Journal of
Software

Engineering

ISSN 1819-4311

@

Academic
Journals Inc. www.academicjournals.com

Journal of Software Engineering 8 (3): 132-151, 2014
ISEN 1819-4311 / DOI: 10.2923/s2.2014.122.151
© 2014 Academic Journals Inc,

Towards a Framework for Heterogeneous Models Matching

“"Mahmoud El Hamlaoui, 'Sophie Ebersold, *Adil Anwar, 'Bernard Coulette and

*Mahmoud Nassar

IRIT Laboratory, MACAQ Team, University Toulouse 2-Le Mirail, Toulouse, France
ISIME Laboratory, IMS Team, University of Med V Souissi ENSIAS, Rabat, Moroceo
*Giweb Laboratory, University of Med V Agdal, EMI, Rabat, Morocco

Corresponding Author: Mahmoud El Hamlaoui, IRIT Laboratory, MACAO Team, University Toulouse 2-Le Mirail,
Toulouse, France

ABSTRACT

The overall goal of cur approach is to relate models of a given domain that are created by
different actors and thus are generally heterogeneous that is, deseribed in different DSL (Domain
Specific Languages). Instead of building a single global model, we propose to organize the different
source models as a network of models which provides a global view of the system through a virtual
global maodel. The matching of these models 1s done in a shared model of correspondences. We focus
in this study on the elaboration of the model of correspendences, through a transformation called
“refine”. The approach 1is illustrated by a representative use case (a Bug Tracking System) and
supported by a modeling tool called HMS (Heterogeneous Matching Suite).

Key words: Point of view, domain specific language, heterogeneity, correspondences, consistency

INTRODUCTION

Several approaches have heen developed to face complex systems modelling. One of the most
efficient and widely used in industry consists in elaborating separate models, called views that
correspond to different points of view (Hilliard, 2001; Koning and van Vliet, 2006; Boulanger ef al.,
2010). This complex system modelling approach has long been used in software engineering and
allows designers to focus on different parts of the system in isolation. If we consider the modelling
of a new aircraft for instance, several designers build view-based models that express specific
concerns: Mechanies, electricity, aerodynamics, software, ete. These view-based models should be
related in order to represent the complex system. This linkage is one of the main issues to which
designers must face.

Among problems that typically arise in this type of situation, we can mention the fact that
different terrmnologies and terms may be used to represent the same concept. or that the same term
can be used to express different concepts. This issue is typically known as heterogeneity problem
and designers of complex systems are facing hard problems because of it.

Heterogeneity has been initially tackled in various domains, namely: databases {Castano and
De Antonellis, 2001}, semantic web (Fenza et al., 2008), embedded systems (Eker et al., 2003), ete.

In MDE (Model Driven Engineering), models are described as first-class entities. A complex
system can be represented as a set of separate, heterogeneous models (.e. conform to different
metamodels or expressed in different DSLs (Domain Specific Language) that tackle specific
solutions in arder to solve problems within specific contexts. The first solution that comes to mind

132

J. Software Kng., 8 (3): 132-151, 2014

is to compose those different source models into a global one, in order to have a single
representation which i1s also easier to maintain. Our research team has been working for years on
this composition issue by proposing a UML profile called VUML. However, when facing complex
systems, this approach appears as too restrictive since source models are all UML models as
described in Anwar ef al. (2010) and Ober ef al. (2008). Globally, composition approaches proposed
in the literature (Drey ef al., 2009; Kolovos ef al., 2006a; Zito et al., 2006) rely on the elaboration
of one global model and have three major drawbacks related to models heterogeneity. The first
disadvantage concerns the structure of the metamodel associated to the composed model; indeed,
there is no consensus on how it should be constructed: from the union of all elements coming from
the source models or from their intersection. The second disadvantage concerns the semantics used
to represent a model element of a composed model given that the source models may use different,
semantics. Thirdly, a composed model is generally huge and in most cases impossible to maintain.

Instead of building a single global model, we propose a new approach consisting in organizing
the different source models as a network of models that provides a global view of the system. This
network is composed of models connected via relations called “correspondences”. A correspondence
links several model elements (two or more) with a specific semantic: equality, similarity,
dependence, verification, etc. The set of correspondences are stored into a model called
“Correspondence model”. This model is produced by an expert designer, assisted by a tool. The
expert designer first identifies high level correspondences among metamodels elements and then
generates, assisted by our proposed tool, low level correspondences between models elements that
refine high level ones.

Interconnected models allow the various stakeholders (designers) to work together by
manipulating linked elements. In particular, building the correspondence model is a way to solve
inconsistencies between separate input models and also strengthen the semantics of the models
network. In other words, it significantly improves the quality of the representation link between
the source models and the complex system.

Anocother interest of the proposed approach is to facilitate the maintenance of models. Indeed,
as models tend to evolve, this may cause inconsistencies in the whole system. In fact, there is a need
to identify and then reflect the changes, or at least to identify model elements that are impacted by
them.

To sum up, the advantages of the proposed approach are:

*+ Produce a unique model of correspondences
+ Maintain models consistency in case of evolution

In this study, we will focus on the first point as a continuation of our work (El Hamlaocui et al.,
2013a) in defining the refine coneept and introducing the developed matching tool. The second
point has been partially addressed in El Hamlaoui ef al. (2013b).

ILLUSTRATIVE EXAMPLE

Objective and principle: To illustrate our approach, we have chosen an example based on a real
project: BTS (Bug Tracking System). This system aims offer to different actors, based on their
different roles {(Team leader, developers, testers,...), the ability to report dysfunections, comment
them, track the status of an anomaly, notify collaborators of problems encountered, suggest

133

J. Software Kng., 8 (3): 132-151, 2014

solutions or pessibilities of circumvention. The choice of this example is relevant because it involves
different actors, working with different points of view, from the analysis of users requirements to
the implementation of the proposed solution.

