Journal of
Software

Engineering

ISSN 1819-4311

@

Academic
Journals Inc. www.academicjournals.com

Journal of Software Kngineering 7 (3): 856-105, 2013
ISSN 1819-4311 / DOI: 10.3923/j5.2013.86,105
© 2013 Academic Journals Inc,

A Novel Integrated Framework to Increase Software Quality by
Mining Source Code

'Shaheen Khatoon, *Azhar Mahmood, *Guohui Li and 'Jianfeng Xu

'School of Software, Nanchang University (NCU) Jiangxi, China
2School of Computer and Applied Technology, Huazhong University of Science and Technology (HUST)
Wuhan, China

Corresponding Author: Shaheen Khatoon, School of Software, Nanchang University Jiangxi, China

ABSTRACT

Source code contain lot of structural features that embody latent information that i1f identified
can help software engineers to develop quality software in least amount of time. For instance, many
programming rules are hidden in set of function calls, variable usage, data accesses in functions,
object interaction ete. that seldom exist outside the minds of developers. Violations of these rules
may intreduce bugs which are difficult to uncover, report to bug-tracking systems and fix unless
the rules are explicitly documented and made available to the development team. In order to
address this problem there is a need to apply strong analysis techniques on sourece code to find
latent programming patterns that can be potentially useful for performing various software
engineering tasks. This study demonstrates how data mining techniques can be applied on source
code to improve software quality and productivity by proposing a framework. This new approach
is able to find different programming patterns such as programming rules, variable correlation, code
clones and frequent API usage patterns. Furthermore, efficient algorithms are proposed to
automatically detect violation to the extracted rules. Proposed framework 1s validated by developing
a prototype and evaluated on various projects of significant size and complexity. Results shows
proposed technique greatly reduced time and cost of manually checking defects from source code
by programmers.

Key words: Data mining, source code mining, proegramming patterns, programming rule, rule
violation, copy-paste code, bug detection, API usage

INTRODUCTION

Software organizations produce large velumes of data in software development process. Such
data refer as source code, change history, execution traces, bug reports and open source packages.
Useful information can be extracted from these large volumes of data that can play an important
role in improving software quality and productivity.

Data mining is the process of non-trivial extraction of implicit, previously unknown and
potentially useful knowledge from huge amount of data (Agrawal and Srikant, 1994, 1995). In
relation to software development large amount of data created as part of the software development
process is available. Data mining techniques can be applied on Software Engineering (SE) data and
use the results to improve processes and products. Source code is one of an important artifact of
development process which can be mined for interested patterns. It is typically a structured entity
and contains semantically rich programming constructs such as variables, functions, data structures

86

J. Software Kng., 7 (3): 86-105, 2013

and program structures which indicate patterns. Various data mining applications in software
engineering have employed source code to aid software maintenance, program comprehension and
software components’ analysis. Since, the primary goal of software development is to deliver high
quality software in the least amount of time. To achieve this goal software engineers are looking
for tools which automatically detect different type of bugs to deliver high quality software and want,
to reuse existing frameworks or libraries for rapid software development. One of solution to achieve
quality objective is effective and efficient testing of system under development. However, common
testing approaches focus typically on correctness of functionality and performance and do not
ensure the absence of programming rule violations which if left undetected may silently compromise
the results of computations. Furthermore, common testing approaches uses well documented
specification to verify against correctness of functionality whereas programming patternsfrules are
not documented. To address these issues in this study data mining techniques are applied on source
code to discover informative relationships and trends through large amount of source code which
can facilitate in identifying different programming patterns.

In order to reduce the development time developers often reuse the code. One of the solution
developer's often use is copyving and pasting (code clones) the existing code from the same
application. However, many programming errors occur when programmers create and update
copied cod. For instance (La et al., 2004) identified that a some of bugs in Linux were introduced
when a programmer copied code but failed to update identifiers in the pasted code. To address this
issue there is a strong need of tocl to identify similar code automatically by comparing the internal
representation of source code. Proposed framework accepts a source code file and finds all segments
of copied codes by applying mining algorithm. Once all the duplicated code segments are identified
it fed to automatic system to find copy paste code related bugs.

Another solution for rapid software development is reusing software libraries, application
framewaork and open source repositories. The programmer usually uses internet resources to search
for useful APIs by using commeon search engine such as Google. However, search engine usually
return the large amount of document most of which are not relevant. Even if some document are
relevant but the programmer fade up after browsing through first few documents and go for
another way. To address these challenges proposed framework provides a mechanism where
programmer can find relevant .Net APIs by searching over internet and guides programmers
toward the results that will be most helpful for their current task.

The main contributions of proposed framework are:

* The first practical frameworks to automatically identify multiple patterns. All the previous
approaches identify one specific patterns such as function pairing (Engler et al., 2001) or one
specific type of bug detection {(Ii and Zhou, 2005). In contrast proposed source code mining
framework integrates multi features components under one umbrella

« Bince, the traditional data mining algorithm are meant for domains like market-basket analysis,
DNA sequence mining and so on. The source code domain is completely different to apply
mining algerithms. In order to convert source code inte data mining problem data
transformation method is propoesed called data generator

* In order to automatically extract various programming patterns, code miner is developed which
uses the data mining techniques to discover valuable patterns from source code. The numbers
of patterns generated by code miner are too many and all are not of user interest. Also the
mining process in code miner has lack of user interaction. To improve the mining process and
making it more users’ focused constraint-based mining is proposed

87

J. Software Kng., 7 (3): 86-105, 2013

* The proposed framework can identify various kinds of rule violation bugs. By evaluating
framework on large software’s, the result shows it can detect many violations to extracted
programming rules

