Journal of
Software

Engineering

ISSN 1819-4311

@

Academic
Journals Inc. www.academicjournals.com

Journal of Software Engineering 8 (3): 203-210, 2014
ISSN 1819-4311 / DOI: 10.2923/5.2014.203.210
© 2014 Academic Journals Inec.

Research on High-availability Distributed Storage Technology Based
on K-V Model

YaoFeng Miao and Yuan Zhou
Modern Education Technology Center, Xi'an International University, Xi'an, 710077, China

Corresponding Author: YaoFeng Miao, Modern Education Technology Center, Xi'an International University, Xi'an,
710077, China

ABSTRACT

This study describes a highly available key-value store Dynamo system. The system is the part
of Amazon’s core business which provides “always-on” support services. Dynamo’s main advantage
is that it 1s a fully distributed, no eentral node of the system and can improve the performance of
the system. It provides three parameters (N, B, W) whose value can be set according to users’ needs.
It has the full membership mode, where each node knows its peer bearer data. In order to provide
this service, the Dynamo system using multiple versions of data and conflict resolutions of the
application support solves the data consistency eventually.

Key words: Dynamo, distributed storage technology, nodes, K-V model

INTRODUCTION

Dynamo (Charbonneau, 2010) is a fully distributed and has no central node of the storage
system. Compared with traditional centralized storage systems (Hill ef «l., 2012), Dynamo was
located in a high-reliability, availability and fault tolerance system early in the designing. Practice
shows that the availability and secalability of Dynamo known as a key-value storage platform model
are very good and the performance is also good. The response time of the access of 99.9% read-write
is within 300 msec. The Dynameo storage platform is composed by many multiple physical machines.
The role of each machine i1s the same, they can be added or removed at liberty which does not
require too much human intervention. Kach machine can store part of the data, the backup of the
data is fully synchronized by the system. The power failure of a single machine or even the data
center will not have any effect on the availabhility of the external system and it 1s a distributed data
storage system with high availability and high scalability.

Now, the size of the network becomes larger and larger (Liang, 2008). The requirements of
storage rate, throughput capacity and performance are very high and it is very difficult
for the traditional database to take these into account. According to the CAP principle
{consistency, availability, partition tolerance) (AlSallut ef al., 2013), the traditional database has
no partition tolerance and the data is stored centrally. Storage rate may not be a problem but
capacity and performance have some problems (Cesarelli ef al., 2009; Sedgwick ef al., 2005). In
order to prevent the single point failure, the data must have backup and copy. Under strong
consistency requirements, there must be at the expense of the performance loss. With the rapid
increasing of business, there 1s more and more data and the scalability of the traditional database
is also a problem (Li et @l., 2005; Lian and Chen, 2010). Hanging hard drives for a powerful
machine will not be able to solve this problem, in this case, Dynamo emerges as the times require.

203

J. Software Kng., 8 (3): 203-210, 2014

CORE RESEARCHES ON DYNAMO

Dynamo is Amazon’s key-value storage platform model and its availability and scalability are
very good. Dynamo is mainly used for applications that require the "always-writable” data store
and the concurrent write or update operation is rejected by a failure. It is built on the infrastructure
whose nodes are considered to be trustworthy. Dynamo 1s designed for delay-sensitive applications
whose response time of the access of 99.9% read-write 1s within 300 msec. Its several core
technology researches are given below.

Distributed hash table: In order to achieve the design without the center, DHT based on
key-based routing strategy can find the corresponding storage node:

* A ringis composed of the whole distributed system and it is divided into corresponding regions
depending on the number of nodes

+ Each region is represented by a token whose value range is (n-1, n]

+ Each node is responsible for a region

By using the MD5 hash algorithm, key values are assigned to areas on the ring:

* Let the number of nodes he N

« MD3% algorithm will output a 128 bit integer, to facilitate the representation and the negative
is removed, have O<token<2"127

+ For any node, its assigned range is (token n-1, tcken n], i.e., the max previous node is the node
value. It will be responsible that the MD5B(k) can correspond to all the key value

¢+ There must be an end to end region(wrapping range). The region must include a minimum
token value, typically left > right and the assigned value is divided inteo two parts:
« MD5 (k) = (0, token O], i.e., from the minimum value of the node to the minimum of the

range (due to removing the negative, so the minimum is Q)
« MD5 (k) = (token n-1, 27127]

Membership: For users, all the nodes in the cluster are the same. In fact, seen from the DHT
principle, each node is only responsible for the different parts of the entire data set. However, each
node has to serve any specific requests. To achieve this transparency of users, each node must
maintain some original data:

« All other nodes’ lists

¢« The current status of all nodes

+ For a given key, it 18 mainly responsible for the node and the n-1 node copy
(n is a replication factor)