For this red line example, we consider that in the domain of bug management, there are three
business domains covering variocus aspects of modelling: User requirements, anomalies and husiness
process. Kach business domain is described by a dedicated metamodel and is manipulated by actors
with specific roles (Fig. 1)

* Requirement analyst: Responsible for modelling end user needs (Business domain: User
requirements). The produced model is expressed through a requirements DSL

« Software architect: Responsible for modelling anomalies (Business domain: Anomaly
modelling). He creates a model expressed through a specific anomaly management DSL

* Process engineer: Responsible for bugs tracking process modelling (Business domain: Process
modelling). He creates a model expressed through a business process DSL

In next subsections, we present the three models taken as examples, give extracts of their
associated metamodels and show examples of correspondences between the models.

Requirement modelling: To assess the quality and validity of any project, one must ensure that
it meets user requirements that are described by the requirement analyst. A requirement
metamodel inspired from SysML notation (OMG, 2008) (Fig. 2) was chosen as DSL. A requirements
diagram is defined as a canvas containing requirements. Requirements specify, using textual
syntax, a capability that a system must satisfy. They are also related to each other or to other model
elements using different types of relationships (derived, copy, contains, etec.). The system to build
must satisfy requirements described in a model (Fig. 3) conform to the previous metamodel. For
simplicity’s sake, we limit the description of BTS to a few requirements. For instance, the
requirement with 1id = “1.17 1is related to the declaration of an anomaly; it includes a
sub-requirement (id = “1.1.3") related to the summary of the anomaly, refined in its turn by
additional constraints to be respected during the declaration of the anomaly.

Anomaly management modelling: In Fig. 4, we propose a software design DSL to define
entities and associations between them. Based on this metamodel, we choose an open source
software solution in the bug management. field called Mantis (MantisBT, 2010) to represent the
software design model. The Fig. 5 illustrates a snapshot of this moedel. The term “Issue” is used to

| Metamedel of requirements I | Metamodel of anomalies management | | Metamodel of business process |
«Conform» «Conform» «Conform»
| Model of requirements | | Model of anomalies | Model of business process |
T «Uses»
Lisesn I Model of correspondences I Uses
«Conforms»
| Metamodel of correspondences |

Fig. 1: Global view of the BTS models and metamodels

154

J. Software Kng., 8 (3): 132-151, 2014

Requirement DSL

Requirement diagram
-Name

h

Requirement -Source Trace
*
-1d A Target Name
-Name 1 *
-Description ?
A | | I
| Copy | | Contains | Derives
| Interface reqt || Performance reqt || Functional reqt | | Physical reqt |

Fig. 2: Extract of the requirement metamodel

«Requirement>
Declaration of an anomaly

Id="1.1"

Text = "The user must be
able to report anomalies"

«Requirement>»
Summary of the anomaly

Id="1.1.3"

Text = "The reporter must
add a short description of
the request"

A
/
«Refine » /

4
L

R

\
N\ «Refine »
\
N\

«Requirement>
Complementary
information to the
description

«Requirement>»
Details of the description

Id="1.1.3.2"

Text = "When the
description is incomplete,
the reporter must add more
information to complete
the description”

Id="1.1.3.1"

Text = "For any anomaly the
reportere can add a
superficial explanation of
the request”

Fig. 3: Snapshot of the BTS requirement, model

define an anomaly. An anomaly is characterized by a unique identifier, a set of attributes
describing the anomaly namely: Category, summary, description, status, steps which led to the
anomaly (steps to reproduce) and two types of involved persons with the following roles: “reporter”
and "assigned To”. The first role indicates the type of person who reports the anomaly, whereas the

second one indicates the type of person to whom the anomaly is affected.

Business process modelling: The treatment of an anomaly can be seen as a business process
that various collaborators must follow in order to solve the anomaly. We suppose that the process

135

J. Software Kng., 8 (3): 132-151, 2014

Software design DSL A

| Named element

P -Name

Associa.ﬁanl | Entity |

0.*
Attribute
-Attributes

Fig. 4: Extract of the software design metamodel

MantisRoot

-Issues 0.*

Issue

-identifire: Integer
~category: String
-gummary: String
~description: String
-additionallinfo: String
-status: String
~fixedInVersion: String
-stepsToReproduce: String

-AssignedTo TO..[IT-Reporter

Person

-login: String

Fig. 5: Snapshot of the software design model

engineer used BPMN (OMG, 2011a) for modelling the business process. The BPM metamodel
(Fig. 6) comprises the following concepts: “lane”, “pool”, “flow”, “process”, ete. A snapshot of the
process expressed in conformity with BPM 1s presented in Fig. 7. Required roles in this process
model are “manager”, “reporter” and “developer”. Just after having reported a bug, the “reporter”
must set the status of the anomaly to “new”. An email is automatically sent to the project manager
who has the “viewer” role as he is not directly involved in the correction of the anomaly. Once the
process manager has validated the issue, he must assign it to a “developer” and change the status
to “open”. Otherwise, if the anomaly is not validated by the process manager, he must reassign it
to the “reporter” to request additional description. Once the “developer” has corrected the anomaly,
he must inform the process manager and change the status to “Fixed’. The process manager,
notified by the change, rechecks the propoesed solution and modifies the anomaly status to “closed”,

if it has been successfully corrected.

Exemple of BTS correspondences: Figure 8 exhibits a set of correspondences identified by the
design expert between the three models of BTS domain presented above. They are based on

136

J. Software Kng., 8 (3): 132-151, 2014

BPFM DSL A
, > Object 3| Categiry
*
Group -1d 0.
0..* | +Documentation < I | G y
* Ny
T IO"'l 1+ | Duia et Associaation
Event F
— — — |+From
+Name Lane Associaation
+Horizontal T
Type 4
1 L.* | —
Activity
"Enumeration" Pool +Looping Ki— Process
Event types ’ +Multilnstances
Start *Role T T T ? 0.*
Ié'nt;rm me; To To From Subp'gocess
Flow
ﬁ)
¢ I]
Message flow Sequence flow
Fig. 6: Extract of the BPM metamodel
Reportter Manager Developer
VA

@,

Detail bug

N4

Send message/set
Treat message Send messageset | (™ gt statms to status to
status to "open" 3

Detail bug

Send message/set
status to "won't fix"

Check bug fixation

Send message/set Set status to
status to "closed" "reopened”

JF

Fig. 7: Snapshot of the BTS business process model

137

‘Equality”, “Simmlarity”, “CoDependency”, “Verify” and “UpdateValue” relationships. For example,
the elements “reporter” being the same in both software design and business process models, they
have been related through an “Kquality” relationship. The task “Set status to reopened” of the
business process model and the attribute “status” of the software design model have been related
through an “Update value' relationship because the value of the attribute “status” must be updated.
A 3-ary “Similarity” relationship has been put among elements of the three models. All the

J. Software Kng., 8 (3): 132-151, 2014

identified correspondences are contained in a model of correspondence.