RELATED WORK

One major area in this direction is rule mining techniques (Engler et al., 2001; Li and Zhou,
2005; Chang et al., 2007; Lu ef al., 2007; Ramanathan et al., 2007) which induces set of rules from
source code of existing projects and anomalies are uncover by looking for violation of specific rule.
For example, if A occurs then B and C happen X amount of the time. Here, Engler ef al., 2001 work
and PR-Miner discover patterns involving pairs of methods calls and functions, variables,
data types that frequently appear in same methods and do not contain control structures or
conditions among them, also the order of method calls 1s not considered. However, compared with
{(Engler et al., 2001) work which extracts only function-pair based rules, PR-Miner extracts
substantially more rules by extracting rules about variable correlations. However, PR-Miner uses
the gee front end, hence coupled with specific compiler implementation. In contrast, in this study
a light weight parser to analyze source code based on language standards is developed.
Furthermore, the proposed approach can find additional patterns classes such as multi-variable
acecess correlation, duplicate code and AFI usage. CHRONICLER developed by (Ramanathan et al.,
2007) 1s used to identify the precendance relationship in procedures. It applies path-sensitive
static analysis to automatically infer accurate function precedence protocols. In recent work
{Chang et al., 2007) applies graph mining to mine implicit conditional rules and to detect neglected
conditions. The user has to apply constraint on the context of rule being mined. However, the
approach does not handle directed and multi graphs.

Recently, (Khatoon ef al., 2011a) surveyed approaches, including those using frequent-pattern
mining, to mine source code for various software engineering tasks. Alsc in their 1mitial work
(Khatoon et ¢l., 2011b), propoesed a framework for mining programming patterns from source code
by applying on ERFP sclution. However, in this work framework 1s applied on large software systems
and also efficient algorithms are proposed for detecting violation from mined patterns.

In area of clene code identification only two approaches CP-Miner (Li ef al., 2004) and Clone
detection (Wahler ef al., 2004) are found which uses data mining to detect clones. CP-Miner uses
frequent token sequence and flag bugs by identifying deviations in mined patterns. In this
technique basic code blocks are transformed into sequence of number. The ColSpan algorithm is
applied to the resulting sequence database to find basic copy-pasted segments. By identifying the
abnormal mapping of identifiers, it detects copy-paste bugs.

Whereas, (Wahler ef al., 2004) approach finds clones at a more abstract level by converting the
Abstract Syntax Tree (AST) to XML by using frequent item set-mining technique. This teool first
converts source code into AST which contains complete information about source code by using
parser. XML configuration file inputs to frequent itemset mining algorithm which finds frequent.
consecutive statements. However, this technique only identifies exact and parameterized clones at
a more abstract level.

In direction of AFI usage patterns techniques (Michail, 2000) developed CodeWeb which
describes how data mining can be used to discover library reuse patterns in existing applications.
To use CodeWeb developer must find similar applications of interest in advance. Given an API
sample, Strathcona (Holmes and Murphy, 2005), Prospector (Mandelin et «l., 2005), XSnippet
{(Sahavechaphan and Claypoal, 2006), MAPO (Xie and Pei, 20068) and Parseweb

88

J. Software Kng., 7 (3): 86-105, 2013

{Thummalapenta and Xie, 2007) provide example code of that API. Strathcona generates relevant,
solutions when the exact APl is included in the search context. However, mostly programmer has
no knowledge of which API has to be used for solving the query. Prospector and XSnippet are
limited to the queries of a specific set of frameworks or libraries. Both use the code relevance to
define the code context which best fits the required code. However, Strathcona only use the
lexically visible types to define the code relevance whereas, XSnippet uses parents of the class
under development as well as lexically visible types for a given method contained in class to define
code relevance. The major problem with both of approaches is that they use the local repositories
which are limited in relevant code examples.

MAPO uses a query to define the relevant APT and gather the relevant code samples from open
source repositories and conduct data mining. However, for using MAPO Programmers need to know
the API to be used to identify usage patterns. PARSEWeb like MAPO takes queries of the form
“source object type to destination object type” as an input and suggests what AFI method sequence
should be used to obtain one object from another from potential solution. However, it only suggests
the frequent sequences and code samples but cannot directly generate compile-able code.

PROPOSED SOURCE CODE MINING FRAMEWORK

The core idea of proposed framework is applying data mining techniques on source code to
discover valuable patterns from large software and explait such extracted patterns to improve
software quality and productivity. Benefiting from frequent itemset and sequential mining
proposed framework can identify the programming rules that contain multiple elements from source
code such as functions and variables. The Framework also suggests the solution for current
programming task by mining frequent usage patterns of related code sample which assist the
programmer for rapid software development. To make mining process more effective and user
focused constraint based mining is used. Constraints are applied on the form of rules to be mined.
Hence user can explicitly specify the rule form in which he is interested. Instead of searching for
all rules the mining time is reduce by focusing the mining process towards the constrained rules
only. Additionally, efficient algorithms are proposed to detect various kinds of bugs including rule
violating, variable access correlation violation and copy paste code related bugs.

The schematic workflow of propesed approach 1s shown in Fig. 1. It accepts source code file and
source parser convert it into AST. A database 1s generated by traversing AST. By applying mining
algorithms programming rules are generated which can be used by following ways:

* Instances of rules are provided to knowledge base or as an appendix to a developer’s guide
which 1s useful way to inform developer’s about the system specific rules, so that they can use
these rules in future development

* Instance of rules are use to assist in development of current task such as AFPI usage patterns
which in turn benefits for rapid software development

¢ Theinstance of cloned code are used to optimize code as well as help in identifying copy paste
code related bugs

+ Instance of the rules are fed to automatic violation detection component that can identify rule
viclation at specific location of code, hence programmer can fix that viclation which assist in
improvement of software quality

The main components of propesed framework are as follow.

