The search 1s guided by a survival of the fittest
principle. The search proceeds for a number of generations, for each generation the fitter sclutions
(based on the fitness function) will be selected to form a new population. During the cycle, there
are three main operators namely reproduction, crossover and mutation. The cycle will repeat for
a number of generations until certain termination criteria are met.

It is impossible to test software exhaustively (i.e., for each and every possible value). There for,
to test the software, tester uses the selected cases only. The selection criteria of the earlier
automated test tools are mainly branch coverage, statement coverage, etc but there are problem
with these tools when complicated programs are there. They may leave very important test cases
that are must to be tested. So, a new technique is proposed by Singh (2004) so that all the
important test cases can be selected. Selection 1s done basis of various factors of a good test suit
{set of test cases). Here, the factors that contribute to selection of test cases are as:

« Likelihood
+  Close to boundary value
* Branch coverage

These factors can be used as the fitness function of the GA to find the optimal solution i.e., the
best set of test cases.
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Likelihood: The paths which are more likely to be executed than others should be given higher
priority for testing. Likelihood of any test suit 1s higher than the likelihood of any other test suit,
if the test cases of the test suit follow the paths that are more likely to be executed. Mathematically,
the likelihood, A of a test suit, T is evaluated as follows:

A(T) = 1-(1-AQI (T, (1-A A% (1)

where, II(1) is the path followed when the test case 1, 1s executed, A(m) is the likelihood of the path

T which 1s evaluated as follows:

*  Using symbolic evaluation method (Singh, 2004), evaluate the boolean expression of that path
*  From the complete input domain find the probability of that boolean expression to be true
¢ The probability above found gives the likelihood of that path

Close to boundry value: As the chances of bugs are mostly at the boundary values, so the test
cases close to boundary values must be given higher priority than the other ones for testing. Close
to boundary value is the factor that represents how much the test case values are closer to the
boundaries. Mathematically, close to boundary value factor, B of a test suit, T is evaluated as
follows:

B (T)= B (1)* B (1,)%.. &)
where, B(1) is close to boundary value factor of a test case T which is evaluated as:

+ Forthe test case, evaluate the path that 1s followed, when the test case 1s executed

« Using symbolic evaluation method, evaluate the boolean expression of that path

* From the boolean expression evaluate the boundary value expressions by converting any
comparison operators {<,> <,>, =} to ‘= comparison operator

+ Change the boundary value expression so that right side of the boundary value expression
becomes zero

+ Now the close to boundary value factor of a test case is evaluated as:

B (t)=B{B)*B(B)*.. (3)

where, B (f,) is the factor denoting how much the test case values are closer to the boundary value
expression, f; (which is of the form [expression] =0)’.

Branch coverage: Branch coverage means the percentage of no of edges/branches of the control
flow graph covered by the test suit. Control flow graph 1s graphical notation of the program that
shows the flow of control of that program. The branch coverage factor for any test suit, T here is
denoted as P (T). To evaluate this, firstly control flow graph of the program is created. Then, for
each test case of a test suit, evaluate the set of branches that has been covered. Take the union of
all the evaluated set of branches. Count the number of elements of the resultant set (let it be v). At

the last, Branch coverage is evaluated as:
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Fig. 1: Model used by Singh (2004)
P(T)=vie (4)

where, ¢ is the total number of edges of control flow graph.

The general objective of the GA used here 1s to select best test suit for the testing purpose. Here,
a test suit is taken as an individual (chromosome). A population is the set of test suits. Figure 1
shows the complete structure. The general factors to be considered in genetic algorithms are:

* Population Initialization
+  The fitness function

+  Selectionfoperations used
+ Termination criteria

Population initialization: As at the start, there is no information about the test cases which are
good and which are bad, that 1s why test cases are generated randomly 1.e. population initialized
randomly.

The fitness function: The fitness function used for every individual is the average of three factors
discussed above of test suit (Singh, 2004 i.e,, fitness function ® of test suit, T is:

O (H=A(DH+B (T)+P{DY3 (5)
The priority of the test suit to be selected 1s directly proportional to the fitness value.

Selection: The selection of the parent chromosomes 1s done base on the fitness value. Test suits
with highest fitness values are selected as parents for both crossover and mutation operators, i.e.,
the “Best” selection operator.

Uniform crossover: In uniform crossover used here, any two test suits are selected based on their
fitness, Interchange randomly some of the test cases of parents ignoring test cases that are common
to both the test suits. The result is the two child test suits.

Mutation: In mutation a test suit 1s selected based on its fitness, then randomly select some test,
cases of the parent test suit and replace them with the new test cases generated randomly that are

not present in the parent test suit earlier and the new child test suit gets created.
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Termination criteria: The search could terminate after a fixed number of generations, after a
chromosome with a certain high fitness value is located or after a certain simulation time.