MATCHING APPROACH
Here, we present our approach for establishing correspondences between heterogeneous models.
It consists in analysing input models in order to identify correspondences that exist among them

and storing these correspondences into a model of correspondences. We discuss below the

elaboration of the correspondence model as well as the proposed matching process.

-issues

<«Similarity »

MantisRoot

0.*

\ 4

Tssue

-identifier: Integer
-category: String.

-summary: String

~description: String

String,

-Status: String

-fixedinVersion: String

-stepsToReproduce: String

4

-Assigned to 0.1 1

-Reporter

Person

-login: String

<« CoDependency »

<< Verify >

<« Verify»

<« Equality>»

<« Update
value »

<«Requirements >
Declaration of an anomaly

Id="11"
Text = "The user must be
able to report anomalies"

1

<«Requirements >
Summary of the anomaly

Id="1.1.3"
Text = "The reporter must
add a short description of

the request"

«Refine»

, «Refine>

<«Requirements >

Complen ¥y

information to the
description

|___—<«Requirements »

Details of the description

Id="1.13"

Id="1.1.32"

Text = "When the
description is incomplete
the reporter must add more
information to complete the
description"

Text = "The report must
add a short description of
the request"

Reporter

Manager

Developer

()
e
Report bug
A

«<

Detail bug

] Treat message
Q

EREVA

Validate bug

Enough
information

Yes

Confirmed

Send message/
set status to
"assigned"

Diagnose bug

Enough

2
\L status to "won't fix"

Send

information
Yes
No

b 4

. () ‘ l Send message/set

Set status to
“reopened"

Fixable

Yes

Fix bug/set status
to "fixed"

Fig. 8: Examples of correspondences among BTS source models

138

J. Software Kng., 8 (3): 132-151, 2014

Correspondence metamodel: In the context of heterogeneous matching, we have defined a
metamodel of correspondences called “MMC” in the following Fig. 9. The meaning of its main meta-
classes 1s detailed in the following paragraph:

+ Correspondence model: A meta-class that represents all the correspondences established
between at least two {meta)-elements belonging to different (meta)-models

+ Correspondence: In our study, we distinguish between a correspondence and a relationship.
A correspondence is composed of a relationship and extremities which represent elements from
input models

*+ Relationship: An abstract meta-class that defines relationships between (meta-)elements of
different (meta-)models. Linked to “Element”, this meta-class allows, conceptually, defining
n-ary correspondences connecting more than two elements at once. Its definition 1s done
through specialization of "Relationship”, by introducing two meta-classes: “Domain independent,
relationship” and “domain specific relationship”

* Domain independent relationship: Abstract meta-class that represents the generic
relationships that may exist in different domains

* Domain specific relationship: An abstract meta-class representing relationships among
models in specific domains. New relationships are specified by specialization of this meta-class
according to the studied area

Matching process: The correspondences model cannot be constructed in a monolithic manner. It
must be created following a given process called “matching process”. The proposed matching process,
Fig. 10, aims at describing the steps required to perform the matehing among heterogeneous source
models, in order to obtain a correspondences model. The produced model is called M1C {model of
correspondence at M1 level) in the following and contains the correspondences between elements
of models representing the studied domain. It involves two actors, namely, a domain (design) expert
who can be seen as an orchestrator of the system and a tool to support the automated phases.

‘Named element RefModel -
_I Correspondence model "Enumeration”
-Name: String & -Ref: String 2.* 0.* I Similarity kind
‘r +getModelByRef() Structural
Y, — N semantic
0.*
L* 2.41..4 +sourcel. +targetL 0..* 1 -
RefElement HargetR Relatioship lo- [Expression
— +sourceR —— 0..1]-body: String
-Ref String e 0. -schhrongucn.Boolean language: String
Er— e " | -eight: String -
Ly
1.% +Refined +IrRefine o
+Abstract +hirRefine
T {self.refined forAll{clc.oclsKindORLLR)) and_*#|__ LR
self ahsiract ocllsKindOffHLR)}
[I
Domain specfic relatioship | | Domain independant relatioship |

|] |
[Dependency | | Gencralization| _my::“mm | Aggregation |

Fig. 9: Overview of the generic part of the metamodel of correspondences

139

J. Software Kng., 8 (3): 132-151, 2014

Domain expert

<<Datastore> _
MMC _1 I Metamodels

(Check the expressiveness of]

the MMC

MMC is not sufficient MMC is sufficient
~
Extend MMC
DSR part

<Datastore> Define correspondencess
M2C at M2 level

h { Refine correspondencess <« Datastore »
,|, I at M1 level models

<«Datastore>

MIC

Tool

Verification

Fig. 10: Activity diagram for the matching process, MMC: Meta-model of correspondence,
DSR: Domain specific relationship, M2C: Correspondence model between meta-models,
M1C: Model of correspondence between model

Firstly, the process takes as input the varicus models, their respective Metamodels and the
Metamodel of Correspondences (MMC) in its generic part. Subsequently, a check is performed in
order to inspect and ensure that the MMC contains enough relationships to set up correspondences
among models, for a given application domain. If the domain expert considers that the proposed
relationships are not sufficient to express correspondences that might exist between (meta-)model
elements, the “DomainSpecificRelationship” (DSK) meta-class of MMC 1s specialized. For example,
we use a requirements model in our BTS domain, we must ensure that a given (meta-)model
element meets the requirement(s) to which it is linked. For that, the “Verify” relationship is added
as extension of DSE.

