Journal of
Software

Engineering

ISSN 1819-4311

@

Academic
Journals Inc. www.academicjournals.com

Journal of Software Engineering 9 (2): 383-391, 2015
ISEN 1819-4811 / DOI: 10.2923/s2.2015.383.391
© 2015 Academic Journals Inc.

Parallel Optimization of String Mode Matching Algorithm Based on
Multi-Core Computing

Y*Zhanlong Chen, 'Liang Wu, 'Jiongyu Ma and 'Kuo Zheng

'School of Information and Technology, China University of Geosciences, Wuhan, 430074, China
*State Key Laboratory of Geography Information Engineering, Xi'an, 710054, China

Corresponding Author: Liang Wu, School of Information and Technology, China University of Geosciences, Wuhan,
430074, China

ABSTRACT

String mode matching is a classical computer research question and one of many key
technologies in the network security system. With the hardware technology and network
technology development in infoermation age. Big data processing and application requirements for
new string matching technology presents new challenges. Suffix array is a string matching and
efficient data structure. It solves a lot of complex queries in text database application. This study
focuses on the system architecture of multi-core computing environment characterized, optimization
and improved suffix array algorithm, enhancement algorithm execution performance, improve the
efficiency of the parallel algorithm. Finally, compared with the BF algorithm and the serial
algorithm of suffix array. Conclusions drawn parallel string pattern matching algorithm to improve

application performance optimization and save hardware cost of great significance.
Key words: Multi-core, string matching, suffix array, OpenMP

INTRODUCTION

With the increasing expansion of information resources, as well as network bandwidth, the text
needs to deal with the growing scale. The string matching is very important and is one of the
commonly used operations of string. Research in this field across from genetics, bicinformatics and
computer musie, to keyword search from billions of web pages, image processing and pattern
recognition; from eyber espionage, virus intrusion detection technology, network distance learning
to text compression, data encryption, data mining technology. These heavy computing tasks makes
computers and servers spent a considerable amount of time, string matching has become a key
factor affecting the performance of applications (Mei et al., 2013). However, the pace of
development. of existing sequential string matching algorithm is far behind the development of
computer hardware, the emergence of multi-core technology makes the rapid development of
microprocessor parallel processing technology for parallel processing string matching has important
reference.

This study describes the present situation of computer development multi-core computing
environments and then describes the string matching algorithm used in this study the idea of suffix
arrays, followed by studies of the multi-core parallel computing environment optimized for string
matching method and finally the experimental data analyzed and summarized (Huang, 2010).

383

J. Software Eng., 9 (2): 383-391, 2015

METHODOLOGY

Multicore computing environment: [n the early era of single-core CPU, some microprocessors
simulate multiple logical CPU cores to achieve multi-threaded computing, parallel computing
technology where relevant include: Bit-level parallelism, pipelining and multi-uni. The way these
multi-thread processing technology use to make multipal thread running on a single CPU is thread
switching. As for the programmer, the advantage of this technique 1s that the programming
language in order allows parallel execution of instructions. However, the degree of functional units’
parallelism and pipelining is limited and the overhead of frequent thread switching will cause a
serious influence on system performance.

In recent years, with the continuocus development of semiconductor process technology and
architecture, the advancement of modern semiconductor process technology in which VLSI is the
typical one can't meet the need of microprocessor performance development.

Since 2005, the multiple microprocessor cores integrated on a chip called a single-chip
multi-processors, each execution core has its own collection as well as the structural resources
{(Hager and Wellein, 2010). These multicore chips makes memory can be divided into variable size
pages, each core has a L1 cache which has a few KB, shown in Fig. 1. Intel's sandy bridge-E
integrates eight kernel in it's chip and has 16 threads, 32K L1 cache, 256K L2 cache and 20M
shared cache.

