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ABSTRACT

Resource Description Framework (RDF) is an important data presenting standard of semantic
web and how to process, the increasing RDF data is a key problem for development of semantic
web. MapReduce i1s a widely-used parallel programming model which can provide a solution
to large-scale RDF data processing. This study reviews the recent literatures on RDF data
processing in MapReduce framework in aspects of the forward-chaining reasoning, the simple
querying and the storage mode determined by the related querying method. Finally, it is proposed
that the future research direction of RDF data processing should aim at the scalable, increasing and
complex RDF data query.
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INTRODUCTION

Semantic data description is the standard method to describe basic data and manage knowledge
base in many fields. The Resource Description Framework (RDF) and the RDF Schema (RDFS) are
main identity information of semantic data. With the expanding of semantic web, the RDF data 1s
increasing and its amounts reach the large-scale level, so how to process massive RDF data becomes
the key problem of developing semantic web. The distributed computing and parallel computing
technologies provide better solutions to process large-scale data, in which the MapReduce 1s an
outstanding programming model. MapReduce has good scalability, data-locality and reliability and
it becomes the most widely-used data-intensive computing model. In this study, a synthesis analysis
of recent research results on RDF data reasoning, query and storage in MapReduce 1s shown.

RDF DATA REASONING

Recently, there are mainly the forward-chaining reasoning about RDF data reasoning
researches Forward-chaining reasoning is data driving, the total reasoning process beging with
data fact and executes repeated iteration under related rules to get all of the solution spaces with
the given data. According to logic process, the incremental reasoning algorithm can be divided into
monotonic reasoning and nonmonotonic reasoning.

Urbam et al. (2009) proposed the RDFS forward-chaining reasoning algorithm on
MapReduce. It is a direct RDFS data processing based on MapReduce implementation which
focuses on RDFS closure infinite and ignores some RDE'S rules and derives. This algorithm also is
optimized in respect of the derived copies, the triple connecting pattern and the fixed-point
iterations. It 1s implemented on Hadoop and 865M triple data with 64 machines are handled within
two hours,
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Husain et al. (2009) used MapReduce and Hadoop to store and query RDF graphs. They
divided a big RDF graph inte small files and stored them in Hadoop and then generated one or
more MapReduce tasks and used SPARQL querying to get the result. But this methed cannot
support the interaction during the query and some useful information is hardly found. Moreover,
this method cannot support the SPARQL keywords definition, such as UNION, DISTINCT and
FILTER. In addition, their study does not give the details of map and reduce execution.

Schlicht and Stuckenschmidt (2011) thought that the big disadvantage of using MapReduce
to execute semantic reasoning is repeat reasoning. Although performing separately MapReduce
task in limited RDFS calculation can avoid this problem, in the fixed-point iterations of more
ontology the repeat reasoning problem will appear. They proposed a Mapresolve methed based on
MapReduce optimizing to process more expression logic. This method can cause task node idle
because the tasks are into streaming structure, the read and write process of each iteration will
cause extra overhead. But it 1s the cost to ensure fault tolerance and usahility.

The scalable parallel processing method WebPIE (Urbani ef al., 2012) can use RDF closure in
MapReduce to process large-scale RDFE dataset. Although WebPIE is verified and is thought as an
incremental reasoning, its performance still relies on the input data. In other words, this method
does not. consider the relationship between previous data and increasing data.

The nonmonotonic reasoning method of semantic scale data in MapReduce (Tachmazidis et «l.,
2012) use the defeasible stratified logics. The result shows that this method has good scalability.
It is twice as fast as monotonic reasoning to process one billion triple basic data.

Due to more and more monoctonic increasing transitive closures Jang and Ha (2013) proposed
the distributed processing method of large-scale RDF dataset with MapReduce.

To resolve the non-monotonicity of knowledge base expanding with increasing knowledge, the
nonmonotonic reasoning of social science data increment with MapReduce is implemented
{Antoniou ef al., 2014). To support decision-making, this method can clean interference data and
extract high-level information from low-level input data.

To acecelerate process of data update and meet online search demand of user, Liau et al. (2014)
put forward an incremental and distributed Inference Method (IDIM) with MapReduce and
Hadoop. This method can balance old and new data and shorten update time, thereby reduce the
reasoning time of large-scale RDF data.

RDF reasoning with MapReduce 1s to solve the massive data processing problems under the
background of different reasoning purposes and the RDF rules constraints. By using the
MapReduce programming model, scholars implemented the iteration, data update and data
repetition during RDF reasoning. They use the defeasible logic, non-monotonicity and incremental
reasoning methods to reduce the reasoning time of massive RDF data. Although every method has
its own innovation and improvement, most of them are stopped at the laboratory level and need a
further apply in industries.

RDF DATA QUERY

The distributed query of RDF data is to do the RDF data search on distributed system.
According to definition the RDF data query can be divided into the query on SPARQL and the
query on other frameworks. Because the data is distributed on different nodes, query sentences
need to be decomposed according to rules of dividing data. Therefore, the RDF data query in
distributed environment includes decomposition of the join query and the distributed query.
Besides, those two queries can be divided from data distribution and query language constitution.
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Mika and Tummarello (2008) used MapReduce to calculate closures in large RDF graph and
response SPARQL query request but did not provide any details.