89

J. Software Kng., 7 (3): 86-105, 2013

Sequential
patterns

v ™
ke MI. M2 M3, M1
M6, M3, MT
abecf M3 M7
Sequential e T MY %’21\& M2
database abijc database o
w
b M2 M3 == M4
3 =

Associate
rules

vy

Constraints

Constrained rules

Search rules API usage patterns,

programming rules

Knowledge base

Transformed
token sequence

Rules violating bugs Copy-paste code bugs Variable access correlation violation bugs

Fig. 1. Workflow of source code mining framework

Data generator: Algorithms for mining association rules and sequential patterns are traditionally
used for market. basket analysis. This work completely addresses a different, application domain that
of source code analysis thus a suitable data model is needed which format the source code with the
requirements imposed by existing mining algorithms.

The task of data generator is transformation of source code into database suitable to apply
mining algorithm. To transform source code into transaction database it is very important to define
a code unit which is map into itemset. The code unit is defined in a way in which majority of code
elements are contained. In proposed framework modules are used for defining basic code unit and
treated as itemset, all elements of modules (function, procedure, classes) are mapped to items.
Modules can be easily identified within a program as their start and end follow specific conventions.

90

J. Software Kng., 7 (3): 86-105, 2013

Modules have also the advantage that it contains the significant amount of code that consists of
several statements such as variable declarations and assignments and so on. Therefore, modules
may contain a large number of attributes. Selecting the modules as basic code unit also facilitates
in capturing the common attributes which enhance the quality of association rules and of
consequent groups.

Parsing source code: The purpose of parsing source code is building transaction and sequential
database to convert source code into data mining problem. A user gives source code in a given
language to source parser which transforms source code into data structure called Abstract Syntax
Tree (AST). Converting the source code into ASTs ensures the preservation of syntactic details of
every programming construct since it contains all the information about parsed program. Each node
of the AST represents the program element such as identifier name, data type name, control
structure ete. The AST i1s than passes by subsequent phases and finally uses as the basis to
construct the transaction and sequential databases suitable to apply mining algorithm. In next step
each AST is traversed to select the items, such as identifier names, data type specifiers, operators
and contral structures. In this way, each function i1s converted to an itemset. The sample code
shown in Fig. 2 used to generate AST. The corresponding AST generated by parser 1s shown 1n
Fig. 3.

Generating transactions database: A database of system entities and their relationship is
generated by traversing the function bodies in ASTs. Each node of the AST represents the program
element such as identifier name, data type name, control structure ete. In order to convert a
function into an itemset the AST of that function is traversed and each selected element is hashes
into a number. The procedure for generating hashing values from AST is shown in Fig. 4. By
hashing each element into a number entire function is converted into itemset which is written as
a tuple in itemset database. Let f}, f,, f,,..f is the number of function present in the software system.
The itemset T1s the union of all functions:

I=fufufu.uf,

if (af0]~al1] {

t = al0];
a[0] = a[1];
a[l] =t;

}

if (a[1] = a[2]) {
t=all];

a[l] = a[2];

af2] =t;

Fig. 2: Sample code used to generate AST

91

J. Software Kng., 7 (3): 86-105, 2013

t t
i
Blockstmt - -

DR

OIO
] [0]

o]][]

Lt] [[[[«of [¢]

Fig. 3: Abstract syntax tree

The itemset of all function construct the transaction database which is provided as input to
mining algorithm at next phase. Each transaction T corresponds to a subset of I consist of different
types of function.

Generating sequential database: For copy paste code detection, the code fragments that have
some semantic notion of sequencing involved such as sequences of declarations or statements are
needs to identify. For this purpose program is broken into set of basic blecks. A basic block is the
maximum length sequence of statements 5,,.5,, where n<1 having one entry point (5,) and one
exit point (3,) and there 1s no branch statement except the last statement. For this purpose abstract
syntax tree is traversed where each node represents a basic block and list of each basic block is
computed. For each basic block statements are mapped to a number. Similar statements are mapped
to the same number by mapping all identifiers of the same type into the same value, regardless of
their actual names. The basic block is mapped inte sequence of numbers by hashing all statements
without any branch. As a result, a program is mapped into a database of many sequences.

Consider the AST as shown in Fig. 3, it contain five basic blocks for function Void f. The tree
is traversed and each basic block 1s hashed to sequence of numbers. Here function HashPJW
{Aho et al., 2007) is used which accept pointer to string and return an integer. Corresponding to
these basic blocks hash values are associated to each sequence as shown in Table 1.

The hash value from Table 1 is converted into following sequences where each sequence
represent basic block:

(10624768)
(20142602, 88720163, 28375133)
(10863208)
(10045845, 70045621, 81438763)
(10845126)

92

J. Software Kng., 7 (3): 86-105, 2013

Procedure: Generate Hash Values
Input: AST
Output: Hash values
Method:
Traverse(Node rootNode)
begin
Stack stack = new Stack()
Node node=rootNode.getFirstChild();
while (node!=null)
bhegin
node.getNodeValue();
if (node.hasChildNodes())
hegin
if (node.getNextSibling()!=null)
stack.push. ApplyHash{ node.getNextSibling() 3;
node = node.getFirstChildo);
end
else
bhegin
node = node.getNextSibling();
if (node==null && !stack.isEmpty()
node=(Node) stack.pop(y;
end

end
end

PUBLIC imsigned ApplyHash{unsigned char *Node)
begin

unsigned HashValue = 0;

unsigned Check;

for (; *Node; Nodet++)
begin
HashValue = (HashValue << TWELVE_PERCENT) + * Node;
if ((g = HashValue & HIGH_BITS) != 0)
HashValue =(HashValue"(Check>>SEVENTY_FIVE_PERCENT))&
~HIGH_BITS;
end
return HashValue;

Fig. 4: Procedure to generate hash values from AST

Code miner: Source code mining framework parses the source code and generates the transaction
and sequential database. Code miner applies the different mining techniques on these databases
to uncover interesting patterns. Code miner consists of three major components each of which

perform a specific operation: rule miner, sequence miner and constraint based miner. Below the
detail of each component 1s provided.

