Journal of
Software

Engineering

ISSN 1819-4311

@

Academic
Journals Inc. www.academicjournals.com

Journal of Software Engineering 9 (3): 686-701, 2015
ISEN 1819-4811 / DOI: 10.2923/s2.2015.686.701
© 2015 Academic Journals Inec.

Research on the Architecture of Data-Intensive Computing Platform

1*Ke Hou, 'Jing Zhang and *Xing Fang
'8chool of Computer Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
2School of Economic and Management, Xi'an Shiyvou University, Xi'an, 710085, China

Corresponding Author: Ke Hou, School of Economic and Management, Xi'an Shivou University, No. 18 East 2th Dianzi
BRoad, Xi'an, Shaanxi, 710065, China Tel: +86 29 8838 26563

ABSTRACT

Data-Intensive Computing (DIC) 1s a kind of parallel computing which 1is specific to massive,
distributed, heterogeneous and changing dataset processing. The architecture of DIC platform is
a set of multiple abstract models, these models describes the function compositions, characteristics,
coupling relationships, interaction ways and application scope of each layer in DIC platform. This
article studies the architecture of DIC platform. Firstly, the architecture of related parallel
computing platform is reviewed. Secondly, the design requirements of DIC platform are analyzed,
the integrated research method of DIC is discussed and then an architecture of DIC platform with
seven layvers is provided. Finally, in order to verify its feasibility and effectiveness, a simple
prototype system is implemented to support mass image data parallel processing. Compared with
serial processing mode, the prototype system can obtain higher speed-up.

Key words: Data-intensive computing, architecture, integrated research method, mathematical
morphology

INTRODUCTION

Computer technology is a modern and intelligent way of information collecting and data
processing, it has been used in many fields. However, with data volume increasing rapidly
{Winter, 2008), the traditional data analysis and processing system cannot adapt to this trend of
evolution. On the one hand, a lot of storage and computing resources are occupied and the amount
of concurrent tasks and users is very large. On the other hand, it took too much time that required
data are accessed for one computing task, while for many computing tasks, requirement of the
timeliness aggravated this problem. The “big data” problem results in Data-Intensive Computing
{(DIC) be proposed and become the focus of industry, scientific community and computer academia
(Howe et al., 2008).

Data-intensive computing is not a brand new technology, it 1s closely related with parallel
computing, distributed computing, High Performance Computing (HFC) and cloud computing
(Hayes, 2008). Fundamentally, DIC belongs to parallel computing and its underlying thought is
to decompose computing problem into many tasks which will be delivered to multiple computing
resources and executed in the same time. This happens to coincide with the current requirement
of massive data processing.

Data-intensive computing is a kind of parallel computing which is specific to massive,
distributed, heterogeneous and changing dataset processing. Except analyzing and understanding
large-scale data, DIC should also be responsible for accessing and maintaining these dataset. While
thinking about this defimition, it firstly means that the DIC task are all developed arcund the data

686

J. Software Eng., 9 (3): 686-701, 2015

which 1s not. only large-scale but also distributed, heterogeneous and changing. Secondly, it means
the DIC task refers to the whole processes which range from data access to data storage, analysis,
processing and understanding. The third meaning is the new characteristics of DIC make the
traditional data management technologies be no longer fit. to be used.

Different with the traditional HPC, DIC focuses on large-scale data which has massive volume
and the data itself 1s distributed, heterogeneous, unspecific and inconsistent. These make DIC
similar to cloud computing. On the one side, the cloud services which appear later are developed
to satisfy the new requirement of DIC initially and the storage and calculation are common things
between cloud computing and DIC. On the other side, cloud computing has clear apply background
and significant business value and important characteristics (e.g., resource pool, resource as a
service, payment on demand). The cloud can provide elastiec, pay-on-demand information
infrastructures for DIC systems including storage, calculation and network resources.

For the user, the target to upload and execute DIC tasks is to process, analysis and understand
large-scale, distributed and changing dataset. The DIC platform is a distributed parallel computing
system aiming at large-scale data storage and processing. Hence, designing DIC platform aims at
integrating soft and hard resources of data center, sharing and configuring these resources,
thereby providing the important guarantee to solve large-scale data processing problem in network
information service, science and engineering calculation and electronic commerce fields and
improving significantly the processing efficiency and reducing the computing cost.

