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ABSTRACT

Coverage-based fault localization is a statistical technique that assists developers in finding
faulty entities efficiently by contrasting program traces. Although coverage-based fault localization
has been shown te be promising, its effectiveness still suffers from occurrences of coincidental
correctness which means test cases exercise faulty statements but do not result in failure
information. Recent researches indicate that coincidental correctness i1s a commeon problem in
software testing and harmful for fault localization. To enhance effectiveness of fault localization,
in this study, we present a clustering approach to identify coincidental correctness in test suites for
fault localization. An effective clustering technique is used to group test cases. Then we present an
adaptive sampling strategy to identify and choose potential coincidentally correct tests from clusters
such that the number of the identified coincidentally correct tests is guaranteed to be no more than
the actual number of coincidentally correct tests in the test suite. Three representative fault
localization techniques are evaluated to see whether they can benefit from identified coincidentally
correct tests. The experimental results show that our approach can alleviate the coincidental
correctness problem and improve the effectiveness of fault localization.

Key words: Fault localization, debugging, coincidental correctness, cluster analysis, K-means++

INTRODUCTION

Computer software may behave unexpectedly due to faulty codes that survive the development
process. When failures are revealed during testing process, software developers often take great
efforts to find faulty program entities with the help of execution information of both passed and
failed tests and then try to fix faults. Due to resource constraint, debugeging is always prohibitively
expensive and time-consuming. According to a previous study, locating faults is one of the most
expensive tasks in debugging (Vessey, 1985). Therefore, in recent years a variety of fault
localization techniques (Abreu et al., 2006; Jones et al., 2002; Naish ef al., 2011) have been
propoesed to narrow down the possible locations of software faults, with the aim to improve efficiency
of debugging.

In particularly, Coverage-Based Fault Localization (CBFL) techniques which are based on the
analysis of differences hetween passed tests and failed tests, are promising in identifying program
entities that induce program failures. They are lightweight techniques and can be easily integrated
into existing test plans. Specifically, these techniques aim at exploiting correlations between
program entities and program failures via statistically analyzing coverage information and then
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assign various suspiciousness scores to program entities according to statistical formulas. Finally
program entities are ranked in descending order of their suspiciousness scores for developers’
inspection. The intuition behind these techniques is that program entities that are primarily
executed by failed tests are assigned higher suspiciousness scores than those that are primarily
executed by passed tests, thus these entities are given higher priority for examination during
debugging. For effectively locating faults, many kinds of statistical formulas have been proposed,
such as Tarantula (Jones et al., 2002), Jaccard and Ochial (Abreu et al., 2008).

Although CBFL techniques have shown encouraging effectiveness in previous studies
{Abreu et al., 2006; Parnin and Orso, 2011; @i ef al., 2013}, their accuracy to diagnose faulty
statements that cause tests to fail still needs improving. A key insight of CBFL techniques is based
on the assumption that the program will yield failure information when the faulty statements are
exercised. However, this is not necessarily always the case due to coincidental correctness which
occurs when “No failure is detected, even though a fault has been executed” (Richardson and
Thompson, 1993). Generally, program faults do not always cause failure unless certain special case
conditions are met. Voas (1992) presented a model called Propagation Infection Execution (PIE) to
investigate the conditions for a failure to be observed which specifies the three conditions that must
be satisfied: (1) Fault 1s executed, (2) Fault cause the program to yield erroneous state and
(3) Erroneous state infects the output. A test is called to be coincidentally correct if the condition
{1) Holds but the condition, (2) Does not hold, regardless the condition and (3) Holds or not.
Previous studies have empirically found that coincidentally correct tests occur frequently in
software programs and fault localization techniques are potentially susceptible to occurrence of
coincidental correctness (Masri et al., 2009), since coincidentally correct tests potentially cause
faulty statements to be ranked as less suspicious than when they are not present. Thus it is crucial
to develop techniques to mitigate negative effects produced by coincidentally correct tests on fault
localization.

In this study we propose a cluster-based approach, ICCCA, to identify test cases that are
possible to be coincidentally correct. An effective clustering technique 1s used to group test cases.
The technique clusters test cases based on execution profiles. Our intuition is that passing test cases
that are grouped in the same cluster with some failed test cases may also execute faulty statements
as failed ones do. Thus, these passing tests are likely to be coincidentally correct. Then, an adaptive
sampling strategy is proposed to estimate the possible number of coincidentally correct tests in the
test suite and choose some passing tests from clusters that contain failed test cases. After
identification of potentially coinaidentally correct tests from clusters, two strategies that deal with
coincidental correctness are studies on three representative fault localization techniques. To
demonstrate the feasibility of our proposed method for assisting in fault localization, we conduct
experiments on the Siemens suite and Unix programs.