There are three status for a node in the cluster.
A node is added to the flow Token Ring:
+ Btart the gossip service (communicating with other nodes to cbtain the equal information)

+ Start the message service
* Launch their loading information of each node

204

J. Software Kng., 8 (3): 203-210, 2014

« Ifthereis a new node, do

« If the configuration specifies a token for the new node, use it, otherwise

+ Based on the load information of nodes and get the maximum leading current node and get a
token from it. The token will share approximately half of its loading

* Local updating and save the token

+ (Gossip status information to all other nodes and the next boot will do a bootstraping

+ Starte the boot process, do:
* Based on the configuration information of keyspace and get the list of nodes who can be

responsible for a portion of the data

* Initiate pipelineln request to them and pass this part of the data

« Ifitis astarted node, reading saved token from the configuration table

+ Update the new token in the loecal system information application

+ (Gossip status information and notify other nodes

A node leaves the flow Token Ring:

* (Gossip upcoming 18 in the leaving node status
+ Readjust the range information:
+ (et all of the affected range
* Get all new nodes who are responsible for these range
¢« (Calculate the data transmitted to other nodes, do:
* et all areas charged by departing nedes
¢ Obtain these areas of all copies which are responsible
+ Calculate how the token allocated after the node leaves
* For each Range in step 1, calculate their copies of the address
* Calculate the difference between the range: The rest range is ultimately needed
* Pipeline out the data to nodes which will replace current nodes
+ The current node is removed from the token metadata
« Gossip messages to other nodes
* Stop the gossip of the node
* Stop the message service of the node

Changes of the response members: Different state transitions are somewhat different when
exiting nodes receive status changes but do generally the following:

* State inspection to ensure that there is no conflict
+ Record the status of the corresponding node for verification
« Update (add, moedify and delete) system metadata
+ Updates the Range Information, do:
* Get all of the affected range
+ (et all new nodes which are responsible for these range

Merkle tree: Merkle Tree (MT) is called Hash Tree. It has the Hash tree structure and it is put
forward by Merkle (1979). It is very easy to know the data structure of MT. In fact it is simply a
hash tree. The values of leaf nodes are hash values and the values of the non-leaf nodes are the
values calculated by its child nodes. In Dynameoe, each node holds a range of key values and there

205

J. Software Kng., 8 (3): 203-210, 2014

Padding

Fig. 1: Data blocks

is a range of overlapping between different node keys. In the operation of removing the entropy,
what can be considered i1s only the two nodes with a range of key values. The leaf node of MT 1s
that is the hash of each key in the shared value range. A MT can be built by the hash leaf nodes
from the bottom. Firstly, Dynamo calculates the hash value of the MT root. If they are equal, they
are exactly the same. Otherwise, its child nodes will be exchanged and the comparison process has
to be continued.

For example, as shown in Fig. 1, let a file have 13 data blocks. We can supplement it to
16 blocks (note that the supplement blank block is only used for assisted verification and it actually
does not have the function of data transmission). Each block corresponds to a SHA1 checksum
value and repeately pairwise hash until getting a unique root hash value (root hash, HO). This
calculation constitutes a binary Merkle hash tree and bottom leaf nodes (H15~H30) correspond to
the actual hash value of the data blacks and those internal nodes (H1~H14) are called “path hash
value”. They constitute a “verification path” between the root hash HO and the actual hash value.
For example, the actual hash value of the data corresponding to the actual block 8 1s H23 and
SHA1 ((BHA1 (SHA1 (H23, H24), H12), Hs), H1) should be equal to HO. Course, the above
validation process can be done by n-ary hash tree and the process is similar.

The benefits of MT are nothing but time and space. Under the distributed case, the space can
be understood as the corresponding network transmission data. For time, MT whose time complexity
is O (Ign) can avoid comparing the linear time by using the tree structure and quickly locate the
different key value. For network transmittion, if making the comparison by linear, all hash values
must be transferred in the range of the key. But for MT, only a hash value of the checked layer can
be obtained which greatly reduces the amount of data transmittion.

Hinted handoff: Anti-entropy permanent mechanism is only used for error recovery, on the
contrary, Hinted handoff is used in the status that the node failure is low and short.

If only obeying the compliance with the W+R>N and (WO1) strategy, it means that the system
has to make at least a host alive, then the write operation can suceeed. To improve the availability,
in some specific cases, for a key, all nodes having the primary responsibilities are short-term failures
but other parts are normal, such as network segmentations between data center. Relaxing this
requirement, system availability can be improved.

Hinted handoff is a short way to handle system short faillures. When all the N responsible nodes

fail, they attempt to store information in a special non-primary position and they note a hint which

206

J. Software Kng., 8 (3): 203-210, 2014

contains the real target node information. When the service receives a gossip signal that new node
recovers from the failure, it checks whether the data need to handoff. By checking whether the
node 18 referred to hint, if yes, the node that contains the hint will handoff the copy.