The architecture of DIC platform is a set of multiple abstract moedels which describe the function
compositions, characteristics, coupling relationships, interaction ways and application scope of each
layer in DIC platform. Analyzing and designing the architecture of DIC platform has higher
thearetical significance and strong practical guiding value.

ARCHITECTURE OF RELATED PARALLEL COMPUTING PLATFORM

Cloud computing platform: Cloud computing is a kind of distributed computing model, it make
calculation tasks be distributed in a resource pool which consists of a large number of computers
and user can obtain computation, storage and information services on demand. Usually, cloud
computing can be divided according to service type and service object. Due to different service types,
the Infrastructure as a Service (IaaS3), the Platform as a Service (PaaS) and the Scftware as a
Service (BaadS) are three kinds of cloud computing service (Luo et al., 2011). The TaaS layer
encapsulates infrastructure resources (e.g., hardware equipments) as service, such as Amazon EC2,
Amazon 83, Eucalyptus. The PaaS layer takes further abstract of resources to provide development
and execution environment for user application, for example, Google App Engine, Hadoop,
Microsoft Azure. The SaaS layer encapsulates specific software function as a service (Salesforce
CRM, Google Apps, ete.). According to different service objects, cloud computing can be divided into
public cloud, private cloud, hybrid cloud and cloud community (Marinos and Briscoe, 2009).
Different with other views, the researchers of UC Berkeley thought that cloud computing is general
term of SaaS and utility computing, excluding private cloud (Armbrust et al., 2009). After two main
cloud computing frameworks are analyzed and other domestic and overseas solutions are
summarized, a cloud computing architecture is proposed, as shown 1n Fig. 1.

HPC platform based on grid: The HPC platform based on grid 1s the supporting envirecnment,
of integrating HPC resources which includes system hardware, system software, software tools and
management. systems and so on. The grid computing went through a development process from
computing oriented to integration of computing and service. One of the main characteristic of grid

887

J. Software Eng., 9 (3): 686-701, 2015

« User access layer

Enduserlayer

Service SOA
workflow | construction layer

Service Service Service Service
interface registration selection access

3 —

Service management layer

[> Software-as-a-Service (SaaS) User management

Account management

User environment
configuration
[> Platform-as-a-Service (PaaS) | Accounting billing

Data Security management
processing
| Access control
So o
Data - -
9 9 9 storage | Security audit
Task management

[> Infrastructure-as-a-service (laaS) Task scheduling

[Saas app, | weseeee [Saas app,]

19A®] SOIIAIIS 9I0)) »

Resource pool I Task execution I

Computing][Storage Network | Software Data ﬁ
resource || resource | resource || resource | resource Task fault tolerance
ool ool 00l ool ool — -

L b b L D Resource administration

Virtualization services | | Load balance

l Fault detect
Physical resource aut detee
Storage Network | Fault recovery

: i Database Software
device facilities

Computer

| Service quality guaranteel

Fig. 1: Cloud computing architecture

computing 1s to solve the internet-oriented resource sharing and collaboration problem and the
developing trend of its architecture is a open architecture based on service. This HPC-oriented grid
architecture should not only satisfy the requirement of HPC but also be easy to manage,
configurate and maintain. Finally, it should reflect the advantages of HPC and meet application,
function and performance requirement to application service of the platform.

To achieve the virtual organization management and resource sharing, the academia had
gotten many achievements in grid architecture. Among of those achievements, two grid
architectures are representative: One 1s the five-level sandglass grid architecture represented by
Foster et al. (2001), as the Fig. 2 shows. The other 1s proposed by IBM and Ian Foster together,
called the Open Grid Services Architecture (OGSA) (Foster ef al., 2003),

Existing DIC architectures: Dig data is the current issue of DIC, in order to implement complex
data-intensive tasks in real-time, on the base of the theory of Marz and Warren (2013),
Garber (2012) and Chen and Zhang (2014) proposed the seven necessary principles to guide the
big data analytics systems designing, the first of which is that good architectures or frameworks are
crucial.

