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ABSTRACT

In this study, a kind of production control policy is developed for a single-machine, multi-type
products, unreliable manufacturing system with defective items, which 1s used to minimize the
average production cost. Compared with the theoretical value, it proves feasible. It is proved optimal
when the system meets to a special condition, complete analytical solutions of hedging points and
an average inventory/backlog cost is obtained and the relationship between hedging points and
system parameters 1s given. In the solution part, a computer simulation method combines with
particle swarm algorithm is proposed to get the approximate value of hedging points. The influence
on hedging points of initial states 1s discussed. Simulation results demonstrate that the method can
also be applied to a system under general situation.

Key words: Defective items, unreliable production system, production control, hedging point
policy, particle swarm algorithm

INTRODUCTION

In the 80's of the last century, Kimemia and Gershwin established a stochastic dynamice
programming model of a continuous type and propesed hedging point policy to solve the optimal
control problem of unreliable production system (Zhang and Zheng, 1999a). Under the condition
that the product demand rate unchanged and the normal operation of the machineffault repair,
time obeys the exponential distribution, the study of Bielecki and Kumar (1988) adopts single
product type unreliable production system as the research object and gives the infinite horizon
average over fulfil/shortfall in output cost function, obtaining analysis of the hedging and the
average cost of the solution and proving the optimality of the hedging point peolicy. Then many
researchers carried out deep research and published a large number of studies (Martinelli and
Valigi, 2004; Liu, 2005; Zhang and Zheng, 1999b; Mok and Porter, 2006; Gershwin ef al., 2009;
Mok, 2011). Most of these studies assume that the products are all good ones and this is not possible
in actual production. The quality of the products is affected by people, equipment, raw materials,
production technology and other factors, therefore in the production process, some factors such as
disoperation and raw material defects will lead to the defective product. Therefore, introducing
optimization control problem inte unreliable production system is of practical significance. Until
now, there is little literature about it, Cao ef al. (2007) first proposed the coneept of valid product
remainder, considering the possible material scrap situation caused by accidental factors in the
production process, set up a valid product remainder as one state variables in the optimal control
model and got a new strategy. However, it does not give a deep study on optimality and the control
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strategy. The study of Song and Wang (2007) adopts the scatter technique, gives optimal
production control strategy of the product random defects unreliable system in finite time,
which overcomes the defects of previous literature that easily lead to system state divergence.
Mhada et al. (2011) gives a safe point control strategy, getting the analytical solution hedging point
of the infinite time domain of system and average overyieldlunderproduction cost and further
analyzes the relationship between the distribution of the hedging point and the system
parameters. The study of Hajj ef al. (2011) integrates specifications inte production control
problem, considering the defective rate as a function of the product specification, puts forward a
kind of product specifications and productivity joint decision model, obtaining the analytic function
between systems in infinite time domain specifications, hedging and average profit of production
of the three and analyses the relationship between the distribution and the system parameters of
the hedging point. The research object of the above documents is unreliable production system of
single product type but a machine to produce various types of products in the actual production.
The chject of this study is extended from single product type system to the system of multiple
product types, gives the system to meet the production of optimal control strategy of a particular
condition, the hedging and the average overyield/underproduction cost solutions and hedging and
system parameter relationships. This study puts forward a method of using computer simulation
combined with particle swarm algorithm to compute approximations safe point of the system. The
algorithm results were compared with the theoretical values and verified the feasibility of the
method. The effect of initial condition on the value of hedging point was discussed. At last, the
method 1s applied to a general system which also proves that, it 1s effective.

PROBLEM DESCRIPTION AND MODELING

Problem description: An unreliable production system includes a machine which can preduce
N(IN>1) types of products and N{(IN>1) detection device. There 1s a buffer zone between each
detection device and the machine. Each testing device adopts total inspection way for the products
with detection rate and demand rate consistent. There are some hypothesis of aspects for this kind
of system:

+ Raw material is sufficient,

« Normal operation/product processing time 1s far less than the machine fault time

* To adjust the time when switching between different products of the machine is negligible
¢+ The maximum productivity of various types of products 1s the same

+ Rate and the repair rate are exponentially distributed machine fault

*  Product demand rate 1s constant in the infinite time domain

*  Defective occurrence obeys Bernoulli distribution, the defective rate is known

*  Once leave the buffer zone, defective products would not consider cost

*  Detection device does not have any fault, without considering the detection error

¢ The material flow can be regarded as a continuous process

Dynamic characteristic and mathematical model: The dynamie characteristics of the system
are:

X (t)=u (t)(1-B)-d i=12--N
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X‘z“){ml(t)/mm s (1)20

Constraint conditions are:

E'clul(t) <a(t) (1)

Zd J(1-B) (2

1'+p

Equation 1 represents constraints of machine capacity and Kq. 2 represents the necessary
conditions that demands can be met.