Process of hinted handoff: Hinted handoff 1s implemented as a background thread and a queue
can record all hint information:

* et a pending hinted-handoff from the queue

*+ Nodes under handover work can get the relevant information through the specaal position
mentioned above

« Based on the above hint receiving information of the target, send the target node via message
center

+ After the receiving node receives a message, use this hint to local area

Read/write: Any storage nodes in Dynamo are eligible to receive a client’s read and write
operations to any key. In order to maintain copies’ consistency, consistency used by Dynamo is
similar to the arbitration and the agreement has two key configuration values: R and W. R 1s the
minimum number of nodes involved in a successful read operation and W is a minimum of
successful write operation nodes. In Dynamo, set R and W, such that R+W>N,

In the Dynamo system, N, R, W is configurable tuning. According to the final evaluation
results, have (N, R, W) = (3, 2, 2). In other words, there will be three copies of a data. When
writing, two nodes returning means that writing is suceessful and the transaction is successful. As
write opreation, reading at least two nodes is considered to be success.

Dynamo’s main advantage is that its client application can adjust the value of N, E and W in
order to achieve its anticipated performance, availability and durability levels. For example, the
value N determines the durability of each object.

For the consistency between the data, Dynamo has three coordination and arbitration
mechanisms:

* Business logic specific coordination: This is a common case by using the Dynamo system.
Fach data object 1s replicated to multiple nodes. When bifurcation occurs, the client application
performs its own coordination logic

+ Based on coordination timestamp: This case 1s different from the one in the coordination
mechanism. If there are many different wversions, Dynameo performs simple logic-based
coordination timestamp: “Last write wins”, that 1s to say, the cbject with the largest timestamp
is elected to be correct version

+ High performance engine reads: Although, Dynamo are built into an “always writable” data
storage, some services by adjusting the characteristics of its arbitration regard it as a
high-performance engine. Typically, these services have a high rate of read requests. In this
configuration, have R=1and W=N

Replication: In order to achieve high data availability and persistence, all nodes are required to
backup. In Consistent Hashing Ring, the subsequent node backups the previous node. For
example, B, C and D are backups of A and every backup has three backups. That is to say, the key
value K exists on four nodes.

207

J. Software Kng., 8 (3): 203-210, 2014

Although, the K value exists on four nodes but the four nodes will be recorded in a persist list.
To this example, let list = (A, B, C, D), only the first node is responsible for the operations of value
K and copies it to other nodes. When node A fails, subsequent nodes can be handled by the persist
list.

Two points need to be considered, one is the virtual node and another is the number of backups.
Mentioned above, each nede on Consistent Hashing Ring is a virtual node and A, B, C and D may
be located on the same physical node. The backup is meaningless. If this node fails, all backups will
be lost. When selecting a backup node, the selection of different physical nodes must be ensured.
For the number of backups, there is hard to lose data but the inter-backup synchronization
overhead increases. In the Amazon system, the number of backup is 3.

Vector clock: By using vector clock, Dynameo can catch causation among different versions of the
same ohject. Vector clock 1s actually a (node, counter) list. Vector clock is associated with each
version of each object. By reviewing its vector clock, an object’s two versions can determined
whether it 1s parallel branch or causal sequence. If the object on the first clock counter is less than
or equal to all other nodes on the second counter clock object, then the first one is the ancestor of
the second one. Otherwise, these two changes are considered to be a conflict and the coordination
is required.

When the client updates an ohject in Dynamo, it must specify which version is going to be
updated. By passing the context cbject receiving from the early read operation, it contains the
vector clock’ information. When processing a read request, if Dynamo accesses to a plurality of
syntactically reconciled branches, it will return all the leaves of an object’ the branches which
contains the version information corresponding to the context. Using this context update operation
is believed to have coordinated the different versions of the update operation and branches are
collapsed to a new version.

SPECIFIC REALIZATION

In dynamo, each storage node has three main software components, request coordination
membership, fault detection and local persistence engine. All of these components are implented by
Java. Local persistence component of Dynameoe allows to insert different storage engines, such as
Berkeley Database (BDE version), BDB Java edition, MySQL and a persistent backing store with
a memory buffer. Designing a pluggable persistence component is to choose the most appropriate
storage engine in accordance with the application’s access patterns. For example, the cbject can
normally be handled tens of kilobytes of magnitude by BDB and MyS@QL can handle larger objects.
According to the objects’ size distribution, the appropriate application of local persistence engine can
be selected. In production, Dynamo majority uses BDB transactional data for storing.