To solve different DIC problems, several architectures were proposed. Hyracks is a new
partitioned-parallel software platform for DIC, it can run on the large cluster which is not shared

688

J. Software Eng., 9 (3): 686-701, 2015

Five-level Sandglass grid architecture TCP/IP

Apllication |

Application layer |
layer

Aggregation layer Application layer

Common 15

service R)

layer esource layer

A4
| Connection layer | | Transmission layer |

Local Network layer
resource

layer | Construction layer | | Link layer |

Fig. 2: Five-level sandglass grid architecture and TCP/IP

{Borkar et al., 2011). Hyracks allows users to express a computation as a DAG for data operation
and connection. To deal with the DIC problems of scientific workflows, some reformative scientafic
workflow management system was proposed, for example, Kepler+Hadoop in which researchers can
utilize easily MapReduce in their domain-specific problems and connect them with other tasks in
a workflow through the Kepler graphical user interface (Wang ef al., 2012a). The Lambda
architecture (Marz and Warren, 2013) aims at solving the general data system problem on which
arbitrary functions can be implemented on arbitrary data. Lambda decomposes the robust and
scalable data system into three layers: The batch layer, the service layer and the acceleration layer.
To deal with semantics data, Kourtesis ef al. (2014) proposed a semantics-oriented quality of service
management. architecture based on Lambda architecture which utilized advantages of the semantic
technology and the distributed data stream processing.

METHODOLOGY

Research method and system requirement

Integrated research method of DIC platform: Looking back upon the development of parallel
computing, the problems and research achievements show that establishing a complete scientific
research system is crucial. Chen et al. (2008) proposed the theory of parallel algorithm research
system which means “theory-design-implementation-application”. In 2009, he put forward the
integrated research method of parallel computing named “structure-algorithm-programming-
application” (Chen et al., 2009). Although, the simplified data management. steps of the widely-used
distributed computing architectures (e.g., MapReduce and Dryad) have shown strong data
management ability. Just as Hayes (2008) pointed out, these simplified distributed computing
architecture is not the best choice. After introducing some new features (e.g., appropriate indexes),
system performance may be increased significantly. Guo and Xu (2011) thought that the GFPU
should be introduced to the framewaork, in order to meet the Tixing needs which are combination
of computational-intensive and data-intensive needs.

Fundamentally, DIC is a kind of parallel computing. In this study, the integrated research
method of DIC platform which is called "system structure-data acquisition-data storage-data
processing-upper application” comes from the new characteristics and problems of DIC and it
developed previcus research achievements as shown in Fig. 2.

689

J. Software Eng., 9 (3): 686-701, 2015

[Upper application]

!
l_.(Data processing)
r»(Data storage)
)
)

1—»(Data acquisition

(System structure

Fig. 3: Integrated research method of DIC platform

Requirement of DIC platform

Requirements on scalability: Facing massive data, the DIC platform should ensure the high
scalability of data management and processing and allocate and recycle resources in accordance
with workload. The DIC application should also adapt to changing resource and response to specific
situation. The DIC platform should use the judgment and prediction tool for resource dynamic
scaling, so the resources scale can be adjusted automatically and rapidly according to workload of
the upper application, so as to satisfy the scalability requirement of DIC application with increasing
data volume in many respects (response time, throughput and running cost, etc).

Requirements on managing heterogeneous data: Usually, DIC application would get data
from different data sources, so the data is likely to be heterogeneous, such as structured,
semi-structured, unstructured. To deal with hetercgeneous data, DIC platform should have
comprehensive abilities to retrieval, query, store, extract, analyze, process and mine heterogeneous
data and different DIC applications may require different programming models to support the same
data processing algorithm which is important challenge faced by DIC platform.