Jones et al. (2002) proposed a technique called Tarantula to identify buggy statements. The
technique gathers execution information of passed tests and failed tests and then highlights the
particular statements that are suspected to contain faults in different colors. The basic idea is that
statements that are covered by more failed tests and fewer passed tests are given higher confidence
to be faulty. Then, different colors are assigned to statements according to how likely each
statement is to be faulty. A buggy statement is supposed to be colored as red for highlight so that
developers can focus on it quickly. In the experiments conducted by Jones ef al (2002), they
observed that a test case might not result in failure when executing faulty statements which reduce
suspiciousness values of faulty statements.
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To study the accuracy of diagnoesis of fault localization, Abreu et al. (2008) investigated
following several parameters: (1) Similarity coefficient which is a statistical formula used to rank
potentially faulty statements, (2) Observation quality which involves classification of tests as passed
or failed and (3) Observation quantity which is the size of tests available for debugging. Their
experiments indicated that coverage-base fault localization suffers from 1naccuracy of observation
quality which means that errors may not propagate to failure and thus go undetected. Therefore,
the set of test cases that produce failure information is only a subset of the set of test cases in which
faulty statement is executed. In their experiments, they showed that on average about 20% of the
program under debugging still need to be inspected by developers.

Masri et al. (2009) found that coincidental correctness is prevalent in programs and is one of
factors that degrade effectiveness of existing coverage-base fault localization techniques. They
demonstrated that coincidentally correct tests could cause the fault to be ranked less suspicious than
when they are not present for Tarantula style coverage-base fault localization. They proposed
variations of techniques to detect coincidental correctness in passed tests (Masri and Abou-Assi,
2010). Their experimental results on 18 versions of subject programs are promising on Tarantula.
However, the application scope of their techniques is small and the rate of false positives averaged
41.3% which may make their techniques not applicable to some other fault localization techniques.

Miao et al. (2012) proposed a cluster-based technique to identify coincidental correctness in test
suites. It groups similar runs based on statement profiles into the same clusters using simple
K-means clustering method. Then, by checking whether each cluster contains failed tests or not,
it selects a subset of test cases and regards all of them as coincidentally correct tests. However, since
the actual number of coincidentally correct tests in the test suite is unknown, the number of
identified coincidentally correct tests chosen by their approach may be greater than the actual
number of coincidentally correct tests in the test suite and thus yield too many false positives,
especially when a test suite contains no coincaidentally correct tests. To deal with such problems, in
this study a different clustering technique is used to effectively group similar test cases and a novel
sampling strategy 1s presented to keep level of false positives.

AN ILLUSTRATIVE EXAMPLE

Figure 1 illustrates how coincidental correctness reduces suspicicusness rank of faulty
statements in fault localization.

Program mid() that is adapted from the previous study, Yu et al. (2008) inputs three integers
and outputs the median value of the three integers. There are 13 statements s,... s;; in the program
in Fig. 1, where s, is faulty. Suppose the program has 8 test cases t,...t;. A dot for a statement under
a test case means the corresponding statement 1s executed in the corresponding test case and
pass/fail status is shown at the bottom. To the right of the test cases are suspiciousness scores for
each statement and corresponding ranks. CBFL techniques make summary on the execution
information and employ various statistical formula to calculate suspiciousness values for each
statement and then rank them in descending order. Use Ochiail (Abreu et al., 2006) as an example.
The suspiciousness score of the statement s, is greatest among all executable statements and thus
s;1s ranked first in the suspiciousness list. Note that the faulty statement s; is ranked second in the
list. Therefore, following the rank list, developers have to examine at least two statements to find
faulty statements.

