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ABSTRACT

This study investigates Estimation of Distribution Algorithms (EDAs) based Bayesian networks
with KS learning method. The EDAs based Bayesian networks are used to analyze the effect of
learning the best structure in the search. By using KS learning method that can learn optimal
Bayesian networks, two important issues in KDAs are studied. First, we discuss that whether
learning a more perfect depending model leads to a better behave of KDAs. Second, when a perfect
learning 1s accomplished, we are able to cbserve that how is the problem structure transformed into
the probabilistic model. Several different kinds of experiments have been conducted. The
experimental results show that when the accuracy of the learning is increasing, the quality of the
problem information learned by the probabilistic model can also be improved. However, the
improvements in model accuracy do not mean a more efficient search at all times.

Key words: EDAs, learning structure, problem structure, probabilistic model

INTRODUCTION

EDAs (Larranaga and Lozano, 2002; Hauschild and Pelikan, 2011; Muelas et al., 2014) are a
new kind of Evolutionary Algorithms (EAs) that use probabilistic models instead of the typical
genetic operators used by Genetic Algorithms (GAs) (Reeves, 2010; Wang and Chen, 2013).
Relevant features of the search space in KDAs are extracted by machine learning methods. In
EDAs, employing a probabilistic model represents the collected information which is used to
generate new individuals later. By this way, probahilistic models can lead the search to hopeful
areas of the search space.

Mathematically, an optimization problem can be seen as the minimization or maximization of
a given function. Thus, optimization preoblems can be formulated as:

x" =arg, max{(x) (1)

where, [ 5K is called the objective function or fitness function, x = (x,,....,x )¢5 1s a candidate
solution of the problem and 5 is named the problem space. In most cases, the optimum x* is not
unique. In this study, the problem space S1s an n dimensional discrete space.

Because the EDAs (Larranaga and Lozano, 2002; Muelas ef «l., 2014) can capture the
structure of the problem, KDAs are considered to be more efficient than GAs. In KDAs, the specific
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Fig. 1: Flow chart of estimation of distribution algorithms

interactions among the variables of solutions in the problem are taken inte mind. In evolutionary
algorithms, the interactions are displayed implicitly in mind, whereas in EDAs, the interrelations
are showed explicitly through the joint probability distribution asseciated with the individuals of
variables selected from each generation. The probability distribution is calculated according to a
population of selected candidate solutions of previous generation. Then, offsprings are sampled from
this probability distribution generate. Neither crossover nor mutation has been used in EDAs,
Figure 1 displays the flow chart of estimation of distribution algorithms.

An EDA has such basic elements (Larranaga and Lozano, 2002). Encoding of candidate
solutions, objective function, selection of parents, building of a structure, generation of offspring,
selection mechanism and algorithm parameters like population size, selection size, ete,

Different EDAs (Larranaga and Lozano, 2002; Ahn ef al., 2012) mainly differ in the kind of
prebabilistic models employed and the approaches used to learn, then sample from the obtained
models. Bayesian networks is one of the models that has been widely used in KDAs. One of the
advantages of EDAs that employ these kinds of models is that the complexity of the learned
structure relies on the characteristics of the selected individuals. Moreover, the analysis of the
models learned during the search can provide useful information about the problem structure.

One important 1ssue in KDAs 1s to study how the selections of the probabilistic models and of
the learning and sampling methods can offer the reasonable balance between exploration and
exploitation. There are many studies which report about the way in which the performance of
EDAs can remarkably vary according to the changes in the parameters that determine the learning
of the models {Jin and Jin, 2014; Ceberio ¢t af., 2014; Chang and Chen, 2014). Moreover, in the
case of EDAs which use Bayesian networks, the role of the parameters which penalize the
complexity of the networks has been studied, a similar analysis of the accuracy of the methods used
for finding the best model and its influence in the behavior of EDAs has not been carried out yet.

How the characteristic of the search space are reflected in the learned probabilistic models 1s
another related and important issue in KDAs. This issue has received special attention from the
EDA community and is essential te understand the mechanisms that enable KDAs to efficiently
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sample from the problem space during the search process. However, the question of analyzing the
relationship between the problem space and the structure of the learned probabilistic models
becomes more and more difficult because of the next two main reasons: The search process is
random in the EDAs and the methods used when learning the models can only detect approximate,
suboptimal, structures.