Multi-core processors improve the program’s computing power and parallel ability, really
achieve a multi-threaded running in parallel, give us higher efficiency and powerful parallel
processing capability and in the meanwhile also reduce power consumption and the difficulty of
heat dissipation. This structure of a processor system has become an inevitable trend of
development (Hennessy and Fatterson, 2007; Patterson and Hennessy, 2008). To take full
advantage of parallel computing resources provided by multi-core architecture, it 1s necessary to
transform the original serial program to multi-core parallel one, there are five existing parallel
programming modes (Bai ef al., 2006): Stealth mode, data parallel mode, messaging patterns and
share variable mode. (1) Stealth mode uses compiler and run-time envircnment to support
a program and discover parallel processing of serial programs, (2) A data parallel requires
unrelated sets of data, parallelism programs may be implemented by a data partitioning, (3)
Messaging patterns represented by MPI, PVYM 1s a variant of the message passing model and (4)
The shared address space model: OpenMP (OpenMP, 2011) as a typical one, the main advantage
of adding parallelization directives to the serial program, done automatically by the compiler
to parallelize,

Shared 20 MB L3 cache

256 KB 256 KB 256 KB 256 KB 256 KB 256 KB 256 KB 256 KB
L2 L2 L2 L2 L2 L2 L2 L2
Core No.1 [|Core No. 2[|Core No. 3||Core No. 4|| Core No. 5|| Core No. 6| Core No. 7||Core No. 8

Fig. 1: Shared memory of sandy bridge-E chip

384

J. Software Eng., 9 (2): 383-391, 2015

Suffix array: With in-depth study of string matching problem, especially in the fast-growing mass
of information retrieval, computational biology and network security field, the problem is now one
of the problems in computer science that has been widely studied. String matching problem is a
search problem in order to find some symbol sequence (called model) in some of the larger
MAmatching symbol sequence (called text) under some certain conditions.

Today, much index structure is designed to optimize the text index (Stoye, 2008). Among them,
the suffix array has 20 years of history (Manber and Myers, 1993), has tended to be replaced by
compressed suffix array and Burrows-Wheeler (Adjeroh et al., 2008) conversion. However, these
new index structures operating efficiency is slower and take more memory space. Suffix arrays are
data structure used in a text database to quickly search keywords. In fact, the suffix array is a
sequence of all suffixes that have been sorted of a specific word. First, define the text string T
[1... n], length n, the corresponding suffix array SA [1 n] store text suffix initial position
pointers, arrays sorted lexicographically suffix. Figure 2 is an example of the text “Suffixarray §”,
$ as a suffix, marks the end of an array.

Suffix array stores dictionary sequence suffix information of text T instead of storing text
information itself. When we search for a pattern X[1m], the first to visit 1s the suffix arrays and

1,2,3,4,5,6,7,8,9,10,11,12
T [Slufelrli[x]ar]r[a]y[s]

i Text suffix SAJi]

1 $ 12

5 array$ 7

3 ay$ 10

4 ffixarray$ 3

5 fixarray$ 4

6 ixarray$ 5

7 ray$ 9

8 rray$ 8

9 suffixarray$ 1

10 uffixarray$ 2

11 xarray$ 6

12 v$ 11

Fig. 2: Suffix array of string “Suffixarray”

385

J. Software Eng., 9 (2): 383-391, 2015

the length of text T, the length of the text T is denoted by |T| = n. Therefore, if we want to find all
suffixes text starting with X, an array of sorted dictionaries sequence, we use binary search as our
search mode to search suffix arrays: One is the direct pioneer of X and the other is the direct X
successor. We obtain the suffix array interval matching pattern in this way. Figure 3 shows how
to search.

Figure 4 illustrates the sequence of the NQ search mode. Eventually, in order to avoid
interference with the disk access cost, all the patterns of length L is loaded into the main memory.
This algorithm uses a continuous array traversal patterns next () function is executed, each of
which mode execution SA query substring search algorithm.

