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ABSTRACT

Super-resolution is the process of combining a sequence of low-resolution images to produce a
higher resolution image. The conventional super-resclution algorithms usually apply the same
regularization factor for the whole image, regardless of region characteristics. One regularization
factor 1s not good encugh for all regions since an image consists of various regions having different,
characteristics. In this study, we propose a region adaptive super-resolution method to apply an
adaptive regularization factor for each separate region. The regions are generated by segmenting
the reference frame using the improved hierarchical segmentation algorithm. Regularization
parameters are then adaptively determined based on the region characteristics. The software of the
propoesed algorithm is also implemented on an Intel quad core computer. Finally, the experimental
results using both synthetic and unsynthetic image sequences show the effectiveness of the
proposed algorithm compared to three state-of-the-art super resclution algorithms.

Key words: Super resolution, regularization factor, image segmentation, region based, total
variation

INTRODUCTION

High Resclution (HE) images can be obtained directly from high-resolution acquisition systems
in some cases. However, obtaining an image of a scene with high spatial resolution is not possible
in many image acquisition systems due to a number of theoretical and practical limitations
including the Rayleigh resolution limit, data transfer rate, the sensor resolution, the increased cost,
and the noise introduced by the digital sensor. In such cases, Super Resclution (SR) methods
{Park et al., 2003) can be utilized to process one or more Low-Resolution (LR) images of the scene
together to obtain a HR image. Super resolution image reconstruction which can be considered as
an 1image restoration technique, refers to a process that produces an HR image from a sequence of
LR images using the non-redundant information among them. Different from the traditional
restoration algorithms, SR reconstruction needs to maximize the use of low-resolution
image-sequence information and postulated the degraded factors of imaging to produce a HR
image. The basic principle of super resolution is that changes in the LR images caused by the blur
and the camera motion provide additional infermation that can be used to reconstruct the HR
image from a set of LR images. Currently, it 1s possible to implement the SE software since the
power of the dual or quad core CPU is strong enough to deal with the caleulation generated in
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image reconstruction process. Nowadays, SR has been widely applied to many areas, such as
biomedical imaging, video enhancement, video surveillance, deep-space exploration and
reconstruction.

Since the super-resolution problem was first addressed, numerous algorithms, such as the
iterative back-prgection (Song ef al., 2010; Ia and Lam, 2013), POCS (Aguena and
Mascarenhas, 2006; Su and Li, 2011; Panda et ¢l., 2011), maxdimum likelihood (Kasahara et al.,
2007; Chantas et al., 2007) and MAP algorithms (Kasahara et al., 2007, Chantas et al., 2007), have
been developed. Generally, SR reconstruction techniques can be divided into two main categories:
Spatial domain methods and frequency domain methods. Discrete Fourier Transform (DFT) was
used in the earlier SR work, where high-frequency part is extracted from low frequency signal in
the given LR frames (Wang et al, 2010). Then, many other methods were proposed in discrete
cosine transform domain. However, the frequency domain methods are extremely sensitive to model
error. Compared with the frequency domain methods, the spatial domain methods are generally
computationally expensive. Belekos et al. (2010) introduced a new spatially hierarchical Gaussian
non-stationary version of the multichannel prior which takes into account both the within-frame
smoothness and the between-frame smoocthness. Huang ef al. (2011) applied the Douglas-Rachford
splitting technique to the constrained TV-hased variational SR model which is separated into three
subproblems that are easy to solve. Another fast spatial domain method that LR images are
registered with respect to a reference frame defining a nonuniformly spaced HR grid was recently
suggested. All of the above methods assumed the additive Gaussian noise model. Furthermore,
regularization was either not implemented or it was limited to Tikhonov regularization.