Onee the MMC contains the necessary relationships, the matching operation can be launched.
It begins by identifying correspondences between meta-elements so as to produce the
correspondences model called M2C. Correspondences stored in M2C are called High Level
Correspondences (HLC). HLLC are thus refined in order to produce Low Level Correspondences
(LLC) that link models elements, through a process that is described further. This refine extends
the MMC by adding, if necessary, sub-classes of LLE and creates the final model of correspondences
called M1C which contains the correspondences between model elements. Verification is the last
step of this process. It consists in checking that refinements have been correctly done. To that end,
the domain expert must ensure that the model elements are properly related based on his

knowledge of the domain and the semantics of the relationships.

140

J. Software Kng., 8 (3): 132-151, 2014

REFINEMENT OF HIGH LEVEL CORRESPONDENCES
As explained in the matching process presented the study propoesed in approach to first specify
correspondences at the abstract level (M2) in order to minimize the modelling effort and then to

reuse them through refine transformation at the concrete level (M1).

Refine concept: Refinement is a classical way to reuse in software and system engineering
(Wolf, 1994; Wooldridge, 1997; Medvidovic and Taylor, 2000). It can be seen as crossing different,
levels of abstraction with the purpose of adding details when passing from a given level to a more
concrete one.

In the context of Model Driven Architecture (MDA) (OMG, 2003) that notion may be
represented as a transformation of a Platform Independent Model (PIM) that exists at a high level
of abstraction to a Platform Specific Model (PSM) that exists at a lower one. Most elements from the
abstract model (FIM) are copied into the refined model (PSM) while other elements must be
changed in order to ensure specific properties,

According to Wagelaar (2005), even though refinement is a key concept in MDA, it 1s loosely
defined and open to misinterpretation.

The refine notion has also been defined in UML (2007) as a stereotype for “Abstraction”.
Abstraction is a directed relation from an element to another one stating that the dependent
element (conerete) depends on the other one (abstract):

The study distinguish two types of correspondences (Fig. 11):

+ Correspondence between metamodel elements: “High Level Correspondence” that is called
HLC. It connects meta-elements via., a High Level Relationship (HLE)

+ Correspondence between model elements: “Low Level Correspondence” that are called
LLC. It connects elements via., a Low Level Relationship (LLR)

A transition from HLC to LLC is similar to a transformation of a PIM into a PSM in the context,
of MDA, This is done by projecting abstract correspondences on the concrete level.

Starting by identifying HLE between meta-elements at the metamodel level (M2C) allows
establishing, in a second step, relationships between elements at the model level (M1C). The
principle consists in defining a correspondence once at the metamodel level and then reuses it each

. HLCs Contain
Cont
MM oAy, | MEx ',: » MEy MM2

A A A A

<<Conform>>

g 2 t 2 3
g 2 | <<Refine>> MMC E g
E @ & 3
v | mo—* |* v

v

\ MIC \Y
<<Conform>>

Contain — — Contain
M1 Ex < » Ey M2
LLCs

Fig. 11: Overview of the transition between M2C and MI1C, Metamodels: MM1, MM2, Meta-
elements: MEx, Mey, Models: M1, M2, elements: Ex, Ky

141

J. Software Kng., 8 (3): 132-151, 2014

time it is needed at the model level. In other words, correspondences among metamodel
elements induce correspondences between model elements. Cx = [Similarity (Entity, Requirement)],
Cy = [Similarity (Issue, Declaration_of anomaly)], respectively examples of HL.C and LLC.

The proposed “refine” is a transformation between elements of different abstraction levels, more
specifically between HLC and LLC. It is possible by the refine, to complete, if necessary, the
description of the HLC with some required functionalities. A HLC allows to anticipate the
complexity of the matching (due to the establishment of correspondences directly at the model
level), by first establishing, correspondences between metamodels. Thereafter, an accuracy of
certain details of the abstract model can be managed at the LLC level, obtained by refine
transformation of HLC.

Figure 11 summarizes the link between MMC, M2C and M1C and the level of their use. The
study presented a refine (denoted by R,) is constructed as follows.

Ci R, Cj, with Ci and Cj as two correspondences, iff Ci is defined from Cj which means that Ci
is an upgrading of Cj by adding details in order to precise the correspondence.

High level correspondences creation: Metamodels are the cornerstone of cur approach since
correspondences at the metamodel level (HLC) induce correspondences at the model one (LLC).

The definition of HL.Cs 1s done only once during the modelling cycle but they are exploited to
generate LLCs. In other words, the M2C model which 1s conform to the MMC, is used as input to
establish LLCs (stored in the M1C model}.

So far the study revealed that identification of correspondences is done manually by the domain
expert. He is supposed to know the relationships that may exist between the meta-elements and
their meaning. Nevertheless, we have started to partially automate this task by using linguistic
resources. The result of this work 1s not addressed in this study.

Figure 12 shows examples of three different types of correspondence. The first one relates the
meta-element “Requirement” on one side to the meta-element “Attribute” on the other side by a
“Verify” relationship that must be added first as a sub-class of “domain specific relationship” in the
MMC,. The meta-element “Attribute” is also related to Task through a “Dependency” relationship.
Thirdly, a “Simlarity” is defined between the meta-elements “Task” and “Requirement”.

A correspondence at the meta-level cannot be instantiated as such at the model level. It is
necessary, depending on needs, to enrich the relationship of a correspondence to adapt it at the
model level.

Low level correspondences ereation: We present below the process that shows how LLCs are
built. First, one must identify elements to relate. After that, correspondences are created are
performed according to two scenarios: Duplication and Extension.

Duplication: This type of refine is a homomorphism-a structural preservation from one algebraic
structure to another- between correspondences in M2C and M1C levels. Its role is to duplicate all

Attribute Verify Requirement
{from software design metamodel} {from requircment metarmodel}
Similarif
Dependency = ad Entity
{from BPM odel} {from software desigh metamodel}

Fig. 12: Example of BTS HLCs

142

J. Software Kng., 8 (3): 132-151, 2014

Requirement: Declaration of an anomaly
(from requirement model)
Entity: Isque Stmilarity Tagk: Report bug
{from software design model) (from BPM metamodel)
Verify
Attribute: Description Requirement: Detail of the description
{from software design model) (from requirement model)
Attribute; Status Dependency Task: Set status to "reopened”
{from software design model) (from BPM metamodel)

Fig. 13: Example of BTS LLCs

the relationships of the correspondences defined at the meta-level (between meta-elements) at the
model level (between model elements).
Figure 13 describes some LLCs created by refining HLCs presented in Fig. 12,

Extension: This type of refine aims to redefine the correspondences. A HLC can be reformul ated
to add constraints, exceptions and/or specific treatments.