Rule miner: It inputs a given set of transactions defined in transaction database and finds all the
frequently occurring subsets of items that have at least a users specified minimum support
{Agrawal and Srikant, 1994). It generates a number of association rules by applying Association
Rule Mining algorithm Apriori. A sub-itemset (a subset. of an itemset) 1s considered frequent if the

93

J. Software Kng., 7 (3): 86-105, 2013

Tahble 1: Hash values assigned to each statement of function Void £

Statement Hash value
if (a[0]=a[1]) 10624768
t =a[0]; 20142602
a[0] = a[l]; 88720163
a[l] =t; 28375133
if (a[1] > a[2]) 10863203
t=a[l]; 10043845
a[1] = a[2]; 70043621
al2] =t; 81438763
max = a[2]; 10845126

number of its occurrences in the database {denoted as its support) is greater than or equal to a
specified threshold. Items in a frequent pattern are likely to have some correlation in between. The
set of corresponding frequent program elements discovered by mining algorithm are called
programming patterns which indicates that the program elements are correlated and frequently
used together. For example, let. [be the set. of all items present. in database. Association rule mining
search for the power set of [for each patterns classes satisfying minimum threshold:

I= {{A.B.C,D,E} {A, B,D,E, I}, {A, B, D, G}, {A, C I I}}

The support of sub-itemset {A, B, D} is 3 and its supporting itemsets are {A, B, C, D, K}, {A, B,
D, E, F} and {A, B, D, G}, If min support is specified as 3, the frequent sub-itemsets for I are {A}:4,
{B:3, {D}3, {A, BE3, {A, D13, {B, DE3 and {A, B, D13, where the numbers are the supports of the
corresponding sub-itemsets. The location (where the items locate in the source code) of each
frequent itemsets 1s also recorded which 1s required when evaluating if a viclation 1s detected.

Onee all patterns Z are identified, all rules are generated by splitting Z in head X and body Y
such that: XuY =Z and XY with support s and confidence ¢ satisfy the rule. For each pattern class
set of rules are generated.

To describe such mining problem, consider a set of items such as I = {i, i, i, i,}. A set of
transactions T, in dataset D) can be described as a unique id given to each transaction in I such
that T cD. From D, association rules are mined. These association rules can be expressed A—hbl
where, A, Bcl and AnB = ¢. In this implication A 1s called antecedent and B 1s calle the consequent,
of an association rule. If N denotes the number of transactions in a dataset then the interesting
association rule can be measured with support and confidence of rule as given in equation:

Support S(A — B)= %
Confidence S (A —>B)= S(AUB)
S(A)

With these equations, support of a rule 1s the significance of correlation while confidence of a
rule measures the correlation degree between the set of items. Based on these measures, a rule 1s
interesting which satisfies the minimum support and minimum confidence criteria specified by the
user.

Consider a simple example of 6 items such as [= {A, C, D, K, F, G} with transactions
T, = {ABCD, ABC, ABD, ACD, ABC, BD} and D_ it t,, t; ..., t,}. Let the minimum support be 2,

94

J. Software Kng., 7 (3): 86-105, 2013

(20%) and rules mined from D composed of T, such that VT ,=I> with unique transaction id in I
Therefore, association rules that can be mined from a given D are A—B (66.67, 80%) A—~C (66.67,
80%) A—D (50, 60%), B—C (50, 60%), B—D (50, 60%), C—D (33.33, 50%), A, B—C (50, 75%), A,
B—D (33.33, 50%), A C—D (33.33, 50%),.

Sequence miner: Sequence miner inputs the set of sequential database and applies the
sequential-pattern mining algorithm to finds all the frequently occurring subsequences that have
at least a user-specified minimum support (Agrawal and Srikant, 1995). To detect copy paste code
segments proposed framework first convert the given source file into sequence frequent mining
problem. In this step mining framework applies Prefixscan (Peai ef al., 2001) algorithm on sequence
database to find copy paste code segment. The reason to choose Prefixscan is that it does not
compute every possible combination for potential ecandidate sequence, hence increase the efficiency
of framework by avoiding unnecessary and redundant database scanning. These frequent
subsequences are exactly copy-pasted segments in the original program. From Table £ the
framework identifies sub-itemset {10824788, 201426802, 88720183, 28375133} as frequent
subsequence as it appears twice in sequential database. The corresponding code statements from
lines 123-126 and 152-155 are copy-paste code segment.

The proposed framework is efficient in a sense that it can identify the modification in copied
segment. This 1s done by mapping the similar elements such as function, variables and types into
same value regardless of their name. As shown in Table 2 statements from line 123-126 and
152-155 are mapped to similar hashing values although their values are not matching.