In this study, we provide a choice that allows to investigate the influence that learning an
optimal models of the population produce in the response of EDAs based on Bayesian networks.
Moreover, our study provide a solution to obtain more accurate information about the relationship
among the problem structure, distributions of the solutions and the probabilistic models learned
during the search process.

This study is based on the use of methoeds for learning the best Bayesian networks, Methods
which conduct best Bayesian structure learning, compute according to a set of individuals and a
predefined score, the network structure that optimizes the score and the BIC score used in this
study. Because learning the best Bayesian network is a NP-hard problem, it is must to set
constraints on the maximum number of variables so as to they can be deal with by some methods.
Usually, we use dynamic programming algorithms to learn the structure.

The learning of probabilistic models to extract the relevant information that the selected
individuals can contain about the problem is a fundamental step of the algorithm. Regarding this
issue, we wonder how the search and the behavior of the EDA is influenced by the accuracy of the
learning method.

BAYESIAN NETWORKS

The EDAs considered in this study employ factorizations which can be represented by Bayesian
networks. Bayesian networks (Darwiche, 2010; Bensi et al., 2013) which is called belief networks
are a kind of probahilistic graphical model. This kind of prebabilistic models is one of very popular
paradigms that can deal with preobability distributions efficiently in modeling uncertain
information. The domain of expert systems is one of the most important sources for the development
of Bayesian networks. Moreover, in the past few years, Bayesian networks have obtained
considerable attention in demain of the machine learning. As a result of this attention, more and
more study and tutorials have appeared. Thus, besides expert systems, Bayesian networks are also
applied in classification problems, bioinformatics and optimmzation.

Bayesian networks are the product of asscciating probability and graph theory (Koller and
Friedman, 2009), similarly with any other probabilistic graph model. The graph consist of the
model encodes a number of conditional independences related to the probability distribution.

Let x = (x,,..., x,) be an n dimensional discrete random variable. The factorization of the joint
probability distribution p(X = x) for X can be graphically expressed by a Bayesian network, where
% =(x,..., x,) is an assignment of the random variable X. Maore specifically, a Bayesian network can

be expressed as a pair (s, 0,), where, s is a directed acyclic graph that is model structure and 0, is
the set of parameters associated to the structure that is model parameters. The structure s
determines the set of conditional dependences among the random variables of x. According to the
structure s, the joint probability distribution p(x) can be factorized by means of marginal and
conditional probability functions. Specifically, the probability distribution factorizes according to
the graph as:

p(x) :ﬁp@ pa,) @)

453



J. Software Eng., 9 (3): 451-468, 2015

where, pa, denotes a value of the variables Pa, that is the parent set of x 1in the graph
structure s.

The local prebability distributions in the factorization are those which is induced by means of
the product that appears in Eq. 3. We suppose that these local probability distributions depend on
the parameters 0, =(0,,...,0)). So, Kq. 3 could be rewritten by specifying the parameters:

p(x18,) = [ p(x, Ipa,.6,) (3)

Suppose that the variable x has r, possible values, thus the local probability distribution
p(x | pal, 8, is an unbounded discrete distribution:

p(Xic ‘ paij’ 81) = euk (4)

where, pa,..., pa* represent the g, possible values of the parent set Pa,. The parameter 0, denotes
the probability of variable x; which takes in its k-th value, at the same time, the set of its parents’

variables takes in its j-th value. Therefore, the local parameters are determined by, = ((6,, )i )%,

Bayesian network learning: In order to look for a Bayesian network (Friedman ef al., 1997,
Hauschild et al., 2012) which can make us to represent and deal with the uncertain knowledge of
a specific field, setting both the structure and the parameters is very necessary. The structure and
conditional probabilities that is necessary for describing the Bayesian network can be provided
either externally by experts, by machine learning from datasets or by mixing both of these
methods. In this study, we mainly focus on the second method. Besides, when the structure has
been automatically learned, it can provide us with perceptions into the interactions between the
variables of the field.

The learning step can be separated into two subtasks that are structural learning and
parameter learning (Daly ef al., 2011; Buntine, 1991; Barber, 2012). Although there are different.
approaches to learn the structure of a Bayesian network, we mainly focus on the so-called score
plus search method. This kind of methods copes with the structure learning as an optimization
problem. Thus, the steps of learning a Bayesian network can be expressed as follows. Given a data
set D containing N cases, D = {x,,...,x}, finding the structure s* such that:

s =argmaxg(s,D) (5)
sest

where, g (5,D) is the score which measures the quality of any given structure s related to the data
set [J and S"is the set of all possible Directed Acyclic Graphs (DAG) which have n nodes. A number
of relevant and used heuristic techniques such as greedy search, simulated annealing, particle
swarm optimization, genetic algorithms and ant colony optimization have been used in this task.