LLCs created by the duplication scenario, may not be totally suitable for the expert designer.
He may have to make choices about certain actions to be performed (Cariou et al., 2009) to preserve
the desirable properties for example or to add details or information on correspondences, so as to
precise the semantics.

This redefinition involves the creation of a new correspondence and a new meta-class in MMC
{sub-class of LLC in the MMOC).

In the BTS example, the domain expert realized that the “dependency” relationship (Fig. 13)
relating two model elements is semantically toe weak and insufficient. It should be refined inteo a
“co-dependency” relationship. This relationship defines a mutual dependency between model
elements, where any change concerning one of them may affect the others. The same thing could
happen, according to the needs, with “similarity” and “aggregation” relationships which could be
refined, respectively as an “equality” and a “composition relationship”. The first one is used when
one relates identical model elements, i.e. having the same structural and semantic descriptions, for
instance a model element duplicated in several models. The second one is used to express a strict
form of “aggregation”’, where the life cycle of parts depends on the whole.

TOOL SUPPORT

To validate our approach, we are developing a matching tocl called HMS (*Heterogeneous
Matching Suite”). It is a suite of tools that gives stakeholders the ability to establish
correspondences between heterogenecus models.

Fort hat, we decided to use Eclipse, the open source platform of development, considered as the
main incubator of development projects (Gronback, 2009) by the MDE community.

Functional architecture OF HMS: The architecture of HMS prototype is described in Fig. 14,
It is composed of three modules represented by gears: Matching, M2T (Model To Text) and T2M
(Text To Model). Rectangles represent the different (meta-)models in input and output of each
module.

143

J. Software Kng., 8 (3): 132-151, 2014

To be suitable for different modes of work, the framework proposes two views: Graphical and
textual.

The graphical view is succinct and intuitive {using drag-and-drop). For this, we rely on
Modelink (Epsilon, 2010) which we improved by adding some extra functionalities. Regarding the
textual view, it 1s suitable for stakeholders who prefer working directly on source mode editing. It
must be noted that the two views are synchronized, meaning that a stockholder may start by
exploiting the graphical view and continue on the same model of correspondences with the textual
view and vice versa.

To be able to establish correspondences in graphical manner, we must rewrite MMC to make
it conform to the ModellLink syntax. Otherwise MMC must be described in Xtext (Kysholdt and
Behrens, 2010) syntax.

To do this, the M2T module implements a Model to Text transformation which
serializes-through JET (Java Emitter Template) technology (Steinberg ef al., 2009) the
correspondence metamodel (MMC) into two kinds of models according to the chosen type of
visualization.

Onee these models are available, correspondences between them can be set up via the Matching
module which is detailed below.

The last module T2M parses the model of correspondences built using one of the visual tools (or
both of them) into a model that conforms to MMC,

Application to the BTS example: Figure 15 below illustrates the textual editor that allows
creating the M2C model. In this editor we begin by referencing metamodel elements that will be
connected by relationships. As shown on this figure, the editor displays, at the outset, only the
relationships derived from the “domain independent relationship” meta-class (“Agpregation”,
“Dependency”, “Generalization” and “similarity”).

To define new relationships, the domain expert must extend the MMC metamodel. For this, a
menu offers an “Extend MMC” action. Figure 18 shows the addition of the “Verify” relationship.

In the Fig. 17, through the extension mechanism, the domain expert can begin to establish
correspondences between the metamodels elements of the BTS. He 1s now able to use the “Verify”
as well as the “UpdateValue” relationships (created the same way as above),

By performing a T2M (Text To Model) transformation, it 1s possible to have a tree view of the
MZ2C model. The model M2C obtained (Fig. 18) illustrate correspondences that may exist between
the metamodels elements belonging to various business domains of the BTS. The correspondences
previcusly defined are located below the node “correspondence Model M2C”. For instance, the first

| Mmx.ecore |

g ; : M MC.modellink
g or\ : & ‘, ol MMC.ecore |
L mlmmx : MMCxtext
- - M2T
",; »| mic.modellink —| |
| Mmy.ecore ‘g or ‘4. _... “mec.mme |
‘4 | %': = ! : mic.text J %
L— — m2mmy | Matching I T2M
_]
) = | System.java |« b ‘ﬁ'
| Mmzecore | : — =
.
g m3.mmz ! M2t

Fig. 14. Overall architecture of the prototype, Metamodels: Mmx.ecore, Mmy.ecore, Mmz.ecore,
Models: ml. mmx.m2 mmy.m3.mmz

144

J. Software Kng., 8 (3): 132-151, 2014

pEl *BTsm2 £

—~ Import MM_BPM { A
Task,
Lane

h
- Import M M_Requirement {
Requirement

5
Import MM_Mantis{

Attribute,

Entity
}
- Creat M2C:

a3 _ define J

1= Aggregation
[I= Dependency
I= Generalization

1= Similarity

Fig. 15: Snapshot of the textual editor with DIR

‘Fife - Edit Navigare Sewch Project Exeed MMC - Rum Window ~ Help

i 2% N G| s j& 5+
B> E DomainSpecificCorrespondence->Correspondencelink
. E Domainl ndependentCorrespondence->Correspondencel.ink
» [Equaity->Similarity <
[Similarity-> - == 52 Ty
» [Aggregation | = - 2020202000
» H Generalizatio
- [Dependency-
[g DeletedElt-> New relation Verify
» [ModifiedElt-
» ¥ SimilarityKinp
H Packages Validate
- %
B NemedElem Message S
» [CoDependene
» | Composition . =
. E Expression I Concept is added
E Refine
» % RefineKind | = __
\ E Verify->DomainSpecificCorrespondence
> Q UpdaIeVaIue—>DomainSpecificCorrespondeﬁce—~~ - |

Fig. 16: Extension of the MMC

correspondence that defines a “verify” relationship relating an “attribute” to a “requirement”, has
a synchronisation property set to “true” and an expression written in OCL language.