Extracting API usage patterns: In order to facilitate the developer to search for specific code
example relevant to current task, the proposed framework recommends API code snippets to the
programmers by loading and analyzing the relevant code examples from web. It forms a database

Table 2: Example of assigning values to statements

Statement Value
110. Void f (int) 16345621
11L.{

...... 10624768

123.if (a[0] = a[1]) 20142602
124.t = a[0]; 88720163
125. a[0] = a[1]; 28375133
126. a[1] = t;

1

{
152.if (a[1] = a[2]

153.t = afl]; 10624768

154. af1] = af2]; 20142602

155. a[2] = t; 88720163

156. max = a[2]; 28375133
10845126

1

95

J. Software Kng., 7 (3): 86-105, 2013

of frequent. API usage patterns mined from relevant source files in a code search engine. The user
provides query statement by specifying one or more line of code in search context. The framework
automatically retrieves relevant source code files (relevant APIs) from web or from previous
projects. This process consists of two phases: Forming the API patterns database and making
recommendation to programmer. At first stage it transforms the retrieved AP statement in the form
suitable to apply mining algorithm. This is done by constructing the AST of top 10 results set. By
traversing the AST a transaction database 1s build. The Aprior algorithm computes all the patterns
and constructs the pattern database. In second stage developers searches the specific usage pattern
from pattern database for a given task. This is done by considering the rule antecedent as source
object and rule consequent as destination object. The tocl only mines the patterns matches the
given rule template. The mined patterns results in more than one possible solution for desired API
usage. To assist programmer to identifying desired usage patterns quickly the mined results are
ranked by corresponding support value. The results having higher support value are shown on top.

Constrained miner: In proposed framework a user may place various constraints under which
mining 1s to be performed. These includes interestingness constraints which involves specifying
thresholds on measures of interestingness or rule constraints which place restrictions on the
number of predicates that exist among them. To illustrate the concept of constraint based rule
mining consider set of transactions shown in Table 3. Here it 1s desire to 1dentify customer
characteristics with sales of speakers. The rule for the extraction of such information can be of the
form P(X)Y)—buys(X, “speaker”) where variable X represents a customer and variable Y takes on
values of the attribute assigned to the predicate variable P. During the mining process only the
rules which match given rule are found. One example of a matching rule 1s age(X, “young”)—buys
(X, “speaker”). Since, both the predicate variable P and wvariable Y may vary, rules gender
(X, “male”)—buys(X, “speaker”) and age(X, “o0ld")—=buys(X, “speaker”) also satisfy the given rule.
In source code mining framework the constraint based architecture is proposed for supporting
human centered and exploratory discovery of knowledge. The constrained association queries are
uses as a means of specifying the constraints to be satisfied by the antecedent and consequent of
a mined association. User specifies the constrained query imposed on the antecedent and
consequent of the rule to be mined as shown in Fig. 5. In phase [user specify the constrained query
and threshold, the algorithm finds the intended candidates for the antecedent and consequent of
the association. The cutput of this phase is list of antecedent and consequent satisfying the given
threshold. User inspects the resultant candidates and can refine the constraint or thresheld. User
can repeat through this phase as many times as required. If the user 1s satisfied with current
candidate list it will move to phase 2. In this phase user instruct the system to find association
among the selected candidates by setting the confidence measure. The user can select the specific

Tahble 3: Transaction set showing sales of item

Transaction i.d. Items

T, CD, memary disk

T Speaker, CD

T; CD

T, CD, memary disk, speaker

Ts Memory disk, speaker, microphone

96

J. Software Kng., 7 (3): 86-105, 2013

Refinement of constraints

Constraints|query

Step I: Find constrained User Select candidate sets (Step 2: Compute association
frequent set decesion of candidate set
Candidate

Refinement of candidate rules

rules

Fig. 5: Workflow of Constraint Miner

rules or small set of candidate rules by setting the properties of data. Also user can refine the
selected candidate by increasing the confidence measure to make the mining process more focused.
Finally, the output of phase 2 consists of all associations that satisfy the constraint conditions
specified at the beginning of phase 2. The result are displayed in GUI, after examining the
generated rules user can change any parameter depending which parameter want to reset.
Parameter resetting may trigger the phase 1 or 2 computation.

Violation detector

Rules violation detection: Locating source code fragment that match certain patterns and
violation of identified patterns are critical for programmer who writes code, testers who involves in
testing activities and maintainer who involved in understanding code for re-engineering tasks. In
order to detect violation to extracted rules identified in previous steps, an efficient method 1s
proposed which automatically finds the locations where given rule is not followed. Rules violation
algorithm 1s shown in Fig. 8. The algorithm can apply on both function used together as well as
variable access correlation violation. User specified the rule to be checked in given source file. The
algorithm transforms the source file into tokens and performs token by token comparison to identify
the code location where given rule violates. Once complete source file is checked for violation, a bug
report 18 generated contains the set of rules and locations where the given rules are not followed.
Programmer can check the specified location and inspect or fix the given viclation,

Detecting copy-paste code related bugs: In crder to automatically detect the defects introduced
by copying and pasting the code a naive method is developed as shown in Fig. 7. The copied code
segment identified in mining process is fed into it and it automatically flags the code location for
potential bugs. It based on tokenization te find the inconsistencies in source code based on given
code segment. A clone 1s 100% consistent if it exactly map to other copied segment. For a segment,
in which statement insertion and deletion are carried out the similarity ratio can identify the
percentage of inconsistence between original clone and copied clone. To measure the amount of
similarity between original code and copied codes a similarity ratio 1s computed:

Similar No.

Similarity ratio =
Total No.