Request coordination component 1s built based on event-driven communications, where the
message processing pipeline is divided into several stages. All communications are using Java NIO
Channels. Coordinator performs the read and write operations. By collecting data from one or more
nodes, or in one or more nodes from the storage data. Each request of the client will cause that the
node receiving the client requests will create a state machine. Each state machine contains the logic
such as identity a node in charge of a key, send a request and wait for response, possible retry
treatment, processing and packaging of the response back to the client. Each state machine
instance handles only one client request. For example, a read operation can achieve the following
state machine (1) Send a read request to the appropriate node, (2) Wait. for the required minimum

208

J. Software Kng., 8 (3): 203-210, 2014

number of responses, (3) If there are few responses received in a given period of time, the request,
fails, (4) Otherwise, collect all versions of the data and determine to return version and (&) If
enabling the version control, coordinate the implementation of the syntax and generate a write
client opaque context which includes vector clocks of all remaining versions. For brevity ‘s sake, do
not contain trouble shooting and retry logic.

After the reading response return back to the caller, the state machine waiting for a short time
accepts any pending response. If any response return the obsolete version, the coordinator will be
updated with the latest version of these nodes. This process is called read repair because it is used
to repair an update and read repair can eliminate anti-entropy operation.

Write request is coordinated by, although choosing the first node of the former N nodes to
coordinate is possible, all write serialization approach in a single location will lead to load
distribution which led to violation of SLA. To solve this problem, the ranked N nodes in the
preferred list allow to coordinate. In particular, since the write operation 1s usually followed by the
read operation, the coordinator of the write operation node serve as the fastest reply. Because this
information is stored in the request context (referring to the write operation request). This
optimization allows to choose data nodes that have been used which can improve the consistency

of “read-your-writes”.

CONCLUSION

Dynamo has been used for a long period and proved its high availability (99.9995% of the
applications can receive successful response (no timeout). So far, there are no event of data loss.
Dynamo is a fully distributed, no central node of the system and can improve the performance of
the system. Although, this design will bring the consistency issue, the collection through a variety
of techniques can be used which can effectively solve this problem. Dynamo provides three
parameters (N, R, W) and users can set the value of them according to their needs. Unlike popular
commercial data storage, Dynamo make the logical data consistency and coordination problems
expose to developers. At first, people may think the application logic becomes more complex.
However, from a historical view point, Amazon platforms are built for high availability. Finally,
Dynamo has the full membership mode, where each node knows its peer bearer data. Each node
needs to actively work with routing tables of other nodes in the system Gossip. This model in a
system with hundreds of nodes works well, however, the expansion of this design is not easy to run
thousands of nodes. Because the cost of maintaining the routing table will increase as the size of
the system increases. This limitation may be overcomed by the tiered extensions for Dynamo.

REFERENCES

AlSallut, AY., HH. Hejazi and H.A. AbuGhali, 2013. CAP* Theorem vs. CAS** principle in
computer networks. Int. J. Adv. Innovative Res., 2: 396-400.

Cesarelli, M., M. Romano, M. Ruffo, P. Bifuleo, G. Pasquariello and A. Fratini, 2009, PSD
modifications of FHRV due to CTG storage rate. Proceedings of the 9th International
Conference on Information Technelogy and Applications in Biomedicine, November 4-7, 2009,
Larnaca, pp: 1-4.

Charbonneau, P., 2010. Dynamo models of the sclar cyele. Living Rev. Solar Phys,,
Vol. 7. 10.12942/lrsp-2010-3

209

J. Software Kng., 8 (3): 203-210, 2014

Hill, C.A., M.C. Such, D. Chen, J. Gonzalez and W.M. Grady, 2012, Battery energy storage for
enabling integration of distributed solar power generation. IEEE Trans. Smart Grid,
3: 850-857.

Li, B, S. Liu and Z. Yu, 2005. Applying MDA in traditional database-based application
development. Proceedings of the 9th International Conference on Computer Supported
Cooperative Work in Design, Volume 2, May 24-26, 2005, China, pp: 1038-1041.

Lian, X. and L. Chen, 2010. Ranked query processing in uncertain databases.
IEEE Trans. Knowl. Data Eng., 22: 420-438,

Liang, X.B., 2006, Matrix games in the multicast networks: Maximum information flows with
network switching. IKEE/ACM Trans. Networking, 14: 2433-2466,

Merkle, E.C., 1979. Secrecy, authentication and public key systems. Technical Report No. 1979-1,
June, 1979, http:/lwww . merkle.com/papers/Thesis1979.pdf

Sedgwick, .G, C.J. Chang-Hasnain, P.C. Ku and R.S. Tucker, 2005. Storage-bit-rate product in
slow-light optical buffers. Electron. Lett., 41: 1347-1348,

210

	203-210_Page_1
	203-210_Page_2
	203-210_Page_3
	203-210_Page_4
	203-210_Page_5
	203-210_Page_6
	203-210_Page_7
	203-210_Page_8
	JSE.pdf
	Page 1