Although, the SR reconstruction literature is rich, it is still an open and widely research topic,
Recently, motivated by its success in image recovery problems, the use of the Total Variation (TV)
function and its variants has become popular in super resolution (Ng et al., 2007). Among all
spatial domain algorithms, regularization methods are effective to solve the multi-frame SE
reconstruction problem and deliver good performance for the restoration of edge sharpness. Both
regularization-based and Bayesian formulations have been proposed which utilize TV functions
to characterize the HRE images. However, certain model parameters in these algorithms need to be
set by the users which is in general a difficult task. In this study, we propose a region adaptive
algorithm for better SR. The algorithm is based on region segmentation regularization for suitable
regularization depending on pixel characteristic. In the algorithm, we first divide an image into
homogenecus and inhomogeneous regions and apply the different filter depending on the pixel
characteristic in each region. In addition, the regularization parameter is adaptively determined
during the iteration.

PROBLEM FORMULATION

An image acquisition system composed of an array of sensors has recently been popular for
increasing the spatial resclution with high Signal-te-Neise Ratio (SNE) beyond the performance
bound of technologies that constrain the manufacture of imaging devices. In this study, we focus
on the problem of reconstructing a high-resclution image from several blurred low-resolution image
frames. In HR image reconstruction, we need to select an image from the low resolution frame
sequence as the referenced one. The image formation model mainly relates the desired referenced
HER image with all the cbserved LR frames. As 1s shown in Fig. 1, typically, the imaging process
consists of warping, blurring and down-sampling to generate LR frames from the HR image. The
LR frame can be denoted as:
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Fig. 1: Observation model relating LR images to HR images
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Fig. 2: Flowchart of conventional super resolution process
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where, k=1, 2, ..., 8}, S is the number of LR frames. Then, the observation model can be denoted

as:
v, = DB, M, f+§, (1)
Where:

f:[x X

T
1 X Ry, :|

is the desired HR image in the vector form, L, N,;xL,IN; is the size of HR image, L, and L, denote the
downsampling factors in the horizontal and vertical directions, respectively, each observation has
the size of N N, M, 1s the motion matrix including rotation, zooming and translation, with the size
of LN, LNxL N LN, B, represents the blur matrix including sensor blur, motion blur and
atmosphere blur, also of size L, N, LN xL,N L, N, Dis an N, N.xL,IN,L,N, down-sampling matrix and
£, represents the N;N X1 zero-mean white Gaussian noise vector. In this study the matrices D) and
B, are assumed known.

SR reconstruction is an ill-posed problem and it is difficult to be solved through a direct
approach. Shown in Fig. 2 is the flow chart of the conventional super resolution method. In the HRE
reconstruction step, regularized optimization techniques are adopted to stabilize the inversion of
the ill-posed problem. The idea behind the regularization methed is to obtain a stable approximate
solution of the original problem by using some prior information. The traditional regularization can
be divided into two ecategories: Deterministic algorithms and stochastic algorithms. Their
representatives are constrained least-square and maximum a posteriori (MAF), respectively. The
constrained least-square method minimizes the L, norm of the residual vector to obtain a feasible
solution of SR. It can incorporate prior knowledge of the image and noise to estimate the HR image.
The constrained least-square method can be written as:
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tQ:argfminHyk 7DBkMka2 +AJ(T) (2

where, J (f) is a specific regularization term which describes prior information of the motion and
A 1s the regularization factor. The regularization term J (f) which controls the perturbation of the
solution, solves the ill-posed problem for SR reconstruction and guarantees a stable HR estimation,
plays a very important role in the SR process. For the HR image f, the regularization term can be
defined as follows:

1(£) = Y f(alx) + (arx)’ (3)

1

where, A" and A} are linear operators corresponding to, respectively, horizontal and vertical first
order differences, at pixel i; that is, Alx:=x —x;, where, j denotes the nearest neighbor to the left
ofi and A’x:=x, -x,, where, k denotes the nearest neighbor above i.

MATERIALS AND METHODS

Motion estimation: Motion estimation plays a critical role in SE reconstruction. In general,
subpixel displacements between the referenced frame and the input frames can be madeled and
estimated by a parameter model, or they may be scene dependent and have to be estimated for
every point. This section introduces two motion estimation methods employed in this study. In this
study we use the Fourier based subpixel image registration algorithm which allows accurate
registration of two images with large upsampling factors and optical flow based motion estimation
which can model the image sequences consisting of independently moving objects or changing
illumination of a static scene.