Here, similar number shows the total number of occurrences where the given token is
unchanged and total number is number of token in given clones. Cbservation shows 100%

97

J. Software Kng., 7 (3): 86-105, 2013

Procedure: Rule violation bugs detection
Input:
SOURCE: Source code file
Set of Rules R, wheren=1,2,3,...n
COutput:
P: Source code locations where rule violated
RV: set of rules violation
Method:
1. Generate Tokens T+Read (SF)
T contain set of token read from source file
2. Call Exclude Token Class
/fThis class is called to exclude keywords, all programming keywords are
related
to syntax, complier can identify syntax error if any
3. Fork=R,toR,)
While not end (T)
COMPARE R;with T,y
IF (T.=R)) // Token Found
Return Result [Pogition, R;] /Return True and Store source code position

B

and rule element
Next
9. Traverse Result [PR; P.R.] //Order by Position Found
10 . For Result[i] to Result[n]
11. IF DIFF (R;, Riq)!=-1 or Diff (R;, Ri+1)!= RuleLength-1
Rule Length is No. of elements found in provided rule
12. Return P, source line and R;
13. /Rule violation identified
14. Next
15. Print [B][R:]

%

Fig. 8: Procedure to detect rule violating bugs

similarity mean all the given clone 1s mapped to copied segment. If similarity measure 1s less than
100% and greater than 50% it shows the probability of bug at unchanged location. Proposed
framework flag this location and report copied code instance and its mapping information to help
programmer to identify cause.

EXPERIMENTAL EVALUATION

In order to validate the proposed framework a working prototype i1s built. Three software
applications: PRWHP (Promotion of Rain Water Harvesting in Pakistan), Metro HEM and HCC
Bank, developed in local software house are used to evaluate the proposed framework. The specific
system detail including number of files, number of function and number of external interfaces are
shown in Table 4. PREWHEF is web based application developed to record the usage of rain water
throughout the country. Metro HRM is installed on Metro fast train stations to manage human
resource operation; it includes HE induction, HR plans and its monitoring, resource allocation,
individual resources promotion and packages. System also maintain payroll, leaves records, shift,
change on each metro station. HCC Bank manages account details of individual and group, these
details includes all cash inflows and outflows. System is capable to handle all transactions and
major commercial banking operations. Table b shows the list of the hardware and software used
for developing the prototype.

98

J. Software Kng., 7 (3): 86-105, 2013

Procedure: Copy-paste bugs detection
Input:
SOURCE: Source code file
CC: Clone code
COutput:
CPB: Copy paste code related bugs
Method:
1. Generate Tokens of Clone Code CT«Read (CC)
/# CT contains set of token of given clone code based on unique identifier
2. Total Clone Token«TCT
#Total number of Clone token generated
3. Generate Tokens ST«Read (SF)
/# 8T contain set of token read from source file based on same unigque
identifier
. While not end (ST)
Read (ST, .)
Match CT; with ST, .
IF (CT; = 8T)
Int Found, Position=0
Found=Found+1
10. Position=8T;
iStore the source code position where first token found
11. For (CT.; to TCT)
/f Match next clone token with Source token
12. Read ST=8T.,
13. IF (CTy; = 8T // Token Found
14. Found=Found+1
15. Next
16. IF (Found=TCT/2)
17. Return Source Code line
18. ™ Probahility of potential bug
19. Print buglocation+Position
20. Read Next Source Token ST,
21. End

© P aEm ;e

Fig. 7: Procedure to detect copy paste related bugs

Table 4: Systems used for evaluating the proposed framework

Systems evaluated No. of files No. of functions No. of external interfaces Application type Database
PRWHP 85 1,820 12 Web MS SQL 2005
Metro HRM Solution 789 1335 10 Desktop Oracle 10 g
HCC Bank 1279 4220 9 Web Oracle 10g

Table 5: Software and hardware support detail

Operating system Windows sever 2003

Programming Language C# (MS Visual Studio 2005)

Database M8 SQL Server 2005

PC hardware specifications Pentium Intel 2.2 GHz Core2 Duo/2GB Ram

99

J. Software Kng., 7 (3): 86-105, 2013

RESULTS AND DISCUSSION

The prototype system takes three parameters along with source code file to be checked. The
parameter includes: min support, the confidence threshold and gap constraint. The support and
confidence of extracted rules is user defined. In this case support of each rule is 10, confidence 90%
and gap constraint is 2.

Extracting programming rules: Table 6 shows total numbers of rules identified by running the
prototype using systems under evaluation. These rules include function to function as well as multi
variables access correlations rules. The rules having confidence lower than 90% are automatically
pruned. Since, the results of frequent-pattern mining are sensitive to the externally supplied
minimum-support value, multiple run were performed with different minimum-support values and
a minimum confidence.

In order to demonstrate how to choose support and confidence values in proposed
framework, sensitivity analysis is performed on minimum support and minimum confidence values
Fig. 8 and 9 shows the support and confidence distribution of rules extracted by prototype. It can
be chserved from figures, the numbers of rules are decreased by increasing the corresponding
support or confidence value. Rules are ranked with increasing support value, since rule with larger
support are trusted more and can increase the program quality.

The length of the rule can give an overall 1dea of pattern complexity which 1s the measure of
total number of programming elements such as funection, variable, data type ete. in certain rule.
Fig. 10 shows the length of rules in systems under evaluation. It can be observed that more than
60% rules contain 2-4 elements whereas less than 10% rules contain 20 or more elements.

The distribution of the variables with different numbers of correlated peers 1s 1dentified in order
to capture the variable correlation. The results of PEWH, HRM solution and HCC bank applications
shows that most variables are only correlated with a small number of peers as shown in Fig.11, it
can be ocbserved from figure that around half of the variables are correlated with only one

Table 6: No. of rules extracted by integrated system

System evaluated No. of rules identified
PRWHP 741
Metro HRM solution 988
HCC bank project 1202
25007 o PRWH
8 HRM solution
® HCC bank
2000 an
£ 1500
<
<
=}
2 1000
500+
0_—
S 10 15 20 25 30 35 50

Support value

Fig. 8: Support distribution of rules

100

J. Software Kng., 7 (3): 86-105, 2013

100 4 o PRWH
90 8 HRM solution
® HCC bank

80

70

60

50

40 1

301

20

10 4
0+

No. of values

30-40 40-50 50-60 60-70 70-80 80-90 90-100
Confidance value (%)