According to the dynamic characteristics of the system and the preceding assumptions,
averaging over production/shortfall in output cost function for a system can be obtained by:

i)

1= k[ {Zgl ; )+2glxn(t)+2 (1)t (3)

i=1

Definitions of some related parameters and variables are as follows:

J . Average over fulfill/shortfall cost,

%(t) : Inventory of the ith product at t time, x(t) = x,(£)+x,(t)

%, (t) ¢ Inventory of qualified products of the ith product at t time, x;(t) = max(x,,,0) represents over
fulfill number, x;(t) =max(-x,,0) represents shortfall number

12(1;) Inventory of the defective products of the ith product at t time

g Ithproduct of over production cost coefficient

h; . Ith product of defective cost coefficient. The defective products will not only make the system
and produce the storage costs but also will lead to additional costs such as waste machine
production capacity, so the inferior cost coefficient is larger than over production cost
coefficient (Hajji ef al., 2011), that is h, > g

g . Ith product of shortfall in output cost coefficient. Usually a bad crop will have negative
effects on the production credit of the enterprise, which will bring great losses to the
enterprise, so the cost of production shortfall in output coefficient is greater than the cost
coefficient and the inferior cost coefficient. thatis g~ >h »>g’

u,(t) : Produetivity of the ith product in t time, O<ut)<u, .

=1l

max! max

. Reverse of the most productivity u
a(ty . Condition of machine in t time. When machine runs normally «a(t) 1s 1, else O
d : Demand rate of produet, d =(d,, d,, ..., dy)

. Failure rate of the machine

. Repair rate of machine

. Product defective rate of the ith product

= = T

i
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THEORETICAL ANALYSIS

For multiple types of products of an unreliable production system, Sethi and Zhang (1999) gave
the optimal contrel strategy and ebtained analytic solution of the hedging point of infinite horizon
and average cost and production/shortfall in output without considering the quality of products.
In theoretical analysis of product random defects, the eptimal contrel strategy and hedging system
are given in special conditions and obtained the analytical solution of hedging point and the

average cost of production/shortfall in output.

Definition 1: If the product demand rate remained unchanged in the infinite horizon, normal
operation/machine fault repair time obeys the exponential distribution and the product cost
coefficient and the defective rate are the same, such as Kq. 4, the special conditions are said to meet,

the system.
R
g =8 = =gy =g (4)
h,=h,=---=h,=h
61752: :BN:B

Theorem 1: The optimal control strategy of product random defects of single product type under

unreliable production system in the special conditions 1s:
0 i€ Q(x) or aft)=0

1— dt d/ . d,
{ JeKE(X)TJ J} /(Tlle%) 1] ie L(x)anda(t)=1

where, x = (x;, X, ..., X, Q') ={q:x>zf, Kx) ={x, =z}, Lx) = {lix;<z} and d' = d/(1-B).
Hedging point z, is:

u (t)=1d; icK(x)anda(t) =1 (5)

* When D<u, (1-B) . F<0,2=0
p+r

. gt _ dfu,,(1-B)-D]  pu, (1-B)Q+Q)
WhenD<umax(1 B)p+r’F>03217rumax(lfﬁ)*(r+p)Dan1[um(lfB)fD](Hp)

i

21:00

*  WhenD Zumax(l —[3) ,
p+r

The average cost producingfshortfall in ocutput 1s:

Q.pu,, (1-)D
(r+p)[ru,, (1-B)~(r+p)D]

* Whenz =0,]=
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QD QDP[u.(1-B) D]~ p(Q+Q)u,.(1-B)

* Whenz >0,J=
' r+p ru,,(1-B)-(r+p)D Ql[umxl B) DJ(rer)

N R i T umax(l_B)(Q1+Q2)p _
where, D= 2, Q=g by Te Qe F e g D p)

From KEq. 3 we can get.:

J—%Ej'ji +2g1 x5 EN“ , lz(t)}dt

When system meets Eq. 4, based on study of Sethi and Zhang (1999), the above equation can
be further represented by:

J:%jﬂ%E ;i{ —BBJ (t)+2g'x;(t)}dt

N S o
:hm—EU 21 +2Q2 11

1 er] _
:%LHJEEO Q12x11 +Q21§_1‘,xﬂ(t)}dt

i=1

(6)

I—I

Compare KEq. 6 with the average over production/shortfall in output cost function in
Sethi and Zhang (1999), we can find that the two are completely same in form. Therefore, the
hedging point strategy of the system is:

0 i€ Qx) or aft)=0

u(t)=-d ie K(x)and a(t) =

[1_JGK2(x) ] /[ IELZ(xd] ie L(x) ando:(t):]

where, x = (x;, X,, ..., x), Q') ={q:x >z}, K(x) = {:x, =z}, L(x) = {ix;<z}, d' = d/(1-p).
Before solving Eq. 6, we first discuss Eq. 7:

Y=limiE ;[Qm*(t)+Q2n’(t)]dt (7

Toe T
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Where:

3

I
NgE
g

the system represented by the above equation can be expressed as when a certain type of product
is out of stock, other types of products can be used to replace them, therefore:

Qm'(t)+Qm (t) < le‘lx;(t)+QZin}(t)

s0, J"<dJ. In fact, the system represented by Eq. 7 is like a single product type unreliable producticn
system whose demand rate is:

vl

I
NgE
o

According to Bielecki and Kumar (1988), its optimal control strategy 1s:

0 n(t) >z or a(t)=0
u(t) = s D/(1-B) n(t) =z and at(t) =1
u__ nit)<z'anda(t)=1
Hedging point z* is:
* WhenD<u,, (1-B)—,F<0,2 =0
p+r
* WhenD<u, {1 f)—. F>0.2 = D[ty (1-F) D] In PU, (1-B)(Q + Q. )
p+r ru, (1-B)—(r+p)D Ql[umax(lfﬁ)fD](rer)
* WhenD>u, (1-B)——, 7z =
p+r

The average cost of production/shortfall in output J° is:
QZpumaX (1 B B)D
(r+p)[ru,..(1-B)~(r+p)D]

QD QP[u,.(1-B) D] p(Q+Q)u,.(1-P)
r+p i, (1-B)—(r+p)D Ql[um(lfﬁ)fD](r+p)

* Whenz =0,T=

*  Whenz >0 1=

According to Sethi and Zhang (1999) theorem 4.1, hedging point:
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is the average cost of production/shortfall in output J = J° and Eq. 5 is the optimal production
control strategy.

r
Corollary 1: When P< umax(l_B)p+r , =0, z is monotone decreasing function about g" and h

and is monotone increasing function about g~

Proof:
4 [0 (LB) D] | pu,, (1-B)Q + Qi)
’ rumx(lfﬁ)f(r+p)D Ql[umx(lfﬁ)fD](ran)
= Aln[F(Q)+1]=Aln[F(Q,)+1]
Where:
d [y, (1-B)-D]
FQ)=FQ,) =F
r,, (1-B)~(r+p)D’
Because:
D<umax(lfB)p+r,F>o

therefore, A>0, F+1>1.

*YQ sQ”

A o pumax(l_ﬁ)(Q;+Q2) 1 pumax(l_B)(Q;’+Q2)
FIQ)=HF(Q) Q[ u,.(1-B)-D](r+p) 1 Q[ u(1-B)=DJ{r+p)
_ pumax(liﬁ)QZ o pumax(liﬁ)QZ <0

Q[ (1-B)=DJir+p) Q[u,.(1-B)-D](r+p)

+1

We can find that F is monotone decreasing function about Q,. Because:

Q = g+hL

1-p

it is obvious that Q, about g" and h are both monotone decreasing, therefore, F(Q)) about g" and
h are both monoctone decreasing, so z, about g" and h are both menotone decreasing.
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*VQ>Q]

Puow (1-B)(Q+Q0) | U (1-B)(Q +Q7)
QU (1-B)=DJ(r+p)  Q[uua(1-B)-D{r+p)
_ PY,... (1-B)Q; - PY,.. (1-B)Q -0
Q[up.(1-B)-DJ{r+p) Q[u,.(1-B)-D]{r+p)

FQ3)-F(Q) = +1

We can find that F is monotone decreasing function about Q,. Because Q, =g, so F is monotone

inereasing function about g7, so z; is monotone inereasing function about g~

PARTICLE SWARM ALGORITHM
Individual coding: In the particle swarm algorithm, the particle position and wvelocity are
expressed in real number field, this field 1s easy to ebtain hedging point. Therefore, particle can be

directly encoded as (z,, z,, ..., %y) where, N is number of types of produect.

Fitness function: Use computer language to simulate the whole production process simulation
system and the repeated simulation results of mean value calculation results as each particle

corresponds to the target value is:

=

2T
&=1

g |=

where, J; is the caleulation result of the dth produetion process, its function form like Kq. 8, w is

simulation times, taken as 100. Fitness function 1s:

_

-#

®(z)

—

where, 4 1s a constant which 1s positive.

T —;J;{igfxﬁ(t)+ig;x5(t)+ihlxlz(t)}dt (8)

i=1

EXPERIMENTAL RESULTS

Assume the unreliable production system with a single machine and two types of products,
system parameters (Table 1). Particle swarm algorithm parameters are with particle swarm size 40,
the inertia weight is 0.5, learning factor is taken as 2 and the iteration number as the 100
generation. In the memory for 4G Intel Core (TM) 15-2400 CPU 3.10 GHZ computer using Compag
Visual Fortran programming operation, the calculated results in the Origin Lab 8 drawn.