As shown in Fig. 1, there are three test cases that execute faulty statement, only one of which
results in failure.
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mid () { Test cases Techniques
int x,y,z,m; tl |2 )| B34 t5|t6] t7] 8
&}
<

— |t |||l || k=] k=]

AWl || d]|d ||| g El g g

IS I N e T e S =] =4 =} o~
1. read (X, v, 2); ® 0/ 0/0 660 0 O 0.35 4 0.61 4
2.m=z [ MK K JK JK 2K 1K 3K ) 0.35 4 0.61 4
3.if (y<z) { O/ 0/0/0 0/0/0 | O 035 4 0.61 4
4. if(x<y) [ 2K ) [ AN ] 0.50 3 0.87 2
5.m=y; [ ) 0.00 5 0.00 5
6. clse if(x<z+2)/*FAULT*/ [ ) [ K ) 0.58 2 1.00 1
7.m=x;} [ 2K ] 0.71 1 0.82 3
8. else { [ ) [ 2K ) [ 0.00 5 0.00 5
9.if (x>y) [ ] [ 1K ) [ ) 0.00 5 6.00 5
10.m=y; [ ] 0.00 5 0.00 5
11. else if (x>z) [ ] [ 2K ) 0.00 5 0.00 5
12.m=x; )} [ ] [ ) 0.00 5 0.00 5
13. print (m); } [ AAIDOIDIINEK) 0.35 4 0.61 4
Pass/Fail PI|P|P|IP|IPI|F|P]|P

Fig. 1: Example program, information about its test suite and its rank results

Thus, in accordance with definition of coincidental correctness, t, and t,; are called coincidentally
correct tests. How the suspiciousness scores change for each statement, if these two coincidentally
correct tests are recognized? The column Ochiai-CC shows the suspicicusness scores after these two
tests are detected as coincidentally correct tests and both are regarded as failed tests. In such case
the faulty statement s, is ranked first. Following the updated rank list, developers would be directed
first to focus attention on the faulty statement which could save developers’ efforts in debugeging.
Thus, it 1s necessary to identify coincidentally correct tests in test suites to enhance CBFL
techniques.

OVERVIEW OF PROPOSED APPROACH

For the convenience of following discussions, let us suppose a faulty program P is tested against
a test suite T which comprises of the set of passed test cases denoted as T, and the set of failed test
cases denoted as T, Also suppose that the set of coincidentally correct test cases in the test suite T
is denoted as T, and the set of identified coincidentally correct tests is denoted as T, each of which
is a potential candidate of the members of T .

Empirical observations have shown that test cases may behave similarly due to the same fault
{Ammann and Knight, 1988). Since coincidentally correct tests must invoke execution of the faulty
codes, such tests may share some similar paths in their executions with failed tests to reach faulty
statements. Therefore, cluster analysis can be a potential method to identify coincidentally correct
tests. In our cases to identify coincidental correctness based on this technique, our intuition is that
if we measure test cases with respect to some proper execution profiles, passing test cases that are
grouped in the same cluster with failed test cases may also execute faulty statements as failed ones
do. Thus, these passing tests in the clusters with higher ratio of failed tests are more likely to be
coincidentally correct. The process of cur approach to CBFL using cluster analysis is illustrated in
Fig. 2. Gaven the original source code and the test suite as inputs, source code 1s executed against
test suite and execution profiles and execution results for each test are collected first. Then,
execution profiles and test results are fed to a clustering technique. After grouping tests, a sampling
approach is employed to choose tests from clusters. Finally, the chosen tests are regarded as
identified coincidentally correct tests and two dealing strategies are used to evaluate impact on
coverage-base fault localization techniques.
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Fig. 2: Process of our approach to CBFL techniques using cluster analysis

Typically, a clustering procedure often involves the following four steps: (1) Particular
clustering technique employed, (2) Feature used to cluster, (3) Number of clusters to be formed and
{4y A strategy for sampling from clusters.

Clustering technique: Clustering is an effective technique in discovering similarity between
objects. Of the many clustering methods, the K-means method 1s a widely used technique that secks
to group similar objects into the same cluster. Specifically, given an integer K and a set of N objects,
the K-means aims to choose K centers so as to minimize §, the sum of the squared distances
between each object and its closer center.,

Sinee its simplicity and speed are very appealing in practice, the K-means has been widely used
in software testing (Dickinson et al., 2001; Zhang ef al., 2010). However, the K-means algorithm
is generally susceptible to initialization of starting points. Initial starting objects are randomly
selected as cluster centers in the K-means algorithm. When initial cluster centers are close to the
desired centers, K-means has high possibility to generate better results. Otherwise, it will lead to
local optima (Arthur and Vassilvitskii, 2007). Although the K-means can be improved by computing
more than onee, it increases computation expense and 1s still difficult to determine the computation
limit.