SPIDER querying framework (Cho et al., 2009) includes loading and querying of RDF graph.
The former can enter SPIDER store and the latter queries RDF sub-graph defined by SPRAQL
querying format. When SPIDER is realized in MapReduce, the map task firstly search parts of
sub-graph matching, then transmit the matching result to the reduce task which handle the query
request separately and give results. Because every node only store RDF data partly, SFIDER needs
merge sub-query results of each nodes. This process will weaken performance of the system.
Although RDF data is sorted in SPIDER, there 1s still the before-mentioned performance loses. The
experiment data come from 100 million triples in Berlin SFARQL Benchmark database.

The data flow language RAPID (Sridhar et «l., 2009) is an extension of Pig for RDF data
querying. The RAPID language defines the type, property and path data. The query 1s divided into
Generating Fact Diagram (GFD), Generating Basic Diagram ((GBD) and Multi-Dimensional Join
(MDJ) and their MapReduce implementation are given. The RAPID+ model (Ravindra et al., 2010)
reconstructs the RDFE graph by group, increases data processing parallel and reduces /0 costs. The
forward querying methoed based on RAPID+ model can merge calculation steps and simplify process.
Although RAPID+ model are tested on 120 million triples, those are only basic data query of RDF
graph and do not involve complex query.

Myung et al. (2010) proposed a MapReduce algorithm for SPARQL basic graph mode. Running
multiple tasks on MapReduce will bring much extra overhead, for example, at the beginning of
every query the calculation resources are needed to be reset, map funetion and reduce function will
sort data. Henee, this algorithm uses the greedy strategy to realize selection of join key in SPARQL
basic graph mode query sentences and applies multi-way join in MapReduce query task which can
reduce the useless task iteration. In the simulative cloud environment, experimental results show
that the calculation performance and scalability of the method is better than traditional SPARQL
query tools while executing SPARQL query on large-scale RDF data.,

Kotoulas and Urbani (2010) gave the preliminary definition of the common analysis query,
store the possible query name inte the separate table in which indexes are loaded. So, SPARQL
query can find the corresponding index by the query name. This method can reduce connection
request but there will be vast index storage and the data update will bring encrmous overhead for
rebuilding index.

PigSPARQL (Schatzle et al., 2011) is a directly SPARQL mapping method realized on Pig.
Although it did not do any optimization, it is proved that the SPARQL query can directly implement,
with MapReduce and dees not need any other programming model.

According te data distribution, the query 1s decomposed into parallelizable without
communication (FWOC) sub-query (Huang et al., 2011), every node only implements one
sub-query. The nearby points of RDF graph are divided to the same machine node. It can execute
the SPARGQL query effectively and do not need the communication within nodes. While doing this
in MapReduce framework, the communication between nodes is still necessary.

Kim ef al. (2011) divided the query into many star sub-query. While processing the query,
every map-reduce distribution and recycling iteration only needs handle one star sub-query. The
final result will be gotten after the sub-query results are jointed.

Husain ef al. (2011) proposed a heuristics processing framework of large-scale RDFE data query
based on MapReduce. They designed the SPARQL basic graph to divide RDF data into different
predicate files and then divide further the predicate file according to the types of objects. The query
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is classified by object types and the related data files are loaded to query. While doing the RDF
query, a greedy MapReduce task generation algorithm uses multiple MapReduce tasks to process
the SPARGQL BGP join operation iteratively and each task processes preferentially the triple pattern
sub-sentence in which the shared variable appear most times. This type of query response strategy
is too simple to guarantee the efficiency of query.

Ravindra et al. (2011) thought that the current MapReduce system realizes the related join
aperation by implanting the multi-join query into map-reduce iteration which cause heavy [/O load
and communication cost. In view of SPARQL graph match mainly demands join operation, they
proposed the combination operation for optimizing graph match which i1s achieved through
reinterpreted the join tree. The middle data are treated as “triple set” which can reduce the
map-reduce iteration during the query. Comparing with Pig and RAPID+, this method has 60%
performance increase.

Pig language 1s used to execute SPARQL query (Kotoulas et al., 2012) and this method 1s
achieved in MapReduce model which can be used in RDF forward-chaining reasoning. It can
process complex SPARQL 1.1 query and optimize join operation of runtime and give the solution
to the skew problem in MapReduce.

To satisfy the demand of social network data analysis described by RDF framework, two
primitives (Liu et al., 2013) are proposed to achieve higher efficiency while using MapReduce to
process the SPARQL query.

The request speed and efficiency are two important aspects to evaluating the MapReduce tasks
of RDF querying. The common process of querying are as follows: Input data, generating the index
table, processing query and merge the result. To optimize those processes, the above literatures use
some methods, for example, choosing different RDF primitives, dividing index table in different
ways and revising the execute ways of MapReduce query. Similar with RDF reasoning, the RDF
query process also has updating massive data, renewing index table problem and so on which are
waiting for future researches.