Algorithm results vs. theoretical value: From Theorem 1, we can see that when T—<, the
value of hedging point is not related with the initial state, while the initial in finite time state will
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influence the hedging of the system. For comparison, the initial state assumptions of products are
{0,0. The ratios of different types of products obtained by algorithm (Table 2) are always close to
the theoretical value and with T increasing, hedging points cbtained by algorithm are gradually
close to thearetical value, so the algorithm used in this study is feasible. In addition, we can find
that the method used in this study can get safe point of the system in finite time, it 1s convenient
for it to be applied to the demand of the products only in a short period of time to maintain constant,
production system. What we need to point out is the initial state of the value refers to the inventory
of qualified products in initial time system.

Influence of initial states: Assume that the demand rate is (1,1), the simulation time is 200. The
initial state is different (Table 3), different safety values and the initial state value hedging point
of the preduct is relatively small. For the shortfall in output of products, in order to meet the
demand, hedging point of such products 1s relatively large for producing many produets, in order
to avoid over production causing too much preduction cost, safety of such products is relatively
small.

General case: Another advantage of adopting the combined methed of simulation with particle
swarm algorithm to obtain hedging point is that it has less restrictive conditions which can be used

in the general system.

Table 1: System parameters

W p r g+ g h p
5 0.01 0.1 1 (15 15) 33 0.10.1)

Table 2: Algorithm results and theoretical value

d=(11) d=(11.5 d=(21)

T Zq Zo Zq Zo Zq Zg

80 1.19 1.17 251 3.91 6.57 3.33
100 1.76 1.81 3.10 4.60 7.66 3.78
500 6.11 6.09 7.67 11.53 24.94 12.23
1000 6.24 6.24 9.14 13.50 25.95 12.99
3000 7.58 747 10.03 15.32 30.50 15.05
= 7.56 7.56 10.50 15.75 30.16 15.08

Table 3: Hedging points under different initial states

Initial state Zy Zg

(-20 -20) 4.95 4.92
(-20 -10) 4.58 2.69
(-20 -5) 4.62 1.16
(-10-10) 4.76 4.73
(-100) 4.69 3.13
(-10 10 4.30 4.26
(00 451 4.47
(010) 4.58 4.50
(0 20) 4.21 4.35
(10 20) 4.42 4.27
(20 20) 4.40 4.40
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Tahle 4: System parameters

Wy g g h b
5 21 {10 15) (3 4) {0.10.15)

29.90

29.85

29.80

29.75 4

29.70

Production cost

29.65

29.60

29.55 4

0 20 40 60 80 100
Iteration time

Fig. 1. Simulation result of the lognormal distribution case
26.54
26.524

26.50

26.48 1

Production cost

26.46

26.44 1

26.421

T T
0 20 40 60 80 100
Iteration time

Fig. 2: Simulation result when parameters are different

Non exponential distribution: Actual operation/production machine fault time not only obeys
the exponential distribution but also is likely to be subjected to the other distributions such as the
logarithmic distribution, gamma distribution and Will Bull distribution ete. Suppose, the machine
failure rate follows a mean, standard deviation for the logarithmie distribution 100, repair rate
follows a mean value, standard deviation was 10 log distribution. Other parameters are shown in
Table 1, the simulation taken time is 200, product demand rate (1,1) for the initial state (0,0). The
program runs 187 and the algorithm runs 8 generation reach convergence (Fig. 1).

All produets with different parameters: In order to facilitate the theoretical analysis, assume
that parameters of the products are the same. In the actual production, parameters of each product,
are usually different (Table 4). Assume that the demand rate i1s (1,1) for the initaal state (0,0),
failure rate and repair rate obeys the lognormal distribution with the same, the simulation time is
200, The program runs in 190 sec and the algorithm runs the 80 generation of convergence

(Fig. 2).
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For the two cases above, after the program runs in the finite time, the objective function can
be stable in a certain scope, therefore, method for solving the hedging point of the system generally
1s feasible.

CONCLUSIONS

This study took into account the existence of defects in the actual production and studied the
production control proeblem of single product type of unreliable production system. First, it analyzed
the dynamic characteristics of the system and established the mathematical model of the problem.
Second, it gave the optimal production control strategy of the system to meet some special condition
in infinite horizen and got the hedging point and average analytical sclution of shertfall in output
cost over production and finally, it put forward the method of computer simulation combined with
particle swarm algorithm hedging point approximation algorithms, the results were compared with
the theoretical values to verify the feasibility of the method. It discussed the effect of initial
condition on hedging point, the method was applied to the system in a general case and the
example showed that the method is also effective. Research on production control preblem of
unreliable production system product random defects multi-machine multi-product type will be the
next study.
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