If score can be decomposed in presence of complete data sets, it is the one of the desirable
character. These scores can be decomposed in sub-scores related to every node X, and its parents
Pa, in the structure s. Formally, we can express a decomposable score as:
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g(sD) = g, (X, Pa) (®)

i=1

where, the gp, 1s the sub-score function. As a result of the decomposability, it is computationally
more efficient when the local search i1s carried out because when we add an arc into the network,
it is only necessary to evaluate the set of nodes involved by this change.

Conecerning the accomplishment of the score g (s, D), there are some choices that can be
considered. For example, there are marginal likelihood, the log likelihood probability penalty and
information theory based entropy which we can use. In this study, we will employ the Schwarz
criterion, which is also called Bayesian Information Criterion score (BIC). This score is obtained as
following steps. From a known dataset D ={x,,...,x}, we could calculate for any Bayesian network
structure s the maximum likelihood estimate 05 for the parameters set 0, and the related maximized

log likelihood:

logp(D|s,0,)

g
log [ | p(x, I5.9,)
w=1

= logﬁﬁp(xw,l | pa,.6,) (7)

w=1 1=1

no 9 5

= X Xlee(6,0™

i=1 j=1 k=1

where, N, represents the number of instances in dataset D in that the variable X; takes its k-th
valuex* and Pa; takes its j-th value Pal. Because the maximum likelihood estimate of parameters

0, 1s calculated by:

é _ N1Jk
NlJ
Where:
Nl.l = Elile‘Jk’
We have:
- 1 4 f le
logp(D|s, 9) = EZZNuk log NJ (8)
i=1 j=l k=1

u

Usually, we do not. employ the log-likelihood function to lead the search process because of two
main problems. Firstly, the log-likelihood function 1s a monotonous increasing according to the

complexity of the model structure. Thus, if we employ this score to determine the quality of the
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structures during the search process, it could lead searching towards the complete Bayesian
network. Secondly, when the number of parameters for each variable increases, the error of the
parameter estimation increases too. For purpose of overcoming these problems, we could add a
penalty term to the log-likelihcod. The equation of the penalized log-likelihood takes as:

Zi‘, iNuk log iﬂ‘ ~h(N)dim(S) (9)

i=1 j=1 k=1 i

where, dim(5) denotes the dimension of the Bayesian network, i.e., dim(3) = q,{r,—1). h(N) is a
penalty function which 1s non-negative, it takes:

h(N) = %ng
in the BIC. Therefore, we can write the BIC as:

N n - 1 n
BIC(s, D) = | . . 8)——loge NYq (r -1 (10)
(.D) = log [T[1rtx. Ipa,. 6)~log ;ql (r, 1)

w=1i=1

On the other hand, parameter learning is the numerical analysis of the parameters 0, which
denote the conditional and marginal probability distributions after the factorization determined by
the structure s. Although, this study can be dealt by means of different methods, we employ the
maximum likelithood estimation in this study. Particularly, when the structure has been learned,
the parameters of model can be calculated by using the Laplace correction as follows:

— ik 7 (11)

Emulation: When we have got a Bayesian network by learning, this model could provide us with
detailed probabilistic information which we are interested in. Usually, the information which the
researcher wants to know is the probability of some events on the basic of special observations.
Crenerally speaking, the probabilities which we are interested in, are not reposited in the Bayesian
network obviously. It is necessary to compute in order to obtain them. This course is called
probabilistic inference and it is usually an NP-complete problem.

Emulation of Bayesian networks, which is also named stochastic sampling, can be regarded as
an option to the exact inference. The Emulation of a given probabilistic graphical model requires
to get a sample from the probability distribution for X which the model encodes. Next, the marginal
and conditional probabilities involved can be calculated from the sample.