Fourier based motion registration: The basic idea behind the Fourier based subpixel
registration method is that the phase of the Fourier spectra of an image pair contains sufficient
information te determine the displacement of the images. Given a referenced image and a
translated and rotated version of the image, we wish to find an efficient algorithm that gives the
displacement and rotation vector. If f, (x, ¥) is a translated and rotated replica of f; (x, ¥) with
translation (x;, v,) and rotation 8,, then:

f, (x, y) =1, (x cosO,+y sinB,-x;, -x sinB,+y cosO,-v,) (4)

According to the Fourier translation property and the Fourier rotation property, translations
of f; and f; are related by:

F, (1,8 = exp (27 (tx,+Ey))xXF; (T cosO,+E cos0;) (5)
Let M, and M, be the magnitudes of I, and F,. Therefore, from Eq. 5 we have:
M, (1, &) = M, (1 cos0,+E€ sin0, -t sin0+E cos0)) (B)

If we consider the magnitudes of F, and F,, then from Eq. 6, it is easy to see that the
magnitudes of both the spectra are the same but one is a rotated replica of the other. The
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displacement in the spatial domain 1s reflected as a phase difference in the frequency domain. In
order to get rid of the luminance variation influence, we normalize the cross-power spectrum by its

magnitude and obtain its phase:

S(x.8) - —‘E Temlie ™

The inverse Fourier transform of 5 (1, £) 1s the Dhirac delta function centered at (x,, ¥y
corresponding to the spatial shift between images F, and F.,. The displacement can be found easily
by detecting a highest peak of the response.

Rotational movement without translation can be deduced in a similar manner using the phase
correlation by representing the rotation as a translational displacement with polar coordinates. i.e.,

in polar representation:
M, (p, 6) =M, (p, 0-0,) (8)
using phase correlation, the rotation angle can be easily found out.

Optical flow based motion estimation: The frame in videos may consist of independently
moving objects or changing illumination of a static scene. In such cases, the motions cannot be
modeled by Fourier transform but optical flow based methods can be used to estimate the motions
of all pixels. Here we propose a simple MAFP motion estimation method. Here, m = (m,, m ) denotes
a 2D motion field which describes the motions of all pixels between the observed frames y; and v,
with m, and m, being the horizontal and vertical fields, respectively and = is the predicted
version of y, from frame | using the motion field m, the MAF motion estimation method has the

following minimization function:
2
E(m)= Hyk —y{(“‘m)H2 +oU (m) (9)

where, U (m) describes prior information of the motion filed m and A, is the regularization
parameter. In this study, we choose U () as a Laplacian smoothness constraint consisting of the
terms |Qm, |*+|Qm,|? where, Q is a 2D Laplacian operator. Using steepest descent method, we can
iteratively solve the motion vector field by:

oot ~n _ay’(l’m) Alm ]

m :mu+ot778;u (yk -y ))—KIQTQmui (10)
[~y ALz ]

ﬁlzﬂ :I'lelz +a aYk (yk _}/k(l,m))_leTva (1 1)
| om, |

where, ¢ is the step size and n again is the iteration number. The derivative in the above equation
is computed on a pixel by pixel basis, given by:
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Fig. 3: Flowchart of the proposed SE method
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Proposed algorithm: Based on the observations in previous section, we propose a region based
SE. Figure 2 illustrates the flowchart of proposed region-based method which consists of three
parts. In the first part, the image 1s segmented into different regions by using the hierarchical
segmentation algorithm. In the second step, the regularization factor is calculated based on region
smoothness. At last, a different SE process is performed for each region based on consideration of
each region’s characteristics.

Image segmentation: To obtain a reliable region map from x, we adopt the improved hierarchical
segmentation algorithm (Dobigeon et al., 2007) which uses all locations in the image and is the
most natural way to generate locations at all scales. Size and appearance features which are
efficiently propagated throughout the hierarchy, making it reasonably fast, are used in our
algorithm. Figure 4 shows an example of image segmentation of the Cameraman image. Make clear
that we keep this method basic to make certain of reproducibility and our result dees not stem from
parameter tuning but from better thinking of the goal of image segmentation.