145

J. Software Kng., 8 (3): 132-151, 2014

=IBTS.m2c & | =[Easychair.m2c
import MM_BPM {
Task,
Lane

h
“import MM_Requirement {
Requirement

h
import MM_Mantis {
Attribute,

Entity

?:reate m2c “
" define Verify Between Requirement and Attribute
with : synchronization = [true] Expression= [Language = OCL,
Body = “invariant...”],
define UpdateValue Between Task and Attribute with : synchronization=[true],
define Similarity Between Task and Requirement, Attributewith : synchronization=[true],
define Similarity BetweenLane and Entity with : synchronization=[fase],

define Dependency Between Task and Attributewith : synchronization = [true] ;]

Fig. 17: Snapshot of the textual editor with new relationships

- BTSm2c |=| Easychair.m2c &l BTS.m2ci2

4 |= platform:/resource/POCModel_v2/model/BTS.m2c
4 <> Packages
4 4 Model Ref MM_BPM
4 Element Ref Task
< Element Ref Lane
4 4 Model Ref MM_Requirement
< Element Ref requirement
4 4 Model Ref MM_Mantis
< Element Ref Attribute
< Element Ref Enity
4 < Correspondence Model M2C
a 4 Verifytrue
4 Expression OCL
4 Update Valuetrue
< Similarity true
<4 Similarity false
< Dependency true

Tasks =l Properties 2 Problems
Properties Value
Body '= invariant
Language = OCL

Fig. 18: Example of M2C for the BTS domain

Once the M2C model is created, the M1C can be cbtained by choosing the appropriate refine
type as explained in section 0.

To implement the refine relation, we need transformation rules created using languages such
as ATL (Wagelaar, 2005) or QVT (OMG, 2011h). The transition from HLC to LLC is horizontal as
shown in Fig. 11. However, this transition is vertical as well. In fact, HLC relate meta-elements
whereas LLC relate model elements. Refine is therefore a hybrid transformation. Consequently this

146

J. Software Kng., 8 (3): 132-151, 2014

BTS.m2c #BTS.MIC &

4 Platform/resource/com.irit. mmlink/model/BTS.M1C
4 < Packages
a | <= Model Ref M_BPM
Element Ref Activity Send message/ Set statusto “ Closed”
Element Ref Activity_Fix bug/ Set statusto “Fixed”

-t:l- 4 ¢

Element Ref reporter_samara

Element Ref Activity_Report but

Element Ref Activity_Send message/ Set status to Rejected”

& Element Ref Activity_Send message/ Set statusto “ Assigned”
4 Element Ref Activity_Send message/ Set statusto “Won't fix”

a4 Model Ref M_Requirement

+ +

< Element Ref Requirement_Declaration of an anomaly
4+ Element Ref Requirement_Details of the description
< Element Ref Requirement_Complementary information to the description
4 <= Model Ref M_Mantis
Element Ref Entity_|ssue
Element Ref Attribute_description
Element Ref Attribute_additionalInfo
Element Ref Attribute_status
4 Element Ref Attribute_fixedinVersion

+4+4+4

% Correspondence Model M1C
4 Verify true
¥ Verify true
= Update Valuetrue
Similarity true

Il:-

& 4

A

= Equality true

+

Co Dependency true

Fig. 19: Example of M1C for the BTS

refine transformation cannot be implemented using classical transformation languages as they
don't address the hybrid aspect. Te solve this problem we have written the refine transformation
in Java/EMF.

Figure 19 shows an example of M1C produced by a refine of type extension. This model
includes the correspondences previously defined in Figure 8 The two new relationships
“CoDependency” and “Equality” are extensions, respectively “Dependency” and “Similarity” ones.

RELATED WORKS

Several research works are related to models matching. In AMW (Del Fabro ef al., 2005)
authors describe a language that allows using M2M transformations for model comparisen.
However, AMW is usable only when source and target model are very similar and developers must
add extensions to the metamodel, so as to permit the definition of relationships, even for the obvious
ones (like similarity). Moreover according to Koloves (2009) transformations been used are
generally verbose as they need to compensate for the fact that M2M language do not provide
tailored constructs for the task of moedel comparison. To optimize the representation of a composed
model, authors of the same team propose a model virtualization technique (Clasen et al., 2011a).
Such technique may be useful for implementing our appreach, especially models tracing and
impacts calculation in case of source models evolution.

147

J. Software Kng., 8 (3): 132-151, 2014

ECL (Kolovos et al.,, 2006b) 1s a matching language which 1s difficult to use because it requires
specialized skills and great efforts, since correspondences are produced by executing rule based
algorithms written manually. It alsc compares only one source element with one target one.
Moreover, the result of the matching cperation is a trace of correspondence which contains the
needed relationships after performing a set of rules. To exploit that trace and be able to reuse the
result for MDE purposes (e.g., composition), the developer must perform a serialization step to
transform the traces into a model of correspondences.

The Kompose approach (Drey et al., 2009) addresses the composition of homogenecus source
models. The process of matching must be parameterized by defining signatures at the metamodel
level in order to define specific matching operators. In this approeach, heterogeneity of models is not
taken into account yet.

MatchBox (Voigt ef al., 2010} transforms input models into a tree model called AMC (Auto
Mapping Core). The process continues by applying a set of matching strategies to produce the model
of correspondences. The major drawback of MatchBox is that it is the developer task to define
transformations to the AMC model. Another disadvantage raised by the authors, is the loss of
information during the transformations.

EMFE Compare (Brun and Pierantonio, 2008) calculates the correspondences on the basis of the
similarity. The matching engine is based on heuristics and elements are compared using several
metrics including: similarity of name, content type and relationship. The values returned vary from
0 to 1 which will be pooled together to obtain overall similarity values. In the same context,
DEMDiff (Lin ef al., 2007) extension of the work described in Xing and Stroulia {(2005) which uses
name and structural similarities to identify the correspondences between UML models, has adopted
the same calculation technique with the advantage of supporting different. DSLs specified via GME
{Generic Modelling Environment). Both approaches use only similarity and they do not explat
other relationships.