For our goals about KDAs, the intention of the emulation of Bayesian networks is to get a new
population in which the probability relations among the random wvariables of the network are
potential. Specifically, for the purpose of sampling from the Bayesian network, the sampling
method which we employ is forward. The variable must be sampled after all its parent variables
have heen obtained. This approach 18 named Probabilistic Logic Sampling (PLS). Figure 2 presents
a pseudo-code of this approach.
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1 n <~Ancestral ordering of the nodes in the baysian network

2 forj=1toN

3 fori=1ton

4 X,, <€ Randomly generate a value form p(X. [pOt,q)
5 done

6 done

Fig. 2: Pseudo-code of the probabilistic logic sampling method

METHODOLOGY

Learning methods: When we have defined a score to assess Bayesian networks, we have to run
a search process to look for the Bayesian network which can return the best score given the data.
In this study, we use two different methods: Approximate learning method and exact learning
method.

Learning an approximate model: In practical applications, we must to lock for an suitable model
structure as soon as possible. Thus, a simple learning method which can find a relatively good
structure, even though it is not best, is preferred. There are a number of learning methods which
can be emploved for this task. However, a specific search algorithm which is called Algorithm B
{Buntine, 1991) which 1s typically used by most of KDAs based Bayesian network.

Algorithm B 1s a greedy search algorithm and its pseudo-code 1s presented in Fig. 3, where D
is a data structure which deposits the information needed to deal with the candidate arecs which
should be added into the network. At the beginning, algorithm B starts from an are-less structure
which represents independently among the variables and at each iteration, an arc is added into
network that can increase the score greatly. The algorithm stops when no arc that can increase the
score any more, can be added into the network.,

Learning an exact model: Since looking for a best Bayesian network that maximizes the score
given the data is an NP-hard problem, for a long time the target of learning best Bayesian
networks was restrained to problems with a very small number of variables. The first algorithm
that carried out this kind of learning in less than super-exponential complexity according to n was
introduced in (Kaivisto and Sood, 2004) which is called algorithm KS . For the investigation carried
out in this study, we employ the algorithm presented in (Koivisto and Sood, 2004) to learn Bayesian
networks in the KDAs. This algorithm is effective for n<33.

In the next, we try to introduce the basic principles of KS learning algorithm used in this study.
In this learning method, the Bayesian network structure S is defined as a vector s =(s,...,s.), where
s, 1s the subset of X which is the of parent sets of X, Moreover, this algorithm employs an
sequencing of the variables X. In this sequence, the i-th variable is represented by ord,. The
structure s = (s,,..,, 8,) 1s considered to be corresponding to an sequence ord when all the parents of
the variable locate before the node in the sequence.

Another crucial notion in this algorithm is the sink node. In a Directed Acyclic Graph (DAG),
there is at least one node which has no cutgoing arcs, thus at least one node is not a parent of any
other node. We define these nodes as sink nodes.
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1 Begin with an arcless strcture

2 Compute D[X; > X|] = g,(X,, X))-gy(X) for all distic X, X

3 do

4 find the largest D[X; > X] and add an arc from X to X,
in the structure

5 D[X; > X]] = g, (X,, Pa,U X)-g,(X)) for all disctinct
X, X; not belonging to Pa,

6 D[X;> X|]=-c

7 until every D[X; = X(]<0

Fig. 3: Pseudo-code for algorithm B

1 Calculate the local scores for all n2"" diffrerent (variable, variable set)
Pairs
2 Using the local scores, look for the best parents for all n2™" (Variable,

variable set) pairs

3 Look for the best sink for all 2" variable sets
4 Using the results from step 3, look for a best ordering of the vatiables

5 Look for a best network using results computed in step 2 and 4

Fig. 4: Pseudo-code for algorithm KS

In this algorithm, the data set 1) is dealt in a special way and it employs two types of data
tables. Given Wcx, initially we use the contingency table CT(W) which is a sequence of the
frequencies of different data-vectors in DY, where DV is the data set for W variables. However, the
primary work is to computer conditional frequency tables CFT (X, W) which record the information
that how many times different values of the variable X, appear meanwhile with different vectors
X]-W*{Xi} in the data.

As discussed before, many commonly used scores could be decomposed to the sum of some local
scores. Therefore, the score g(s, D) can be formulated as:

g(s,D) = nESC(,‘pre((ZFT(Xi,sl)) (12)

where, the score 1s used to computing conditional frequency tables. Figure 4 gives the primary
procedures of the method.

The first step is the primary procedure. It begins by computing the contingency table for all the
variables and all smaller variable subsets. Next, for each contingency table, the conditional
frequency table 1s computed for each variable which appears in the contingency table. These
conditional frequency tables could then be used to computing the local scores for all parent set given
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a variable. There are n2" ! local scores that are deposited in a table which will be the foundation
of the algorithm.