As we can obtain much more information from regions than that of pixels, it can be started with
an over-segmentation (a set of small regions which do not spread over multiple objects). The fast
method is used to be our starting point which found well suited for generating an over
segmentation.
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Fig. 4(a-b): Image segmentation, (a) Cameraman image and (b) Region map of the cameraman

Starting from the initial regions, a greedy algorithm which iteratively combines the two most
similar regions together and calculates the similarities between this new region and its neighbors
is utilized. We continue doing this until the whole frame turns into a single region. As potential
object locations, we consider the tight bounding boxes around these segments, or we consider either
all segments throughout the hierarchy (including initial segments).

We define the similarity S between region a and b as:

Sia,by=5__(a b+S,_..ah (14)
where, S_ , (a, b) is defined as the fraction of the image that the segment a and b jointly occupy and
Siiome (8, b) 1s defined as the histogram intersection between SIF'T-like texture measurements. Both

components result in a number in range [0, 1] and are weighed equally. S, (a, b) encourages
small regions to merge early and prevents a single region from gobbling up all others one by one.
For S

a single sub-region of SIFT with no Gaussian weighting. For color information, texture

rextre (&, D), We aggregate the gradient magnitude in 8 directions over a region, just like in
measurements in each color channel are done separately and results are then conecatenated.

Our segmentation process is performed in a variety of color channels with different invariance
properties to obtain multiple segmentations which are complementary. Specifically, we consider
multiple color spaces with different degrees of sensitivity to highlight edges, shading and shadow.
Standard RGB 1s the most sensitive. The opponent color space 1s insensitive to highlight edges but
sensitive to shadows and shading edges. The normalized RGE space 1s insensitive to shadow and
shading edges but still sensitive to highlights. An alternative approach te multiple color spaces
would be the use of different thresholds for the starting segmentation.

The choice of regularization factor: The main objective of the content based super resolution is
to employ an iterative algorithm to estimate the regularization parameter at the same time with the
restored image. The available estimate of the restored image at each iteration step will be used for
determining the value of the regularization factor. That 1s, the regularization factor is defined as
a function of the original image. Therefore, Eq. 2 can be rewritten as:

f =arg, miny, - DB, M, " +A(x)I(f) (15)
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Various choices of the functional A (x) can potentially result in meaningful minimizers of:

M (A(x),x)= |y, ~DBM | +A{x)I(£)

in Eq. 15, First, A (x) should be a function of the smoothing functional: We choose 4 (x) to be
proportional to M which represents the regularized noise power. That is, we set in general:

A (x) =M (A (x), x)) (18)
where, f (+) 18 a monotonically increasing function. The justification behind this choice of A (x) 1s
based on the set theoretic formulation of the restoration problem. According to it, & (x) is
proportional to [y-Dx|? that is:

A (x) ~ y-Dx|? (17

It should also be inversely proportional to the low-frequency energy of the restored image:
251
k(x)»{l”cxj } (18)

In other words, if the energy of a restoration at low frequencies is relatively large, then a
smaller value of A4 (x) should be used, so that the higher frequencies are further restored. The
opposite should occur if the energy of a restoration at low frequencies if relatively small. This
property can be rewritten as:

A(x) ~ 2 () |Cx|? (19)

A consequence of the choice of A (x) is that an optimal estimate x which satisfies
V. M(A(x), x) = 0, also satisfies V_ A(x) = 0. This is the case since:

df(M)V M(?L(X),x) (20

VAX) = V(M) ==,

b4

Provided:

df (M)
dM

is finite. This last observation will prove useful in cbtaining a suitable expression for the restored
image and for analyzing the convergence of the iterative algorithm that will be employed. Another
desired property of M (A& (%), x) 1s that its minimizer should represent a solution between two
extreme solutions: One representing the generalized inverse solution of Eq. 2, when the data are
noiseless and the other representing the smoothest possible solution (x = 0), when the noise power
becomes infinite. These requirements translate into the conditions:
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A ) =f (M (), x) =0, when |n|*=[y-Dx|*=0 (21
and:
A (x) =1 (MR (x), x) =, when |n|* = |y-Dx|* =« (22)
Equation 21-22 result in:
£ (M(% (), x)) =0, when M (4 (x), x)) =0 (23)
and:
f (M(A (x), %)) =<, when M (& (x), x)) = e (24)

Therefore, f (M) and consequently A (x) should map (0, «) into {0, «) and be a monotonically
inecreasing function of M.