Fig. 9: Confidence distribution of rules

7000 ——PRWH
—a— HRM solution
—4—HCC bank

6000
5000
4000
3000
2000
1000

No. of rules

0 T T T T T T T T T T LE—
1 2 3 4 5 6 7 8 9 10 20 >20
Rule length

Fig. 10: Distribution of number of rules VS rules length

800 o PRWH
@ HRM solution
7007 ®m HCC bank

600
500 1
400

No. of variables

300+
200+
100+

0_-
1 2 3 4 5 6 7 8 9 10 11

No. of correlated peers
Fig. 11: Distribution of correlated variables with different number of peers

variable and around 20% are correlated with two variables. This result indicates that access
correlations do not exist between any two random variables. Even though most structures contain
many fields, only those fields that have true semantic connections have access correlations.

Extracting copy-paste code: The percentage of code reuse by copying and pasting the code for
each application is shown in Fig. 12. The findings strongly validating the observation that

developers are often copying and pasting the code to save development time.

101

J. Software Kng., 7 (3): 86-105, 2013

50
45
440 -
35
104 33%

25 1

43%

20 7 20%
15 -
19 -
5 =
0 T) 1

PRWH Metro HRM HCC bank
Systems under evaluation

Cpoy-paste code (%)

Fig. 12: Percentage of copy-paste code 1n evaluated systems

1.0 5
0.9 4
0.8
0.7 1
0.6
0.5 1
04
0.3 1
0.2 4
0.1 1
0.0 T T 1

PRWH Meiro HRM HCC bank
Systems under evaluation

Tasks (%)

Fig. 13: Percentage of API usage patterns suggested by proposed framework

Extracting API usage patterns: To investigate the usefulness of proposed framework for
providing code related to task at which programmer currently working it 1s also evaluated on
systems under evaluation. The user provides query statement by specifying one or more line of code
in search context. The framework automatically retrieves relevant source code files (relevant APIs)
from web or from previous projects. The framework is evaluated for API usage to see either it
successfully suggest solution for given query. A task 1s considered successful if the desired task on
which developer is currently working is enabled with at least one recommended solution. The
current implementation of framework only suggests frequent code samples relevant to current
programming tasks. Therefore, code is manually transformed into appropriate compilable code
snippet. The percentage of task successfully completed by proposed framework 1s shown in Fig.13.
The x-axis shows the systems under evaluation and y-axis shows the percentage of task completed

for each system.

Detecting rules violations: Before finding the viclation of extracted rules, they are validated
by developers. Only the validated rules are used to detect the viclation. The developed prototype
system has reported many violations of validated rules in systems under evaluation. The system

is also evaluated in term of space and time efficiency for detecting violation as shown in Table 7.

102

J. Software Kng., 7 (3): 86-105, 2013

Tahble 7: Time and space evaluation of violation detector

Detecting violation

Software Time Space (Mb)
PRWHP 43 sec 28
Metro HRM Solution 54 sec 4.8
HCC Bank Project 2min 5.2

Table 8: No. of rule violation bugs detected by prototype system

No. of rule violations bugs

System evaluated report by prototype system No. of new bug found No. of new bugs confirmed
PRWHP 57 25 18
Metro HRM solution 43 30 21
HCC bank project 30 18 11
Total 130 73 50

Tahble 9: No. of copy paste bugs

No. copy paste bugs

System evaluated report by prototype system No. of new bug found No. of new bugs confirmed
PRWHP 33 24 18
Metro HRM Solution 71 53 42
HCC Bank Project 63 48 36
Tatal 167 125 96
250 ~ W PRWHP
B HRM solution
200 4 O HCC bank
vl
=
£ 150 1
o
£
b
o 100
Z
50
O -t
1 3 5 7 9 11 13 15 17 19 21

No. of violations

Fig. 14: Number of viclation per functions in systems under evaluation

It can be cbserved from table violation detector is space and time efficient for large applications,
e.g.,, in HCC Bank application it took less than a minute and reported 69 wviolations. Those
violations occurred in 81 methods since one method may contain several viclations.

The total number of rule viclation bug detected by proposed framework from systems under
evaluation is shown in Table 8. The top 130 bugs in table are examined. [t is identified that 72 are
true bugs which are send to developer for confirmation. The developers has confirmed 50 out of 73
bugs as true bugs and fixed. Similarly, the copy-paste code related bugs are shown in Table 9. In
copy paste code related bugs top 167 bugs are examined and send for validation to corresponding
developers. Out of 167, the developers have confirmed 96 as true bug and need to fix.

The ratio of number of wiclation to number of methods can give a general idea
how many of method containing are wviolation. The number of wviolation per funection in
systems under evaluations is shown in Fig. 14. By inspecting violations manually it is

103

J. Software Kng., 7 (3): 86-105, 2013

identified 70% of them were defects, other were pointing to code that could be improved.

Confirmed violations are reported on bug tracking system for corresponding developers to fix.

CONCLUSION

This study proposed an innovative approach that applies data mining on software engineering
data. It is demonstrated how programming patterns, in this case function usage, data access in
variables, code clone and AFI usage pattern can potentially helpful in various software engineering
tasks. Multiple kinds of bugs are uncovered by feeding extracted patterns to violation detection tool.
By running the tool on various software systems a number of interesting and non-cbvious rules
that are critical for developers to understand and follow are identified. Experiments show that
identifying programming patterns and their viclation helps in software testing, monitoring software
quality, meeting project schedule by providing speedy solution, analyzing source code for re-
engineering purpose and program optimization. So far this is first integrated framework intends
to extract multiple programming patterns. Also the proposed method for viclation detection can
detect different kind of bugs in single pass. Therefore, reducing cost for deployment of multiple tocls
to detect different kind of bugs in software systems. Results indicates that maintaining the
programming rules in specification database are very important, since developer can refer those
rules during development which dramatically reduce the time for static wverification. Also
maintaining clone code segments is very helpful for developers because it is commonly used in large
software systems and can easily introduce difficult- to- detect bugs. This study is useful to motivate
the software development organizations to integrate functionality to maintain programming rule
in software development environments such as Microsoft Visual Studio.