Having computing the local scores, the best parents set for X, are either the candidate set C or
sub set of candidate sets C\{c} | ecC. This search process must be computed for all 2! variable sets
involved in X,

Step 3 of the algorithm 1s based on the next fact: The optimal network G* of a variable set W
must have a sink node. For G* is a network which has the highest score, the sink node must have
incoming ares from its best possible set of parents. In this manner, the rest of the nodes and the arcs
must form the best possible network for variables W/{s}. Thus, the optimal best sink for W,
sink*(W), is the node which makes the sum max between the local score for sink node and the score
for the network S without the sink node.

As we have the optimal sink nodes for all 2" variable sets, it 1s feasible to produce the optimal
ordering ord® in reverse order. Next, for each location from n to 1, in the ordering ord*, we must
reserve the optimal sink node for the set U_;, {ord*,(X)}.

Having got a optimal ordering and a table with the optimal parents for any candidate set, it can

1!

acquire a optimal network consistent with the determined ordering. For the i-th variable in the best
ordering, the optimal parents from its predecessors are selected.

Experimental design: The Estimation of Bayesian Networks Algorithm (EBNA) (Etxeberria and
Larranaga, 1999; Blanco ef al., 2003) is one of estimation of Distribution Algorithms which is based
on Bayesian networks. KBNA can employ statistics of unlimited order in the factorization of the
Joint Probability Distribution (JPD). This joint probability distribution 1s encoded using a Bayesian
network which is obtained from the database containing the selected individuals in every
generation. It has been carried out with good consequence to different kinds of problems
{Larranaga and Lozano, 2002). Other KEDAs have been put forward in Fan et al (2011),
Shim et al. (2012) and Li et al. (2014). The pseudo-code of KBENA 1is presented in Fig. 5.

1 BN, , € (S, 9;’0), where S0 is an arc-less structrue and eiois uniform

(o8]

D,_, € Generate N individuals from BN,_,

3 Do

4 D,<-Evaluate individuals

S D;° € Select M<N individuals from D, according to a selection method
6 S, €~ Learn and get a network structure

7 6!, < compute 0' using D from the data set

8 BN, < (S, 6)

9 D, € sample N individuals from the network BN, and produce

new population

10 t=t+1

11 untill stop condition is met

Fig. 5: Pseudo-code for algorithm EBNA
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To investigate the influence of learning method on the performance of KDAs based Bayesian
network, we have tested two different editions of EBNA. The first EBNA edition, named KBNA,
implements algorithm B to search for the model which is a local search method. The second edition,
named EBNA,., implements the KS learning algorithm to search for the model, which is an exact,
search method.

The two editions of the algorithms are only different in the method employed to learn the
Bayesian network model at every generation. The parameters settings are explained later.

In this part, we present a number of functions that represent different classes of problems and
which are used in this study to test the behavior of EDAs,

Function benchmark: Let:

ux)= " x,

f{x)be a function satisfying that, ¥vx, ye{0, 1}, f(x = f(y) if u(x) = u(y). This function is defined
according to value of u(x).

There are a kind of functions where the difficulty is given by the interactions that arise among
subsets of variables. One example of this class of functions are deceptive functions:

n

3
Deceptive3d(x) = 2 e (Rg 0o X1 X5) (13)
i=1
where, f,,_ is defined according to the function u:
09 for u=0
|08 for u=1 (14)
00 for u=2
1.0 for u=3
u(x) = ZXI (15)
i=1

Another function used in this study is the function SixPeaks, which is a variant of the
FourPealks problem and it can be defined as:

SixPeaks (x, t) = H(x, t)+R(x,t) (16)
Where:
Hix, t) = maxitail(0, x), head (1, x), tail(1, x), head(0,x)} (17

¢ Tail (b, x) is number of contiguous trailing b in x
* Head (b, x) is number of contiguous trailing b in x
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The target 1s to maximize the function. When the number of variables is even, there are 4
global optima for this function, which is located at the points:

t+1 t+1

(0,...,0,1...1), (0.....0,1,....D

t+1 t+1

L...1,0,....0), (L...,10,....0)

These solutions are very difficult to obtain because they are isolated. On the other hand, two
local optima which 1s (0, 0,...,0) and (1, 1,...,1), are very easily got.
Here, we set the value of t equal to:

.|
2

Parameter settings: According to the primary steps of the EDA (Hauschild et al., 2009;
Armananzas ef al., 2011; Martins and Delbem, 2014). It deals with a population with N individuals.
At the beginning, the original population is sampled from a uniform distribution, therefore, all the
individuals in the population have the same sampling probability. Each generation beging with
choosing a subset of hopeful individuals from the population. In this procedure, we employ
truncation selection in which the threshold is B0%. Therefore, we get half of the individuals whose
fitness value is best. The next procedure is to learn and get a probabilistic model from the
population of selected individuals. This 1s the only procedure where the KDAs that we will find
differ. As soon as the probabilistic model is built (Griffiths ef af., 2010; Abdollahzadeh ef al., 2012;
Bonawitz et al., 2014), we can generate the new population. For purpose of deing that, we sample
from the probabilistic model to get N new sclutions and then we add them inte the current
population. The new population 1s comprised of the N best individuals which is selected from the
2N individuals available (Chen ei af., 2010; Boussaid et al., 2013; Lima et al., 2007).

As previously said, each EDA investigated in this study employs factorizations which could be
encoded by means of Bayesian networks. Thus, the same methods can be employed both to get the
corresponding parameters and to generate the new solutions. As explained above, we estimate the
parameters by maximum likelihood and the new individuals is sampled by PLS.

RESULTS

In this part, the experimental results by EBNA; and KBNA; solving for function Deceptive3
with n = 15 and function Sixpeaks with n = 16 are showed. We compare the frequency matrices
calculated by EBNA, and EBINA;; to solving the functions and study some patterns found in the
structures of the models which are learned.

DISCUSSION

We begin by using a population size of 350, Figure 6 and 7, respectively present the frequency
matrices calculated from the models learned by EBNA; and EBNA,, solving for the function
Deceptived with n = 15, Both of the algorithms are able to get the dependencies of variables
corresponding to interactions in the problem.
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2 4 6 8 10 12 14
Variablei

Fig. 6: Frequency matrices learned from the models by EBNAg for function Deceptive3 with
N =350

2 4 6 8 10 12 14
Variablei

Fig. 7: Frequency matrices learned from the models by EBNA,, for function Deceptived with
N =350

It can be seen that the models with some dependences which are not obviously found from the
funetion structure. This i1s especially obvious for the KBNA,, algorithm. The reason for this
phenomenon is that KS learning method is more vulnerable to the over fitting of the data which
takes place with the small population size. Thus, we increase the population size and set it to
N = 1000, then do the same experiment for this function again. The frequency matrices calculated
from the models learned by EBNA; and EBNA,., are shown in Fig. 8 and 9, respectively, when
solving for the function Deceptived with n = 15, According to the two figures, we can see the
influence of increasing the population size on the relationship of learned dependencies. It can be
seen that false correlations have nearly disappeared in the learned models. Both of the two
algorithms are able to learn more exact models with a population size which iz 1000,

We carry out a similar investigation for the function Sixpeaks with n = 16, Figure 10 and 11,
respectively present the frequency matrices learned by EBNA; and EBNA,, with a population size
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30

(53]

2 4 6 8 10 12 14
Variablei

Fig. 8 Frequency matrices calculated from the models learned by KBNA for function Deceptived
with N = 1000

2 4 6 8 10 12 14
Variablei

Fig. 9: Frequency matrices calculated from the models learned by EBNA,, for function Deceptive3
with N = 1000

of 3B0 at the end of running. It can be noticed that both of the two algorithms can not learn the
correct structure. As in the situation of the Deceptive3 function, KBINA,, seems to learn more false
dependencies than KBINAL.

Population size which is too small may be the primary reason to explain the bad performance
in the transforming the function structure into the model structure. Thus, we do the experiment
again using a bigger population size with IN = 1000, The experiment results cbtained at the end of
running are presented in Fig. 12 and 13, respectively, which are the frequency matrices calculated
from the models learned by EBNA; and EBNA, solving for the function Sixpeaks with n = 16.

The figures indicate that, by increasing the population size, KBNA,, can get a very exact
structure. The model which is got by learning, receives total the short-order dependencies of the
function. On the other hand, KBNAj; does not accomplish a similar improvement. Moreover, the
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Variablej

5 10 15
Variablei

Fig. 10: Frequency matrices calculated from the models learned by EBNA; for function SixPeaks
with N =350

5 10 15
Variablei

Fig. 11: Frequency matrices calculated from the models learned by KBNA,, for function SixPeaks
with N = 350

precision of the model is lower than when we used the population size N = 350 before, which can
be noticed by comparing Fig. 10 and 12. Here, we argue that the local approximate technique might
be encountering certain learning limits.