Parallel optimization under multi-core computing environments: Multicore technology
integrate multiple processor cores into a single chip, without changing the existing structure of the
premise, so, computing resources of the entire system obtain a significant increase (Yuan et al.,
2011). This makes all the processors are connected to a shared memory unit, the processor when
aceessing memory use the same memory address space. Since the memory is shared, the data one
processor writes in memory can be immediately accessed by other processors, all the processors share
memory subsystem and bus architecture. Because of shared memory parallelization, all tasks can
be asynchronous read and write shared address space and we can use locks or semaphores to
control tasks’ access to shared memory (Tinett1 and Martin, 2012).

In this process, there is no need to distinguish the identity of the data and no need to care about
the communication data between tasks, so, that parallel programming complexity is greatly
simplified and reduced the burden on the programmer too.

In this study, we use OpenMP standard, a multi-threaded operating model to achieve a shared
memory parallelism within the nodes. OpenMP compiler uses the process to achieve the OpenMP
parallel thread (Fig. B), the program i1s running according to user-defined maximum number of

Search (SA, pattern X, pattern size L)

Left=1
Right=n
While = (left<right)
Center = (left<right)/2
Strnepy (buff, T+SA[center-1],L)
If (cmp = Stremp (X, buff) = 0)
Return (center-1;)
Else if (cmp<0)
Right = center-1
Else
Left = center-1

Fig. 3: Search algorithms on a length 1 pattern

Main memory

1 e for (int q = 0; q<NQ; g++)
Q X = Patterns next ()
Patterns: | | """" | | Results = SA. Search (SA, X, L)

Fig. 4: NG search mode

386

J. Software Eng., 9 (2): 383-391, 2015

‘/

4 N e \ e N\
G GO D
\, JooN SN J
< < T
\\\\A \\4 i
\
)
4

o) «

4._--

Parallel section 2

Fig. 5: OpenMF thread management mechanism

threads to avoid the cost which is brought by the frequent great creation and revocation of process.
All the threads created when OpenMP job lead. After initialization, pick one thread as the main
thread and all other threads in the thread pool waiting. When the main thread running to the
parallel region, it wake the other threads up by using OpenMP runtime library function comp
parallel, after all the other threads exec parallel zone, they return to the thread pool to wait. This
method makes multicore, multithreaded processors achieve high execution performance, really
reduce system costs and use memory in a much better way. This method makes it easy to implement
incremental parallelism. Besides, it have high level of abstraction and portability and is a
high-performance and relatively simple parallel programming model on SMP system and in fact
it has become the standard for shared memory multiprocessor parallel programming.

We study parallelization of a suffix array in multi-core computing environments, for a P
processor cores parallel computer systems. The text T [1..n] 1s divided inte n suffix segments
assigned to NT threads, that is the way to construct the suffix array SA, NTi is respensible for
matching operation between SA and pattern segment pattern [1...n], in order to avoid read conflicts
among each, every thread has a local variable buff to store the length of suffix and use variable
left, right and emp to store the location from where the suffix array SA starts to search. Meanwhile,
in order to avoid delay in execution time caused by the critical region, use the result [1..NQ] to
store execution results of all threads. In compile guidance statement number pragma omp, “for”
command lets a for loop to be executed by multiple threads (Fig. 6).

The features of suffix array search algorithm shows that it more suitable for multi-core
processor to improve the efficiency, in particular binary search algorithm we proposed, is more
suitable than the other algorithms to access the elements of the suffix array. To further improve
efficiency, we have introduced an additional data structure stored suffix array elements which are
often accessed showed in Fig. 7.

This new data structure only take very little space, so it can be stored even on the lower level
cache storage which can be used to reduce the number of visits of the string, to quickly search for
a substring. Figure 8 shows a detailed algorithm: When we start to search a new substring

387

J. Software Eng., 9 (2): 383-391, 2015

Parallel matching algorithm

1: Omp set_num_thread (NT)//Number of threads

89}

#pragma omp parallel private (tid, X) shared (L, result)
tid = omp_get_thread_num ()
#pragma omp for
for (int g = 0; q<NQ; g++)
X = patterns [q]
Results [q] = SA. search (SA, X, L)

NS W

Fig. 6: Parallel matching algorithm

[85]