In this study, we adopted a new clustering technique that is developed from K-means. In order
to guarantee the accuracy of clustering, Arthur and Vassilvitskn (2007) proposed a way of
initializing K-means by choosing random starting centers with very specific probabilities, leading
to a combined algorithm they called K-means++. The algorithm is both fast and simple and
can already achieve approximation guarantees that K-means cannot. Their experimental
results showed that K-means++ substantially outperformed standard K-means in terms of both
speed and accuracy.

Feature collection: Previous studies have shown that predicates in the program are strong
indicator for faulty statements (Liblit et «l., 2003; Liu et «l, 2008). Furthermore, since
coincidentally correct tests must invoke execution of the faulty codes, such tests may share some
similar paths in their executions to reach faulty statements. To go through specific paths,
evaluation of predicates in the paths may show similar patterns. Thus, in this study, predicates
are used as features of test cases for clustering. Suppose a program P contains m predicates
<py, Py P> Predicates in the program are instrumented. Then the instrumented program is
executed against the test suite T. When a test case t, is executed on the program, for each predicate
p; following data are collected: C; and C; which are execution counts of true evaluation and false
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evaluation for p;, respectively. If either evaluation of p; is not exercised during execution of t,, its
corresponding value is set to 0. In this way, a value set containing counts for each evaluation of
predicates can be cbtained for t, as features of that test case: Kit)=<C.', C % C.; C....,C b C >
In this study profiles of all the test cases in T are used as inputs to the clustering technique. To
measure the similarity between test cases, Kuclidean distance 1s employed. Given two test profiles

E(t) and E(t), the distance of these two tests is:

Dit,. 1) = 2 1, (CL - Tt D0 - ) (1)

The smaller the distance is, the more similar two test cases are with respect to dynamic
behaviors.

Number of clusters: The K-means++ takes the number of clusters (i.e., K) as a parameter. The
clustering results depend on the number of clusters to be formed. If the number is set too small,
dissimilar objects may be put together in one cluster. If the number is set too great, similar objects
may be separated into different clusters. In this study, the number of clusters is set according to
some percentage of the size of the test suite T, that is K =1L*|T|, where 0<Li<1. In our experiments,
we first set L = 6% to present more detailed results and evaluate whether our approach work
well. This fixed percentage value is chosen according to previous studies (Dickinson ef al., 2001;
Yan ef al., 2010; Miao et al., 2012). Different L will be discussed later.

Sampling strategy: After test cases are grouped together by the clustering algorithm, a subset
of the population of test cases 1s chosen as 1dentified coinaidentally correct tests. In this section, we
propose an adaptive sampling strategy to identify and choose coincidentally correct tests from
clusters such that the number of the chosen test cases 1s guaranteed to be no more than the actual
number of coincidentally correct tests in the test suite.

After clustering, passing tests grouped together with failed tests are likely to be coincidentally
correct. Note that the actual number of coincidentally correct tests is unknown beforehand. To keep
level of false positives, it is important to choose the appropriate number of passed test cases as
results. Thus, we first estimate the possible number of coincidentally correct test in the test suite,
The following procedure 1s conducted. First, the suspicicusness value of each statement e that
contain fault is calculated using some statistical metric which is defined as S(e). In this section,
Ochial 1s employed since its performance on fault localization 1s effective and consistent

{Abreu et ¢l., 2006). Thus, S(e) is defined as follows:

a a

S(e) = et (2)

ef —
’\/(aﬂf Ta)x(a ta,) \/|Tf|><(agf ta,)

The notation <a,, a,, a,, a,>denotes the number of test cases that satisfy certain conditions
respectively where the first part of the subscript indicates whether the statement. is executed (e) or
not (n) and the second one indicates whether the test case 1s passed (p) or failed (f). In the context
of disambiguation that these notations are provided for the specific statement e, we sometimes
append “(e)” to each notation. For example, a_(e) denotes the number of test cases each of which

executes the statement e and is passed.
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Suppose the faulty statement is e; in the single-fault program. According to the definition of
coincidental correctness, we can easily know that a_fe) denotes the actual number of coincidentally
correct tests in the test suite. Since the location of the fault i1s unknown, it 1s difficult to get the
value. However, it is easy to get such a statement e’ in the program P so that it satisfies the

following condition:

a.(eh = ‘TE‘} (3)

arg max{S(e’)
e'sp

Suppose the statement e* satisfies the £q. 3. According to the Kq. 3, since a_{ep) = | T/, it could
be easily shown that S{e*®)>S(e,). Aslo the condition a_{e*) = a_(e,) is satisfied. Consequently, we can
infer that a_(e*)za_(e) which reveals that a_(e*) is strictly less than or equal to the actual number
of coincidentally correct tests. To verify:

S(e*)=8(ey)

_ aef(e*) = aef(ef)

T @) ta, @) T * (e +a,le)

a(e*) o a,le;)

T e, @) s rane)

—>afeta,(e)za e*)ta,(e¥)
=>a(eg)>a,(e¥)

Thus, we get lower bound of the actual number of coincidentally correct tests in the test suite
and this value can be used as a threshold N to guide how many test cases should be chosen from
clusters. In case of no coincidentally correct tests existing in the test suites, this strategy also
suggests no tests should be chosen, thus does not produce any false positives in the results.

Figure 3 lists the sample algorithm. The algorithm takes in a set, of K clusters generated by the
clustering technique and the estimated possible number of coincidentally correct tests N and

outputs a set of test cases that areidentified as coincidentally correct. At lines 3-4 we first calculate

1.0 A
0.9
0.8
0.7
0.6
0.5 4
0.4
0.3

0.2 1
olem Lop || ] o [D

+

Print_tokens Print tokens2 Schedule Schedule 2  Tot info Replace Flex Grep Gzip

FP

Fig. 3: False positives
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the possibility of each cluster to contain coincidentally correct test and sort clusters in descending
order according to its possibility. In the pseudocode, procedure E{c) calculate the ratio of failed tests
in the cluster ¢ which i1s defined as follows:

R(E) = ‘{t‘te c|/\te Tf}‘
c

Passing tests in a cluster with higher ratio of failed tests are more likely to be coincidentally
correct. At lines 5-11 we iteratively include the passing tests in clusters with higher ratio of failed
tests in the returned test cases. The procedure P(e) returns the set of passing test cases in the
cluster c. If the size of returned test cases plus the size of passing test cases in the current cluster
c is greater than estimated possible coincidentally correct test (i.e., N}, we skip this cluster so as to
keep level of false positives (Table 1).

Fault localization: After N tests have been selected, these selected tests are all regarded as
identified coincidentally correct tests. In this study, we present two different strategies that deal
with identified coincidentally correct tests and investigate how these strategies impact various fault
localization techniques.

+ Discardingstrategy: The identified coinaidentally correct tests are discarded from the original
test suite. Thus, the remaining test cases are used as inputs to fault localization techniques

+ Relabeling strategy: The identified coincidentally correct tests are regarded as failing tests.
This would increase failure information from tests which is desirable for fault localization
techniques. However, false positives in the identified coincidentally correct tests may introduce
risk

Tahble 1: Sample algorithm pseudocode

Algorithm sample algorithm
Input:

C: K clusters of grouped test cases generated by clustering technique
N: Estimated possible number of coincidentally correct tests in the test suite

Output: A set of test cases that are identified as coincidentally correct tests

Procedure sample (C, N)

Ty}

YeeC, caleulate R(e) by Eq. 4

Sort clusters in ¢ in descending order according to R(c)
Foreachecin C

If c contains at least one failed test case
If | Tiee | +| Pc)| <= N then

Tiee = Tie L Ple)

End if

End if

End for

Return T,

[ e B
e S

End procedure
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In this study, we study three representative fault localization techniques to investigate impact
of coincidental correctness on various techniques. Tarantula is proposed by Jones ef al. (2002). The
rational for this technique is that the more failed tests and the less successful tests cover a
statement, the more likely for the statement to be faulty. Different from Tarantula, Jaccard
{Abreu ef al., 2008) also takes the absence in failed executions into account. Ochiai is first used as
similarity coefficient in the previous studies (Abreu et al., 2008). Compared To Jaccard, Ochiai
amplifies the differences between executions and test results. Although these techniques share the
same basic principle, the difference in metrics makes each technique perform differently in locating
the faulty statements. Thus we plan to investigate whether these fault localizers can all benefit
from identified coincidentally correct tests.