REFERENCES

Agrawal, R. and R. Srikant, 1994. Fast algorithms for mining association rules. Proceedings of the
20th International Conference on Very Large Data Bases, September 12-15, 1994, San
Francisco, USA., pp: 487-499,

Agrawal, R. and R. Srikant, 1995 Mining sequential patterns. Proceedings of the 11th
International Conference on Data Kngineering, March 6-10, 1995, Taipei1, Taiwan, pp: 3-14.

Aho, AV., M.S. Lam, R. Sethi and J.D.Ullman, 2007, Compilers: Principles, Techniques and Tools.
2nd Kdn., Addison-Wesley, New York.

Chang, R.Y., A, Podgurski and J. Yang, 2007. Finding what's not there: A new approach to
revealing neglected conditions in software. Proceedings of the International Symposium on
Software Testing and Analysis, July 9-12, 2007, ACM FPress, New York, pp: 163-173,

Engler, D., D. Chen, S. Hallem, A. Chou and B. Chelf, 2001. Bugs as deviant behavior: A general
approach to inferring errors in systems code. ACM SIGOPS Oper. Syst. Rev., 35 57-72.

Holmes, R. and G.C. Murphy, 2005. Using structural context to recommend source code examples.
Proceedings of the 27th International Conference on Software Engineering, May 15-21, 2005,
ACM Press, New York, pp: 117-125,

Khatoon, S., G. Li and R.M. Ashfaq 2011a. Framework for Automatically Mining Source Code .
Software Engin., 5: 64-77.

Khatoon, S., A, Mahmood and G. Li, 2011b. An evaluation of source code mining techniques.
Proceedings of the 8thInternational Conference on Fuzzy Systems and Knowledge Discovery

(FSKD), July 26-28, 2011, China, pp: 1929-1933.

104

J. Software Kng., 7 (3): 86-105, 2013

Li, 7. and Y. Zhou, 2005. PR-Miner: Automatically extracting implicit programming rules and
detecting viclations in large software code. Proceedings of the 10th European Software
Engineering Conference and 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, September 5-9, 2005, Lisbon, Portugal, pp: 306-315,

Li, Z., 5 Lu, 5. Myagmar and Y. Zhou, 2004, CP-Miner: A tool for finding copy-paste and related
bugs in operating system code. Proceedings of the 6th Conference on Symposium on Opearting
Systems Design and Implementation, December 2004, San Francisco, CA., pp: 289-302.

Lu, 5., 8. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. Popa and Y. Zhou, 2007, MUVI: Automatically
inferring multi-variable access correlations and detecting related semantic and concurrency
bugs. ACM SIGOPS Cper. Syst. Rev,, 41: 103-116.

Mandelin, D., L. Xu, R. Bodik and D. Kimelman, 2005. Jungloid mining: Helping to navigate the
API jungle. ACM SIGPLAN Not., 40: 48-61.

Michail, A., 2000. Data mining library reuse patterns using generalized association rules.
Proceedings of 22nd International Conference on Software Engineering, June 4 -11, 2000,
ACM New York, NY, USA, pp: 167-176.

Pei, J., J. Han, M.A. Behzad, F. Helen, Q. Chen and M.C. Hsu, 2001. PrefixSpan: Mining
sequential patterns efficiently by prefix-projected pattern growth. Proceedings of the 17th
International Conference on Data Engineering, April 2-6, 2001, Heidelberg, Germany,
pp: 215-224.

Ramanathan, M K., A, Grama and 8. Jagannathan, 2007, Path-sensitive inference of function
precedence protocols. Proceedings of the 29th International Conference on Software
Engineering, May 20-26, 2007, Minneapoelis, MN., USA., pp: 240-250,

Sahavechaphan, N. and K. Claypool, 2006. XSnippet: Mining for sample code. ACM SIGPLAN
Not., 41: 413-430.

Thummalapenta, S. and T. Xie, 2007, Parsewebh: A programmer assistant for reusing open source
code on the web. Proceedings of the 22nd [EEE/ACM International Conference on Automated
Software Engineering, November 4-9, 2007, Atlanta, Georgia, USA., pp: 204-213.

Wahler, V., D. Seipel, JW.V. Gudenberg and G. Fischer, 2004, Clone detection in source code by
frequent itemset techniques. Proceedings of the 4th IEEE International Workshop Source Code
Analysis and Manipulation, September 16, 2004, IEKEE Computer Society, Chicago, IL., USA.,
pp: 128-1356.

Xie, T. and J. Pei, 2006, MAPO: Mining API usages from open source repositories. Proceedings of
the 2006 International Workshop on Mining Software Repositories, May 22-23, 20086,
Shanghai, China, pp: 54-57.

105

	86-105_Page_01
	86-105_Page_02
	86-105_Page_03
	86-105_Page_04
	86-105_Page_05
	86-105_Page_06
	86-105_Page_07
	86-105_Page_08
	86-105_Page_09
	86-105_Page_10
	86-105_Page_11
	86-105_Page_12
	86-105_Page_13
	86-105_Page_14
	86-105_Page_15
	86-105_Page_16
	86-105_Page_17
	86-105_Page_18
	86-105_Page_19
	86-105_Page_20
	JSE.pdf
	Page 1