AUX: 0 1 New data structure

T S f f i X a r r a y $
o~
SA:
i 3 6 9

Fig. 7: New data structure

Search (SA, pattern X, pattern size L)

left = 1; right = n; step = -1; it = 0;
While (left<right)
center = (left+right)/2
if (step ==-1)
strnepy (buff, T+AUX[1], L)
else if (step == 1&& it==1)
strncpy (buf, AUX[O0], L); / left
else if (step =2 && it=1)
strnepy (buff, AUX[2[, L);
else
strnepy (buff, T+SA[center-1'], L);
if (cmp = stremp)X, buff) == 0)
return (center-1);
it++;
if (cmp<0)
right = center-1
step=1
else
left = center+1
— step=2

Fig. 8: Catch optimization

(iter = 1), we first access the second element of AUX and then we access element at the left side of
AUX [1] if we need to continue searching. Set iter = 2 and compare the first element of the AUX

388

J. Software Eng., 9 (2): 383-391, 2015

with substring X, otherwise, compare the third element AUX with substring X. This improvement,
find the substring we want quickly, enhance the number of cache hits, improve operational
efficiency of string matching and achieve cache optimization as well.

RESULTS AND DISCUSSION

In this study, the CPU isthe Intel (R) Pentium (R) CPU G860 dual-core processor, clocked
3 GHY. The operating system is Windows 7. The compiler is V52005 C++ compiler, in the test, all
of the algorithms and testing procedures written in C++ language, We read all the test text into
memory at a time and then call the search algorithm to search pattern strings’ all appearance in
the text, at the beginning and the end of search function we call clock-t to calculate the running
time in milliseconds.

When present studies show its search performance, BF algorithms are compared (Huang, 2010).
Therefore, this study is ne exception. BF algorithm implemented and the suffix array algorithm
uses the same experimental envirenment and compiler to reduce the impact of the environment.
We illustrated by experiments the proposed parallel string matching of string pattern algerithm is
more efficient than the others and have advantages in terms of computation.

Figure 9 shows in the case of same pattern string tested with different amounts of text data,
BF algorithms, suffix arrays serial and parallel algorithms for time-consuming comparison.

As we can see from Fig. 9: In the case with the same pattern string, the execution time of the
three algorithms increase with the amount of text data. Among them, the suffix array serial
algorithm improves the efficiency of the BF algorithm 3 times. So, suffix array matching algorithm
compared with the traditional BF algorithm has greatly improve the performance and efficiency.
Then we further investigate much deeper and makes the suffix array algorithm parallelization,
experimental results show: The parallel efficiency which is suffix array search algorithm improved
is 1.22 times higher than the serial one, performance has exponentially improved.

Experiment studies further on the algorithm's acceleration ratio with different number of
threads (accelerated execution time ratio = serial/parallel execution time) (Fig. 10). The amount of

5.0 —o— Serial algorithms
—a— Parallel algorithms
4.5 1 —«— BF algorithms

4.0 1

3.5

Time-consuming (sec)
(]
wn
1}

1 10 20 30 40
Amount of data

Fig. 9: BF algorithms, suffix arrays serial and parallel algorithms for time-consuming comparison

389

J. Software Eng., 9 (2): 383-391, 2015

—0o— Data amount 1
—a— Data amount 2

Acceleration ratio

1.70 T T T 1

4 6 8
No. of threads

[5)

Fig. 10: Acceleration ratio with different number of threads

data to be tested has two different sizes, one 1s 10 kb, the other is 40 kb. It was found that: With
the increase number of threads, accelerate of algorithm than have improved but after reaching a
certain number of threads, speedup stabilized, even for the large amount of data, with the increase
number of threads, the speedup will decline. This is due to the number of CPU core computer
hardware limitations and local conditions, the overall curve is relatively flat, with no significant
improvement.