EXPERIMENTAL DESIGN

Subject programs: We used Siemens and Unix programs as our subject programs for the
empirical studies. These programs have been extensively used to evaluate effectiveness of fault
localization techniques in previcus studies (Jones et al., 2002; Abreu et al., 2006; Naish et al.,
2011). For each program, there are a variety of test cases and faulty versions available. Table 2
presents the detailed information on the subject programs. The Versions column lists the number
of faulty versions for each subject program. The column LOC shows the lines of code for each
program. The column size of T represents the total number of available test cases in the test pool
for each program. The last. column lists range of the number of coincidentally correct tests for each
faulty program. For better evaluation on effectiveness of the technique, each faulty version
contains only one fault.

From the study of Do ef al. (2006), we excluded those faulty versions whose faults cannot be
detected by any test case in the test suites. Besides, we also removed the versions whose faults are
introduced from modifications in the header files, mutants in variable declaration statements, or
modifications in a macro statement, started with “#define”. In summary, we used all the remaining
143 faulty versions in our data analysis, of which 39 faulty versions contain no coincidentally
correct tests.

Evaluation metries: Following previcus work {(Masri and Abou-Assi, 2010), to empirically
evaluate to what extent coincidentally correct tests are identified by our technique, we compute
metrics to quantify the generated false negatives and false positives. Furthermore, expense
reduction score 18 used to assess the impact of our approach on the effectiveness of fault localization
techniques.

Table 2: Detailed information of the subject programs

Subject Versions LOC Size of T Range of CC
print_tokens 4 565 4130 357-1546
print_tokens2 10 510 4115 0-3815
replace 27 563 5542 0-4948
schedule 4 412 2650 1199-1481
schedule2 8 307 2650 1802-2636
tot_info 23 406 1054 0-1047

flex 27 5217 567 0-517

grep 23 12653 809 0-703

gzip 17 6573 213 0-47
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Measure of generated false negatives: This measure assesses whether or not we are
successfully identifying all of the coincidentally correct tests in the test suite T. A lower measure
value indicates that the technique can identify more coincidentally correct tests:

T, -T,

cc icc|

T

[

FN =

Measure of generated false positives: This measure evaluates whether passing tests that
are non-coincidentally correct are erroneously classified as coincidentally correct tests. Similarly,
a lower measure value indicates that the technique makes fewer mistakes in recognizing
coincidentally correct tests:

W_m—gmm
T,

Measure of effectiveness improvement: To measure the effectiveness of fault localization
techniques, Yu ef al. (2008) proposed Expense metric. The metric measures the percentage of
the programs that must be examined to find the fault following rank list from top down. The
lower the measure is, the better the effectiveness is. It is defined as follow:

v,

examin ed

[V

Expense = x100%

where, |V| measures the size of executable statements in the program and |V___. .| measures
the number of statements that has to be inspected so as to find the fault. To study the effects
of cluster analysis on fault localization, Kxpense reduction score AKxpense = Expense-Expense'
is used to measure relative effectiveness improvement, where, Kxpense and Expense’ refers to
Expense values before and after applying our approach to CBFL techniques respectively. A
positive value of AExpense indicates that the effectiveness of fault localization is improved after
applying our approach. The greater the measure value is, the more improvement the

effectiveness of fault localization gains

RESULTS AND ANALYSIS

We reported the raw results of our experiments across the subject programs and then analyze

them in detail. The first three experiments use L, = 6% as a parameter.

Recognition accuracy: This subsection investigates how well our sampling strategy can identify

coincidentally correct tests from clusters. Figure 3 and 4 list results of false positives and false

negatives for each individual program separately. As shown in two figures, most versions of subject

programs vield a relatively lower rate of false negatives but a higher rate of false negatives. The

average rate of false positives over all the programs is 4.85%. Specifically, 92% versions generate

a small number of false positives in the ranges (0, 10%). On the other hand, the average rate of
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Fig. 4: False negatives

Table 3: Mean improvement. for fault localization techniques

Relabeling Discarding
Metric + - +
Tarantula (%) 6.15 -1.8 532 -0.71
Jaccard (%) 511 -1.4 431 -0.24
Ochiai (%) 4.21 -1.5 3.62 -0.32

false negatives over all programs is 47.4%. More specifically, about 6% versions have detected all
the coincidentally correct tests. We also observed that although some versions have no
coinecidentally correct tests, our sampling techniques can still suceessfully vield 0% false positive and
(0% false negative, thus don’t produce any misleading results. In summary, our sampling strategy
is a relatively effective and safe method, 51% versions generate 0-50% false negatives and 0-10%
false positives.