The functional M should be convex for all choices of A (x): This requirement on convexity is
obviously very important, since a local extremum of a nonlinear functional becomes a global
extremum, if the functional is convex. Therefore, the iterative algorithm that will be employed for
obtaining a minimizer of M will not depend on the initial condition. Clearly, for A (x) = ¢, a constant
independent of x, M is convex,

One function that satisfies all these properties can be written as:

A (x) :M (25)
(1) —fex|

where, v 1s the coefficient representing the roughness of the region and also controls the
regularization factor. ¥ can be calculate as follows:

y = kfj(k —m)"H(k) (28)

k=10

where, O<k<k__, kis the grayscale, k_,. is the maximum grayscale, H (k) is the histogram of the
region and m is the mean of the grayscale defined as follows:

m:kka(k) (27)

High resolution reconstruction: As has already been mentioned, a restored image is a
minimizer of the smoothing functional M defined in Eq. 2. Since it was shown that M is convex, for
choices of A that satisfy certain properties, if there exists a minimizer it will be a unique and
therefore global minimizer. We show that there exists a minimizer of M by establishing sufficient,
conditions for an iteration to converge to a vector satisfying the necessary conditions for an
optimum of M. The necessary condition for a minimum is that the gradient of M with respect to x
is equal to zero that is:
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V.M (A(x), x) =2 (D"D+4 (x) CTC)x+|Cx|* VA (x)-2D"y =0 (28)
Since V. A (x) =0, the equation for the optimal solution becomes:
(DTD+A(x)CTCYy x =Dy (29)
Since 1s nonlinear, it is solved by employing the successive approximations iteration:
X, = %, HDy-(DD+Ax)CTC)x, | (30)

It 1s mentioned here that no relaxation parameter is used in the above iteration, since another
control parameter 1s used in the above.

RESULTS AND DISCUSSION

In this section, we tested the performance of the proposed SR reconstruction method on both
synthetic images and real images by comparing with different algorithms such as Tikhonow
regularization, variational Bayesian super resolution (Huang et al.,, 2011) and total-variation
regularization (Ng ef al., 2007) SR.

In the first experiment, we evaluate the performance of three SR algorithms in comparison with
the proposed algorithm in cases where exact displacements and rotation information is available,
We have conducted three image sequences including “cameraman”, “Lena” and “baboon”. In this
study, only the result of “cameraman” is shown. The HR resolution image is first shifted with
sub-pixel displacements of (0, 0}, (0, 0.5), (0.5, O, (0.5, 0.5) and then rotate with angles of (0°, 2°,
-2°, 4°, -4°) to produce four images. The image sequence is then convolved with a Gaussian-type
PSF of 5%5 window size and unit variance and down-sampled with a factor of 2 in both the vertical
and horizontal directions. Shown on Fig. 5a is one of the 4 synthetic LR images generated from the
HR image. For the purpose of comparison, three different. algorithms are implemented on the same
set of LR images and the results are shown in Fig. 5b-d. Figure be shows the result of an SR image
reconstructed by the proposed method. The Fourier based image registration method is used as the
motion estimation method. It can be seen from the zooming area of Fig. 5 that in proposed method
the LR effect is significantly reduced and the resolution is highly enhanced.