MA-based test case generation: The Memetic Algorithms (MAs) are metaheuristics that uses
both global and local search (e.g., a GA with a HC). It is inspired by the cultural evolution. A meme
is a unit of imitation in cultural transmission. The idea 1s to mimic the process of the evolution of
these memes. From an optimization point of view, we can approximately describe a MA as a
population based metaheuristic in which, whenever an offspring is generated, a local search 1is
applied to it until it reaches a local optimum (Arcuri and Yao, 2008),

The MA we used in this study is built on GA and the only difference 1s that at each generation
on each individual an Hill Climbing is applied until a local optimum is reached.

Hill climbing is a local search algorithm which needs a neighborheod N of the current solution
Ti. The search will move to a new solution TjelN only if Tj is better. If there are no better sclutions
in N, a local optimum has been reached. We need to define IN. Its size has a big impact on the
performance of the algorithm (Yac, 1991},

In each generation of GA we perform the mentioned local search until we get to a local optima,
to impose a balance between generality and problem specificity. the flowchart of MA is shown in
Fig. 2.

Proposed method: The proposed 1dea here is to use the features of efficient test suits and give a
high fitness value to generated test suits which their features are nearer to efficient ones. For this
purpose, we first extract the features of each test suit included in randomly initialized population,
give a target value 1 to the test suits with high fitness values and O to the ones with low fitness
values (the fitness value is calculated as described in previous sections). With these data (test suits

Initialize phase New population
Local search Local search
N |
Selection and reproduction No
f<f,,
v
Mutatin Yes

Fig. 2: Schema of the memetic algorithm. f,, denotes a fixed threshold value used for the stopping
criterion
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int tri_typedint a, int b, int ¢)

{

int type;

ifta>b) {intt=a;a=b; b=t; }
if(a>c){intt=aa=c;c=t; }
if(b=c){intt=b;b=c;c=t; }
if(atb<=¢){
type=NOT_A_TRIANGLE;
Telse {

type =SCALENE;

if(a=b &&b=0¢){

type = EQUILATERAL;
lelseif(a=—b||b=0c){

type = ISOSCELES;

}

}

return type;

}

Fig. 3: Triangle classifier procedure

features vectors as input and their level of efficiency as target values) a two layers neural network
is trained using error backpropagation with unipolar sigmoid units. Once trained, the network
predicts the efficiency of new test suits. For GA operations like crossover and mutation, the most
efficient test cases are selected as parents and the new children features are extracted and given
to the trained neural network to predict their efficiency and this cycle will repeat for a number of
generations until certain termination criteria are met. So, in this technique the NN works as a
fitness function estimator for the Genetic algorithm. In fact, the network is trained in each
generation of GA with new population. This technique seems to be more efficient than the previous
ones because of considering the test case metrics in generating an efficient set of test cases for
testing purpose.

Experiments: For testing and analyzing mentioned algorithms, we used a benchmark program
called Triangle classifier program shown in Fig. 3.

Denoting the above two codes, Consider its any test suit T which is the set of test cases 1, T,
Ts,.... Mathematically:

T=4{T, Ty Ts..} (6)

A test case is a set of values of all input variables. In the above segment there are three input
variables, namely, a, b and ¢ declared as integer. So, every test case of the above segment is a set,
of three integer values. Mathematically:

=11, L. L.} (7)

where, 1 is the value of the variable in (v =1, 2, 3,...) but within its range. For example, in the
above codes all the three variables are of type integer (2 bytes) 1.e., their values range from -32768
to 32767, So, its any test case is the set of three values, each ranging from -32768 to 32767. We
describe how we apply different algorithms to these two programs, as follows:
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Tahble 1: Test suit metrics for triangle classifier and greatest programs

No. Test suit feature

Consisting at least one test case with all values equall to zero

Consisting at least one test case which all values are negative

Consisting at least one test case which all values are positive

Consisting at least one test case which the values are in decreasing order
Consisting at least one test case which the values are in increasing order
Congisting at least ane test case which has at least ane zero in its values

Consisting at least one test case which has at least one negative value in its values

W =1 & e W

Congisting at least ane test case with all values equall

Random algorithm: In this approach, we generated 25 test suits randomly, each test suit contains
5 test cases which the three integer values are generated randomly considering this fact that
integers ranges from -32768 to 32767. We calculate the fitness value for all of these test suits as
described in section 3 and finally chose the test suit with highest fitness value as the problem
solution.

Genetic algorithm: In this approach, we start with a population size of 25 individuals (test suits).
We used uniform crossover and one mutation for every ten crossovers, was applied. For the fitness
funetion we used the average of three factors described in section 3. The selection operation is the
“selecting the Best” strategy and it led to better result than the “random” strategy. The algorithm
stops after defined number of iterations.