Fault localization improvement: Figure bHa-c list the results for the three techniques,
respectively. For all these figures, due to space limitation, the first six names on the x-axis are short
names for corresponding program names presented in Table 2. The y-axis denotes the number of
versions that satisfy certain conditions. The “+’, “=" and *-” symbols in the figures indicate that
AExpense>0, = 0 and <0, respectively. Table 3 presents mean Kxpense reduction scores for three
techniques.

From Fig. Ha-c and Table 3 we can observe that for most of the programs the three techniques
can benefit from our appreach. Take Tarantula for example. In total, about 84.6% versions of
programs gain improvement or stay the same on fault localization using relabeling strategy with
an average Kxpense reduction score of 6.15% and about 90.2% versions when using discarding
strategy with an average Expense reduction score of 5.32%. The Kxpense reduction score for
versions that are deteriorated is -1.8 and -0.71% on average for relabeling and discarding strategies
respectively which is much lower than corresponding average improvements. The similar
observations can be also made for Jaccard and Ochiai.

From Fig. Ba-c and Table 3, it can be seen that compared with Tarantual and Jaccard, Ochiai
seems to get smaller improvement applying ocur approach. It is reasonable because Ochial
outperforms the other two techniques in locating faults. For some faulty versions, the faults are

already ranked first by Ochiai. Thus, there is little space for further improvement.,
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Fig. B(a-c): Effectiveness of fault localization techniques after applying cluster analysis on

{a) Taranula, (b} Jaccard and (¢} Ochiai
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Tahble 4: The p-values of U-tests for three techniques

Parameters Tarantula Jaccard Ochiai
Relabeling 0.02 0.02 0.04
Discarding 0.01 0.02 0.03

Furthermore, we can find that discarding strategy seems to perform consistently more stable
than relabeling strategy for all the three techniques. As shown in Table 3, when using discarding
strategy, the mean AExpense for the versions that get deteriorated is smaller for all the three
techniques compared with relabeling strategy. The reason why discarding strategy 1s more stable
than relabeling strategy is that discarding a test case merely reduces the size of test cases provided
for fault localization. However, relabeling an identified non-coincidentally correct test to a failing
test case may make non-faulty statements more suspicious.

It can be seen that on average there are effective improvements after applying our
approeach to a base fault localization technique. Furthermore, we conduct two-tailed Mann-Whitney
U-tests on the differences between the Expense scores before and after applying our appreach on
the three techniques, respectively. We make the following hypothesis: “HO: Dees a technique
enabled with our approach have no significant difference from the base technique?” Table 4 lists
the p-values for hypothesis testing on the three techniques respectively. It can be cbserved that,
for each technique, either by using discarding strategy and relabeling strategy, both of the p-values
are less than 0.05. It indicates that the null hypothesis can be successfully rejected at the
0.05 significance level. Considering our previcus observation that our approach, on average,
improves its base version, we regard the improvements are significant at the 0.05 level for all the
three techniques.

In summary, the results reveal that it is encouraging to improve effectiveness of fault
localization by dealing with identified coincidental correctness with proper strategy. Specifically,

discarding strategy is relatively safe method while relabeling strategy may introduce risk.

Comparative studies with peer works: Comparison of present study, technique with
Miaoc ef al. (2012) study is presented here, we compare our technique with the technique proposad
by in their study (Miao et al., 2012). We denote this technique as “SEKK12” while our technique
is denocted as “ICCCA”. For comparison, these two techniques use the same K value. Due to space
limitation, we will analyze the results of Ochiai in details. Figure 6 lists the experimental results
on subject programs for two strategies that deal with coincidentally correct tests, respectively. In
these figures, the x-axis represents the percentage of executable statements to be examined. The
y-axis denotes the percentage of faulty versions whose faults have been located by examining no
more than corresponding percentage of executable statements in x-axis.

From Fig. 6, we can observe that at most checkpoints, our technique can assist Ochial in
locating more faults than SEKELZ2 using either relabeling strategy or discarding strategy.
When relabeling strategy is considered, by examining upto 5% of the codes in faulty
versions, our technique can help Ochial locate 26% more faults than SEKE12. And when
discarding strategy is considered, this value is 29.6%. Our experimental results also show that for
Tarantula and Jaccard techniques, our approach can be more helpful than SEKE12 in locating
faults.
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Fig. 6(a-b): Comparission of peer work and Ochiai technique, (a) Relabeling and (b) Discarding

DISCUSSION

The present experiments only used a fixed fraction of the number of test cases as the number
of clusters to be form. In this subsection, we move on to further discussions on the impact of the
number of clusters on performance of our appreach.