In order to measure performance analysis, the HR image is first down-sampled into LR images
and then reconstructed using the proposed algorithm to HR image. Since the original HR image
is available, the restoration quality is measured by Peak Signal-to-Noise Ratio (PSNE) of the image
as:

M N M N g
PSNR _101og1{222552/ (1(L.4) - 1(.1) } (81)
i=1j=1 i=1j=1
where, I is the original HR image and I is the reconstructed image. An image with higher PSNR
means better reconstruction but it doesn’t always represent the true quality of image. The
simulation results of the Cameraman data are showed in Table 1 for SNRs of 15, 20, 25, 30 and
35 dB. As we can see in the Table 1, the PSNR improvement in the intermediate regions is
negligible, whereas the improvements in the smooth and edge regions are noticeable for all SNEs.
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Fig. 5(a-f): An example of HR reconstruction from different super resolution methods; Results
{2x resolution increase) by {(a) Original low resclution image interpolated by nearest,
neighbor interpolation, (b) Tikhonov regularization, (¢) Variational Bayesian SR,
(d) Total-variation regularization SR and (e) Proposed method and (f) Synthetic LR
images

Table 1: PSNR for different algorithms

SNR (dB)
Input image and algorithm 20 25 30 35 40
Cameraman
Tikhonov SR 31.42 33.74 3517 36.98 39.12
Variational SR 32.54 34.55 36.89 37.25 40.88
TV SR 35.21 37.32 38.11 40.04 43.53
Proposed 37.19 3091 42.65 44.25 47.78
Lena
Tikhonov SR 30.50 32.28 34.46 36.10 38.38
Variational SR 31.93 33.18 36.26 38.21 40.59
TV SR 34.36 36.45 37.34 40.12 42.56
Proposed 37.15 40.21 41.69 42.56 47.01
Baboon
Tikhonov SR 33.52 36.55 37.43 39.16 41.98
Variational SR 35.50 3742 39.69 40.56 43.56
TV SR 37.21 39.40 40.59 42,18 46.08
Proposed 39.96 4231 44.56 45.39 49.92
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Fig. 6(a-e): An example of HR reconstruction from different super resclution methods; Results
{2x resclution increase) by (a) Original low resolution image interpolated by nearest
neighbor interpolation, (b) Tikhonov regularization, (c) Variational Bayesian SR,
{d) Total-variation regularization SR and (e} Proposed method (Kxtracted images)

In the real data experiments, two datasets are used to verify the proposed algorithm. One
dataset is the text video sequence which consists of 42 LR frames with a size of 80x80. In order to
reduce the computational load, we just select 10 frames. Figure 6a shows one of the extracted
images. It 1s observed that there are obvious artifacts in most parts of this image. Figure 6e 1s the
SE reconstruction result using the proposed algorithm. Figure 6b-d show the results of three
different algorithms using Tikhonov regularization, variational Bayesian super resolution and total
variation regularization SE, respectively. Another dataset is the disk video sequence which consists
of 36 LR frames with a size of 66x84.10 frames are used in this test. Figure 7 show the results of
different algorithms. The computational complexity of our solution is alse not high, although the
initial motion estimates by optical flow algorithm are relatively time-consuming. We test the
proposed algorithm on an Intel Quad Core 3.40 GHz PC and it 1s able to upscale an image of size

80x80 1n less than 4 sec on average.
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Fig. 7(a-e): An example of HR reconstruction from different super resclution methods; Results
{2x resclution increase) by (a) Original low resolution image interpolated by nearest
neighbor interpolation, (b) Tikhonov regularization, (c) Variational Bayesian SR,
{d) Total-variation regularization SR and (e) Proposed method

CONCLUSION

The SR reconstruction of digital video becomes difficult when there is blurring, noise, missing
regions, compression artifacts, or inevitable motion estimation errors in the system. The
conventional super-resolution algorithms usually apply the same regularization factor for the whole
image, regardless of region characteristics. One regularization factor is not good enough for all
regions since an image censists of various regions having different characteristics. In this study,
we propose a region-based super-resolution algorithm to apply an adaptive regularization factor
for each separate region. The regions are generated by segmenting the reference frame using the
improved hierarchical segmentation algorithm. Regularization parameters are then adaptively
determined based on the region characteristics. The experimental results using both synthetic and

unsynthetic image sequences show the effectiveness of the proposed algorithm compared to three
state-of-the-art SR algorithms.
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