RDF DATA STORAGE

According to partition results, RDF data is stored with key/value pairs. The partition strategies
include the partition on graph structure and storage with key/value pairs directly.

The RDF molecule method (Newman ef al., 2008) is put forward on integration and processing
of RDF protein interaction data. The EDF molecule definition includes RDF triple (subject,
predicate, object) and molecule ID (spom, posm, ospm). The RDF molecule is a medium granularity
between RDF graph and triple. This method can divide RDF graphs into small units which are
decomposed and merged on MapReduce. This RDF molecule base provides expanding method for
storing and processing large-scale biomedicine data distributed. But the RDF molecule query
method in detail is not. given and the amount of data 1s only 4015778 triples.

SPIDER (Choi et al., 2009) uses HBase database to store RDF data. Because RDF uses triples
to represent data, while HBase is oriented to column-storage, RDF data need to be transferred by
column-oriented way. For RDF data is sparse itself, it is suited to store in HBase. But strategy of
storing RDF triple in HBase and experimental results are not introduced minutely.

Sun and Jin (2010) provided the RDF storage solution in HBase and a SPARQL basic graph
query method with MapReduce. According to composition of subject-verb-object triples, they
designed six kinds of HBEase tables to match the possible SPARGQL triple pattern and proposed the
method of selecting join key based on greedy strategy. But this methed will copy RDF data six times

198



J. Software Eng., 9 (1): 195-202, 2015

and need more storage space for ontology data. While modifying and deleting the RDF data, six
tables will be accessed simultanecusly. Because HBase database does not support transaction
processing, this method alse has data synchronous problem.

The triple storage SHARD ( Rohloff and Schantz, 2010) based on Hadoop, supports large-scale,
high-powered and robust data storage. The method of establishing structure information system
with MapReduce is also given. In 2011, the MapEReduce model based on SHARD for optimize graph
data processing is proposed, it uses sub-sentences and iteration method to respond SPARQL query
request of RDF data.

Husain ef al. (2011) proposed a solution to store and process large-scale RDF data with a HDFS
and MapReduce. RDF data are stored in HDFS as N-triples file to guarantee the integrity of RDF
data and convenience of implementing MapReduce task. Nevertheless there are some shortages.
Firstly, the RDF data file must be reprocess in order to store in HDF'S. Moreover, storing in HDE'S
directly 1s lack of efficient index structure. Secondly, for all of the sclutions in this study are based
on HDFS file system, it is hard to modify large-scale RDF data randomly. Hence, using HBase and
other distributed database system to store ontology data is easy to access and modify data randomly.

Through the distributed computing ability of cloud platform, TripleCloud (Gueret ef af., 2011)
stores triples into Hbase in the form of keyfvalue pair which can reduce the cost of inputing
large-scale RDF dataset and achieve management of RDF data.

Franke et al. (2011) proposed a distributed semantic web data management framework based
on HBase. They designed a EDF data strategy using two HBase data table and realized a
MapReduce algorithm for SPARQL basic graph mode query. Compared with MySQL cluster
database experiment, it is certificated that the scalability and data query efficiency of semantic web
data management under cloud environment. is better than traditional relational database. But their
solution is still limited in the caleulation of SPARQL basic graph.

HadoopRDEF (Du et al., 2012) is a RDF data storage and analysis system based on Hadoop and
Sesame which is a RDF store system. It deploys a Sesame Server instance on every node of Hadoop
cluster, then uses the Sesame interface to store and query RDF data. HadecopRDF uses Hadoop to
ensure high reliability and fault tolerance recovery ability. Similarly, MapReduce is useful for
parallel implementation of RDF data query.

H2RDF (Papailiou ef al., 2012) 1s a cloud RDF data query system based on HBase and
MapReduce. It indexes RDF data three times as SPO, POS and OSP and stores them into HBase
as key/value pairs. There are two types of query method in HZRDF which are MapReduce query
and Centralized query. For the SFARQL query, the HZRDF first uses Jena to analysis the query
and then uses join algorithm to decide query method. The purpose of this operation is to get higher
efficiency which can use centralized query to perform simple query and use MapReduce to perform
complex query. In 2014, H2RDF+ which extends H2RDF is proposed to get better performance.

As the basic level in the system, RDF storing assists an effective execution of reasoning and
query, the distributed store of cloud platform provides more possible for massive RDF data storage.
Current researches are aiming at improving the storage system based on cloud platform
{e.g., HBase) and doing some modifications according to RDF data characteristics.

CONCLUSION

Using MapReduce to process RDF data i1s the leading edge of semantic web research and it 1s
useful to develop a scalable fundamental data processing platform. The current researches of RDF
data processing focus on the forward-chaining RDF reasoning, the simple RDF query and the RDF
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storage strategy which are related to the query method. In future, researches of RDFE data

processing should aim at the large-scale, dynamic growing and complex RDF data query.
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