In general, studied matching approaches have shortcomings at two moments of the matching
process: before and after the creation of the correspondence model. Regarding the first moment, we
can notice the lack of balance between the ability to express correspondences and their reusability.
Existing approaches are based mainly on only one of these criteria, as reusability comes at the price
of less expressiveness and vice versa. In addition, these approaches manage only binary
correspondences and therefore cannot establish complex n-ary ones relating a model element to any
set of elements belonging to other models. Concerning the second moment, we can note that studied
approaches produce a correspondence model between each pair of input models; so for n input
models, [nX(n-1)]/2 correspondence models must be created which leads to a large number of
separate models without any connection between them and which makes their management very
difficult and almost impossible to automate. In our approach, we produce a unique model of
correspondences among input models.

CONCLUSION AND PERSPECTIVES

Our general research work addresses the matching of interrelated heterogeneous models in the
context. of complex systems development. Thereby, we are interested in establishing
correspondences between heterogeneous models deseribed through different DSLs corresponding
to different business areas of a domain. In this study, we propose a process to establish
correspondences between such heterogeneous source models via., a matching operation
{semi-automatic) based on a correspondence metamodel (MMC). The generic part of MMC captures
correspondences based on independent domain semantic relationships. MMC can be thus extended

148

J. Software Kng., 8 (3): 132-151, 2014

through specialization of the “domain specific relationship” meta-class according to specific domain.
Relationships among source models are identified first at the metameodel level and then refined at
the model level.

Compared to the presented approaches that deal with the same problem, our approach proposes
several distinguished qualities:

« Commonality: MMC provides a “generic’ part-common to all domains-that defines a
description of most common relationships. For so, we run a survey on different DSLs belonging
to different domains in order to identify the frequent used cnes, to avoid their specification
repeatedly on the MMC

*« Variability: MMC can be extended depending on the pecularities of the domain under
consideration, in order to support the relationships relating to specific business areas where the
domain 1s complex. This 1s done through specializations of the “domain specific relationship”
meta-class

* Flexibility: Thanks to flexibility at the conceptual level, the MMC can relate n models
{through their model elements) and express n-ary cardinality for each poessible correspondence

*+ Light weight: The MC (model of correspondence conform to the MMC) is built in a virtual
manner (Clasen et al., 2011a, b). Indeed the MC contains only the important concepts.
Elements are accessible through references and they don't have a physical existence in the MC.

There are several lines of work in which we are currently engaged. Firstly, as we explained
previously, all the correspondences are created by the domain expert through the HMS tool. In
order to alleviate the task of the expert by automating the creation of certain correspondences,
predominately the Domain Independent Relationship (DIR), we will use a linguistic resource:
Wordnet. Wordnet is a lexical database with hundreds of thousands of meanings which are
connected by complex architecture relation such as, hypoenymy, meronymy, entailement. Using
Wordnet will allow us tofind different correspendences whose relationships are of DIR kind as some
of it connections are similar to them.

Secondly, we intend to complete the development of HMS by adding the graphical syntax and
the semi-automatic definition of correspondences. Lastly, cur approach of matching has a wider
application than just defining correspondences between different models. In fact the objective of
the proposed approach is not simply to relate different models but to compose them virtually and
to keep them synchronized. For this we intend to exploit the correspendence model to address some
maintenance issue in case where source models evolve, Our goal is then to provide a semi-automatic
collabarative process allowing to (1) Update the M1C model, (2) Calculate impacts of a change
occurred in a given source model and (3) Propose modifications to maintain the consistency of the
system.

ACKNOWLEDGMENTS

This study describes the results of a research work in the scope of the PHC Volubilis MA/11/258,
We would like to thank Powilas Safranauskas, account executive into No Magie, Inc. for his helps
on Magicedraw, as it 1s the tool used to represent the different models of this work.

REFERENCES
Anwar, A., 8. Ebersold, B. Coulette, M. Nassar and A. Kriouile, 2010. A rule-driven approach for
composing viewpoint-oriented models. J. Object Technol., 9: 859-114,

149

J. Software Kng., 8 (3): 132-151, 2014

Boulanger, F., C. Jacquet, C. Hardebolle and K. Rouis, 2010, Modeling Heterogeneous Points of
View with Modhel'x. In: Models in Software Engineering, Ghosh, 8. (Ed.). Springer, Berlin,
Germany, pp: 310-324.,

Brun, C. and A. Pierantonio, 2008. Model differences in the eclipse modelling framework.
Eur. J. Inform. Prof., 9: 29-34.

Cariou, E., N. Belloir and F. Barbier, 2009, Contrats de transformation pour la validation de
raffinement de modeles. Be™*® Journees sur I'Ingenierie Dirigee par les Modeles (IDM 2009),
March 2009, http:/fweb.univ-pau.fri~ecariou/papersidmO9.pdf

Castano, S. and V. De Antonellis, 2001, Global viewing of heterogeneous data sources. IEEE Trans.
Knowl. Data Eng., 13: 277-297,

Clasen, C., F. Jouault and J. Cabot, 2011a. Virtual composition of EMF models. Temes Journees
sur l'Ingenierie Dirigee par les Modeles (IDM 2011), Lille, France, http://hal.archives-
ouvertes.frinria-00606374/.

Clasen, C., F. Jouault and J. Cabot, 2011b. VirtualEMF: A Maedel Virtualization Tocl. In: Advances
in Conceptual Modeling. Recent Developments and New Directions, De Troyer, O., C.B.
Medeiros, R. Billen, P. Hallot, A, Simitsis and H. Van Mingroot (Eds.). Springer, Germany,
pp: 332-335.