In the literature (Larranaga and Lozano, 2002), the B algorithm was introduced to EDAs based
on Bayesian networks, which is EBNAgin this study and the preliminary results were showed.

In this study, we investigate the connections between the true structure of problems and
structure obtained from the searching for the probabilistic moedels by KBNAg and EBNA,; and it
is an ongoing research direction of EDAs. According to the figures obtained from the experiments,
we can investigate the most likely dependencies from the probabilistic models in EDAs and study
their relationship with the true structure of functions. We can also employ the dependency
displayed from the probabilistic model to establish a function which has a ideal interactions in

some extends.
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Fig. 12: Frequency matrices calculated from the models learned by EBNA; for function SixPeaks
with N = 1000

5 10 15
Variablei

Fig. 13: Frequency matrices calculated from the models learned by EBNA,; for function SixPeaks
with N = 1000

We argue that the approximate learning method such as B algorithm, could obtain models
which only approximately display the true dependencies that appeared in the population. When
the dependencies are calculated, the mistakes produced by the learning method should also be
avoided.

We compare the decisive population size needed by the EBNA;, and EBNA; to achieve a
predefined convergence rate. In the experiments, the decisive population size is the minimum
population size which enable the KBNA,; and the EBNAg to find the optimum in 50 consecutive
running. We compare the decisive population size for the function Deceptive3 (n =9, 12, 15) and
the funetion SixPeaks (n = 10, 12, 14, 16) obtained by EBNA,, and EBNA_.

Table 1 gives the mean and standard deviation of the decisive population size found by EBNA,,
and EBNAZ, it indicates that there is big difference between function SixPeaks and funection
Deceptived. We can see that KBNA, needs a less population size than EBNAg. Another observation
is that the standard deviation of EBNAS is always higher than that of EBNA..
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Tahble 1: Mean and standard deviation of the decisive population size found by EBNAg; . and EBRNAg

EBNAgg EBNAg

Functions No. Mean Std Mean Std
SixPeaks 10 152.59 51.25 213.03 107.10
SixPeaks 12 208.01 108.10 386.11 246.18
SixPeaks 14 311.28 130.63 6501.15 315.96
SixPeaks 16 850.47 107.63 Null Null
Deceptive3 9 132.62 37.39 166.95 59.93
Deceptive3 12 167.95 59.93 261.11 86.50
Deceptive3 15 20.10 56.75 205.26 93.98

When the number of variable (n) exceed 18, the EBNAS can no longer solve the function
SixPeaks, so the mean and standard deviation is Null. Sinee the only difference between KBNA
and KEBNAg i1s in the type of method used to learn the models, the difference of behaviors 1s due to
the ability of EBNA, to learn a more accurate model of the dependencies.

Therefore, for function SixPeaks and function Deceptive3, learning a more accurate model
determines a better performance for EDAs based on Bayesian networks. It is to say that whenever
the scale of the problem is easy to deal, it 1s a more suitable choice for theoretical analysis of the
probabilistic models to use KS learning method for KDAs based on Bayesian networks.,

CONCLUSION

In the comparison to the obtained structural models, we can observe that the KS method tends
to learn some dependences which are not explicitly described in the formulation of the function
than the B method, particularly when we use the population size which is small. It shows that the
structures got by KS learning could describe the random errors of the samples as well as the
underlying relationships among the problem variables. However, the effect of this phenomenon is
determined by the characteristics of the problem. Although, the phenomenon of over fitting is
studied in the field of EDAs, we argue that we should do more work in order to understand this
issue. In particular, when a KS structural learning is carried out, the over fitting which takes place,
could be a research subject in the future.

The experiment, results also indicate that the kind of learning method might produce substantial
differences in the probabilistic models learned and in the behavior of the KDAs based on Bayesian
networks. Specially, when the KS learning methoed is provided with sufficient information that the
selected population contains, it could learn an exact structural model which is close to the true
structure of the problem. Nevertheless, the approximate method could not obtain exact structures
at all times even when a big population size is employed. This fact indicates the existence of certain
learning limits involved to the approximate method. This problem should be investigated more
in-depth in the future.
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