Memetic algorithm: The MA we used in this study is built on GA and the only difference is that
at each generation on each individual an Hill Climbing is applied until a local optimum is reached.
In our case study, we can consider the following operation to define the neighbourheod N,

For a given test suit Ti as the current sclution, we choose one of its test cases randomly and
then add £100 to all its three values to make N.

GA-NN algorithm: The hybrid (GA-INN) technique we proposed in this study is also built on GA
and the only difference 1s that we applied a neural network to predict the individual fitness. The
cost. of applying NN to GA 1s high, the total number of generations 1s lower than in the GA
(b versus 100).

The training set for the network includes 25 test suits generated randomly. for the test suits
with fitness value more than 0.7, the target value set to 1 and the for the lower ones, the target
value set to 0.

We trained our two layers neural net using error backpropagation in 3000 epochs. The network
learned to predict test suit efficiency. We used 10 input nodes including test suit metrics and one
output node for the network. Table 1 shows some metries for the test suit for our case study. Before
training, all input and output vectors in the data set were normalized using a linear scale. We used
logsig function as the transition function for both hidden and output layers. The Learning rate and
Momentum constant parameters are calculated experimentally to 0.8 and 0.8, respectively to
achieve the best Root Mean Square (RMS) error during train.

RESULTS
The results of applying mentioned algorithms to the trangle classifier procedure in 8 runs are
shown in Table 2 and in Fig. 4-7. For implementation we used visual studio 2010, ¢# language and
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Tahble 2: results of applying random, GA, MA and GA-NN techniques to the triangle classifier problem in 8 runs

Results in 8 runs

Algorithm Number of iterations Population size Fitness value (mean-max) Run time (5) (mean)
Random 1 25 0.72-0.8 13
GA 100 25 0.77-0.82 113
MA 100 25 0.82-0.86 240
GA-NN 5 25 0.79-0.85 278

0.9 7—— Random

08 |G

0.7 '/A:j\
0.6 -
0.5 -

Fitness

0.4 1
0.3 1
0.2

0.1 4

0.0 T T T 1
0 2 4 6 8

Run #

Fig. 4: Results of applying random and GA algorithms to theTriangle classifier program in 8 runs

1.0 7——Ga
0.9 |- Ma

08 - :’>-<:>.f\
0.7

0.6
0.5 4

Fitness

0.0 T T T 1
0 2 4 6 8

Run #

Fig. 5: Results of applying GA and MA algorithms to theTriangle classifier programin 8 runs

Matlab 2010a. The initialized population for the GA and MA 1s generated randomly and 1s the same
as GA-NN initialized training set. The cost of applying NN is high, hence the total number of
generations is lower than in the GA and MA. We calculate the fitness function for the resulted
solution of GA-NN algorithm in the same way we did for GA and MA, for better comparison. The
total generations in GA-NN algorithm 1s 5 because of high execution time but in GA and MA it 1s
100 generations.

Figure 4 shows the result of applying random and genetic algorithms to the triangle classifier
program in a sequence of 8 runs. Figure 5 and 6 shows these results for GA versus MA and MA
versus GA-NN, respectively. Figure 7 compares GA with GA-NN approach.
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1.0 7——Ma
0.9 1% GA-NN

0.7 1
0.6
0.5 4
0.4 1
0.3
0.2 4
0.1 1
0.0

Fitness

T
0 2 4 6 8
Run #

Fig. 8: Results of applying MA and GA-NN algorithms to theTriangle classifier program in 8 runs

0.9 -
08 m
0.7

0.6

0.5 1
0.4 1

Fitness

0.3 1

0.2 1
01 - ——Ga
. —— GA-NN

0.0

4 6 8
Run #

o

0

Fig. 7. Results of applying random and GA algorithms to theTriangle classifier program in 8 runs

As shown in figures, all algorithms could cutperform random test case generation. The fitness
value obtained in all algorithms depends on the initialized random data set. The run time for
applying the hybrid method GA-NN is more than other methods, although having less number of
generations. The results also show that Memetic algorithm outperforms other algorithms but the
cost of applying local search to this algorithm is high (5).

CONCLUSION

We presented some test case generation techniques for white-box testing of a benchmark
program. Random, Genetic Algorithms and Memetic Algorithms (MAs) have been applied. The MA
we used in this study is built on GA and the only difference is that at each generation on each
individual an Hill Climbing is applied until alecal optimum is reached. As fitness function we used
an average of three factors composed of likelihoced, close to boundary value and branch coverage,
The results show that Applying MA leads to better solutions for cur case study, because it balances
well between generality and problem specificity. A novel hybrid technique, uses neural network as
a test suit fitness estimator for genetic algorithm, was also presented and called GA-NN. The cost,
of this new approach is higher than pure GA, so we considered lower number of generation to apply
it. This approach could not outperform GA in some cases, it may be because of small training set,
or few number of generations.
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Our future study contains using larger training sets to get better results for our proposed
approach and also use other benchmark programs for comparing the results.
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