Del Fabro, M.DD,, J. Bezivin, F. Jouault, K. Breton and G. Gueltas, 2005, AMW: A generiec model
weaver. [DM-Ingenierie des Modeles, 2005, Paris, leres Journees sur I'Ingenierie Dirigee par
les Modeles, 2005,

Drey, Z., C. Faucher, F. Fleurey, V. Mahe and D. Vojtisek, 2009, Kermeta language. Reference
Manual, April 10, 2009, http:.//www kermeta.org/docs/KerMeta-Manual pdf

Eker, J., JW. Janneck, KA. Lee, J. Liu and X. Liu ef al., 2003. Taming heterogeneity-the Ptolemy
approach. Proc. IEEE, 91: 127-144.,

El Hamlaoui, M., 8. Ebersold, A. Anwar, M. Nassar and B. Coulette, 2013a. A process for
maintaining heterogeneous models consistency through change synchronization. Proceedings
of the ACS International Conference on Computer Systems and Applications, May 27-30, 2013,
Ifrane, Moroceo, pp: 1-4.

El Hamlaoui, M., 5. Ebersold, A. Anwar, M. Nassar and B. Coulette, 2013b. Heterogeneous models
matching for consistency management. Proceedings of the 8th International Conference on
Evaluation of Novel Appreaches to Software Engineering, July 4-6, 2013, Angers, France,
pp: 181-188.

Epsilon, 2010, ModeLink. http://iwww.eclipse.orgfepsilon/doc/modelinl/

Eysholdt, M. and H. Behrens, 2010, Xtext: Implement your language faster than the quick and
dirty way. Proceedings of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion, October 17-21, 2010,
New York, USA., pp: 307-309.

Fenza, G., V. Loia and 5. Senatore, 2008. A hybrid approach to semantic web services
matchmaking. Int. J. Approximate Reasoning, 48: 808-828,

Gronback, R.C., 2009, Eedipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.,
1st Kdn., Addison-Wesley Professional, USA., ISBN: 978-0321534071, Pages: 736.

Hilliard, R., 2001. Viewpoint modeling. Proceedings of the 1st International Workshop on
Describing Software Architecture with UML, May 13-15, 2001, Torento, Canada.

Kolovos, D.S., R.F. Paige and F.A.C. Polack, 2006a. Merging Models with the Epsilon Merging
Language (EML). In: Model Driven Engineering Languages and Systems, Nierstrasz, O.,
J. Whittle, D. Harel and G. Reggio (Eds.). Springer, Germany, pp: 215-229,

150

J. Software Kng., 8 (3): 132-151, 2014

Kolovos, D.S., R.F. Paige and F.A.C. Pelack, 2006b. Model comparison: A foundation for model
composition and model transformation testing. Proceedings of the International Workshop on
Glebal Integrated Model Management, May 20-28, 2006, Shanghai, China, pp: 13-20.

Koloves, D.S., 2009, Establishing correspondences between models with the epsilon
comparison language. Proceedings of the Bth European Conference on Model Driven
Architecture-Foundations and Applications, June 23-26, 2009, Netherlands, pp: 146-157.

Koning, H. and H. van Vlet, 2006, A method for defining IEEE Std 1471 viewpoints. J. Syst.
Software, 79: 120-131.,

Lin, Y.H., J. Gray and F. Jouault, 2007, DSMDiff: A differentiation tool for domain-specific models.
Eur. J. Inform. Syst., 16: 349-361,

MantisBT, 2010. Mantis bug tracker. http://www mantisbt.org/index.php

Medvidovie, N. and R.IN. Taylor, 2000. A classification and comparisen framework for software
architecture description languages. IKEE Trans. Software Eng., 26: 70-93.

OMG, 2003, MDA guide version 1.0.1. Document Neo. OMG/2003-06-01, Object Management
Group, June 12, 2003,

OMG, 2008. OMG Systems Modeling Language (OMG SysML™), version 1.1. Object Management
Group, November, 2008,

OMG, 2011a. Business Process Model and Notation (BPMN), version 2.0. OMG Document No.
formal/2011-01-03, Object Management Group, January, 2011.

OMG, 2011b. Meta Object Facility (MOF) 2.0 query/view/transformation specification, version 1.1,
OMG Document No. formal/2011-01-01, Object Management Group, January, 2011,

Ober, [, B. Coulette and Y. Lakhrissi, 2008, Behavioral modelling and composition of object slices
using event observation. Proceedings of the 11th International Conference on Model Driven
Engineering Languages and Systems, September 28-October 3, 2008, Toulouse, France,
pp: 219-233.

Steinberg, D., F. Budinsky, M. Paternostro and E. Merks, 2009. EMF: Eclipse Modeling
Framework. 2nd Edn., Addison-Wesley, USA.

UML, 2007. OMG Unified Modeling Language (OMG UML), superstructure, V2.1.2, Unified
Modeling Language, November, 2007,

Voigt, K., P. Ivanov and A. Rummler, 2010. Matchbox: Combined meta-model matching for semi-
automatic mapping generation. Proceedings of the ACM Symposium on Applied Computing,
March 22-28, 2010, Sierre, Switzerland, pp: 2281-2288,

Wagelaar, D., 2005, Context-driven model refinement. Froceedings of the European Conference
on Model Driven Architecture: Foundations and Applications, June 26-27, 2003, Netherlands,
pp: 189-203.

Wolf, W.H., 1994. Hardware-software co-design of embedded systems [and preolog]. Froe. IKEE,
82: 967-989.

Wooldridge, M., 1997, Agent-based software engineering. Proc. Software Eng., 144 26-37.

Xing, Z. and E. Stroulia, 2005. UMLDIiff: An algorithm for object-oriented design differencing.
Proceedings of the 20th IEEE/ACM International Conference on Automated Software
Engineering, November 07-11, 2005, Long Beach, CA., USA., pp: b4-65.

Zito, A, 7. Diskin and J. Dingel, 2006. Package merge in UML 2: Practice vs. theory? Proceedings
of the 9th International Conference on Model Driven Engineering Languages and Systems,
October 1-6, 2008, Genova, Italy, pp: 185-199,

151

	132-151_Page_01
	132-151_Page_02
	132-151_Page_03
	132-151_Page_04
	132-151_Page_05
	132-151_Page_06
	132-151_Page_07
	132-151_Page_08
	132-151_Page_09
	132-151_Page_10
	132-151_Page_11
	132-151_Page_12
	132-151_Page_13
	132-151_Page_14
	132-151_Page_15
	132-151_Page_16
	132-151_Page_17
	132-151_Page_18
	132-151_Page_19
	132-151_Page_20
	JSE.pdf
	Page 1