CONCLUSION

At present, the world 1s faced with the “Information explosion”, the advent of the era of big data
and the increasingly high performance requirements of matching string. On the other hand, the
rapid development of computer hardware provides a powerful shared memory and parallel
resources provide a powerful support for string matching study. In the study, we analyze the suffix
array string matching algorithms and the parallelization method in multicore computing
environment and proposed optimization program to increase the number of cache hits. Experiment,
use a sample to analyze and compare with traditional BF algorithm, the experimental results also
proved that the suffix array of parallel matching algorithms in terms of performance and efficiency
has greatly improved. However, due to hardware limitations the laboratory conditions, the existing
parallelization is not maximize the reflect. In future study, we will choose a more excellent
experimental hardwares, propose a more optimal solution and use parallel technology in multi-core

environment to other string matching algorithms te make full use of it’s power.

ACKNOWLEDGMENTS

We acknowledge “Five-second” National Science and Technology Support Program for “The
research of network service platform for geographic spatial information tool set” (2011BAHO6B04)
and Fundamental Research Funds for the Central Universities (CUGLO90251) and Geographic
Information Engineering and National Key Laboratory Fund (No. SKLGIE2013-Z-4-1) and

390

J. Software Eng., 9 (2): 383-391, 2015

InformationEngineering in Surveying, State Key Laboratory funded projects (No. 13102) and
Central Universities Fundamental Research special projects (CUUGL130260), Research Programs
national natural science foundation of China (41401443).

REFERENCES

Adjerch, D., T. Bell and A. Mukherjee, 2008, The Burrows-Wheeler Transform: Data Compression,
Suffix Arrays and Pattern Matching. Springer Science and Business Media, New York, UUSA
[SBN-13: 9780387789095, Pages: 364.

Bai, Z2.Y., X. Yang and J. Kuang, 2006. Parallel Computer Architecture. Science Press, Beijing,
China, pp: 19-20.

Hager, G. and G. Wellein, 2010. Introduction to High Performance Computing for Scientists and
Engineers. CRC Press, Boca Raton, ISBN-13: 9781439811931, Pages: 356,

Hennessy, J. L. and D.A. Patterson, 2007. Computer Architecture: A Quantitative Approach. 4th
Edn., Morgan Kaufmann, San Francisco, CA., USA., [ISBN-13: 9780080475028, pp: 198-214.

Huang, H., 2010. Studies on the general parallel method to improve the performance of string
matching algorithm. Master's Thesis, Xi'an University of Architecture and Technology.

Manber, U. and G. Myers, 1993, Suffix arrays: A new method for on-line string searches. STAM
J. Comput., 22: 935-948,

Mei1, H., X.Y. Wang and L. Zhang, 2013. Progress in research on string analysis. J. Software,
1: 37-49.

OpenMP, 2011. OpenMP application program interface. Version 3.1, dJuly 2011,
http:/lwww.openmp.org/mp-documents/OpenMP3.1.pdf

Patterson, D.A. and J.L. Hennessy, 2008 Computer Organization and Design: The
Hardware/Software Interface. 4th Edn., Morgan Kaufmann Publishers Ine., San Francisco,
CA., USA., ISBN-13: 978-0123744937, Pages: 912.

Stoye, J., 2008, Bu-x Tree Construction in Ram. In: Encyclopedia of Algorithms, Kaco, MY, (Ed.).
Springer Science and Business Media, New York, TJSA.

Tinetti, F.G. and S.M. Martin, 2012. Sequential optimization and shared and distributed memory
parallelization in clusters: N-body/particle simulation. Proceedings of the 24th TASTED
International Conference on Parallel and Distributed Computing and Systems,
November 12-14, 2012, Las Vegas, UJSA.

Yuan, Q. J. Zhao, M. Chen and N. Sun, 2011. Performance bottleneck analysis and
solution of shared memory operating system on a multi-core platform. J. Comput.
Res. Dev., 12: 2268-2276,

391

	383-391_Page_1
	383-391_Page_2
	383-391_Page_3
	383-391_Page_4
	383-391_Page_5
	383-391_Page_6
	383-391_Page_7
	383-391_Page_8
	383-391_Page_9
	JSE.pdf
	Page 1