The number of clusters to be formed affects the degree to which test cases are separated. As the
number of clusters varies, the generated false positives and false negatives also vary, thus may
introduce different impact on fault localization techniques. In this subsection, we set L = 1%, 2.5,
10 and 15%, respectively to further evaluate the performance of our appreach on CBFL techniques.

Table 5 lists the averaged rates of false negatives and averaged rates of false positives over all
the subject programs using different L. The results indicate that our approach always yields higher
rate of false negatives but a lower rate of false positives using different values of L. Moreover, it
can be seen that the false negative rate 1s negatively correlated to the false positive rate. As the
number of clusters (i.e., L) increases, the ratio of the generated false negatives decreases while that
of false positives increases. It 1s reasonable because our sampling strategy depends on the number
of clusters. When the number of clusters increases, the size of each cluster decreases. Thus, some
of passed tests which may be coinaidentally correct or not, once put into a cluster with failed tests,
may be spread to another clusters without failed tests. Therefore, these passed test cases will not
be included in the results. Thus, L should not be set too large for our approach to be effective at
grouping coincidentally correct tests.

Further, we perform two-tailed Mann-Whitney U-tests to compare the CBFL techniques
enhanced by our approach with the corresponding base techniques on all the subject programs
using different. [.. The p-values for hypothesis testing on the programs are listed in Table 6.
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Tahble 5: Averaged FN and FP using different L percent

Parameters Percentage

L 1.00 2.50 6.00 10.00 15.00
FN 39.00 42.80 47.40 52.50 55.40
FP 6.11 5.65 4.85 4.10 3.45

Table 6: The p-values of U-tests for three techniques using different L

CBFL technique L (%) Relabeling Discarding
Tarantula 1.0 0.03 0.02
2.5 0.03 0.01
10.0 0.01 0.02
15.0 0.04 0.02
Jaccard 1.0 0.07 0.02
2.5 0.03 0.01
10.0 0.01 0.03
15.0 0.03 0.01
Ochiai 1.0 0.11 0.03
2.5 0.04 0.02
10.0 0.03 0.02
15.0 0.05 0.03

From the results, it can be seen that all but ones with bold font of the p-values are smaller than
0.05 which indicates that the null hypothesis can be sucecessfully rejected at the 5% significance
level. We can also observe that when discarding strategy is considered, the improvement is
significant at the 5% level under all values of L. Thus, when cur approach is applied on CBFL, we
recommend that discarding strategy can be first considered to improve the effectiveness of fault
localization.

CONCLUSION

In this study we proposed a clustering approach to identify coincidentally correct tests in the
test suite. An effective clustering technique is employed to group similar test cases based on
execution profiles. Then we presented an adaptive sampling strategy to identify and choose
coincidentally correct tests from clusters such that the number of the chosen tests is guaranteed to
be strictly on more than the actual number of coincidentally correct tests in the test suite. To
mitigate the adverse effect of coincidental correctness on fault localization, two strategies are
studied to deal with identified coincidentally correct tests on three representative fault localization
techniques respectively. We conducted experiments to evaluate our techniques on Siemens Test,
Suites and Unix programs. The experimental results demonstrate that, our approach can always
generate higher rate of false negatives but a lower rate of false positives. Furthermore, from the
experiments, we can make the following conclusions:

«  Our appreach can effectively identify coincidentally correct tests in the test suite without
introducing too many false positives

*  Various fault localization techniques can benefit from identified coincidentally correct tests dealt
with proper strategy. As a conclusion, the discarding strategy is relatively safe method while
the relabeling strategy may introduce risk

«  Compared with other peer works, our technique can assist fault localization techniques in
locating more faults using either dealing strategy
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For future work, we would like to develop more effective clustering techniques for grouping
coincidentally correct tests. We also wish to consider further optimizations to the sampling strategy
so as to reduce rate of false negatives and explore the benefits of applying the clustering techniques
against programs with varving number of faults in them. In addition, more studies examining the
impact of identified ceincidentally correct tests on other fault localization techniques are to be
conducted.
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