Requirements on calculation tasks diversification: Types of DIC tasks are diversification,
such as embarrassingly parallel calculation, iterative calculation, multi-dataset processing and
complicated caleulation with dependency. There are large differences among these calculation tasks,
so the processing logic of parallel algorithms has very strong pertinence. Because implementing
parallel algorithms would adopt different parallel programming methods, different parallel
programming madels are involved. This is a challenge to DIC platform while it integrates multiple
programming models and computing framework and ensures high usability.

Requirements on system manageability: In the future, DIC platform need to provide unified
operation and supporting environment, for a series of same or different types of application. Some
applications are developing gradually to multi-tenant application mode. The management model
which includes multiple elements (e.g., application, user, session, rescurces and job) will get more
and more complicated. The demands for multi-application management will also show great
differences which involve system deployment, system configuration, load balancing, fault tolerance
and performance tuning and so on. DIC platform has urgent need to optimize and improve its
manageability, even redesign and restructure itself.

690

J. Software Eng., 9 (3): 686-701, 2015

Scientific Engineering Internet Computational) Lo
computing computing service social science E-commerce User application layer
| User management |
[Code editor l [GUIL l I Compiler l [Rule library] [Execution controller]Progrzu_nming Integrated
engne application
development
Job environment
[Job scheduling] [Task analysis] Data access control ©
management

Massive data processing layer Massive data storage layer

L4}

Programming model connection pool " -
e e P | Data access interface technology |

technology

I Centralized data 1
management system | |
(e.g., big table, Hbase)) I

Programming model
and computing framework

w

o

g

E.' Unstrutured data Strutured data

5 B < B storage storage

g [~ Traditional relational]
as L database

g ——=——Z=—==Z=| |
o

=3

g

o

2

104 uonismboe e1Ep dNBWOINY

©

| I

| | I
| I
| [
| I
| I
I General computing framework | |
| deployment and management | | 9
| I
| I
| I
| I
| I
| I
| I

—_— ———— HDFS GFS | [———————"—
[—MapReuce_J (Dryad | .- |’_ Uncentralized data W !
(—_ - — = (| = | management system | |
—_ ————
|_Piccolo | [HAMA | - NTFS o |
e ___ __ _______ g Others

Infrastructure layer Scientific data

Resource pool

Virtual machine Virtual storage Virtual network

E-commerce data
Engineering data

See

Computing resource Storage resource Network resource

|
|
|
|
|
|
: Physical resource
|
|
|
|
|
|

Fig. 4: Architecture of DIC platform

Requirements on fault tolerance: Usually, DIC platform i1s deployed on the large-scale,
distributed cluster. In order to decrease cost as much as possible, the cluster is composed of cheap
business machines. Therefore, the node failure and data failure of cluster are regarded as common
phenomenon. While designing DIC platform, in order to reduce the overhead of redoing some
subtasks and even the whole operation a good fault tolerance mechanism for application should be
provided, such as copy management, checkpoint strategy. To ensure the availability of DIC

platform, data consistency can be even sacrificed to a certain extent.

DESIGNING ARCHITECTURE OF DIC PLATFORM

According to target and requirement of designing DIC platform, this study applies the
integrated research method oriented to DIC and puts forward the architecture of DIC platform with
seven layers which includes user application layer, integrated application development
environment, security management layer, massive data processing layer, massive data storage

layer, automatic data acquisition layer and infrastructure layer, as shown in Fig. 4.

891

J. Software Eng., 9 (3): 686-701, 2015

User application layer: This layer includes all kinds of data-intensive applications which are
developed and deployed by related companies and institutions. These companies and institutions
can be seen as data-intensive application providers, the service objects (i.e., end users) could be
external users (e.g., internet service users), also could be internal users (e.g., users of scientific and
engineering computing application). The DIC platform is transparent for end users, who acquire
and utilize all kinds of data-intensive applications and services but they do not need to concern how
to deploy and manage application, or to implement the underlying software.

Integrated application development environment: The integrated application development
environment provides a unified interface for data-intensive application provider (i.e., DIC user) and
it is safe, efficient and elastic development environment and assistant tools. The integrated
application development environment includes three sub-layers. The first sub-layer is user
management, it takes charge of creating, updating and deleting users and assigning and
controlling permissions. The user includes developer (i.e., data-intensive application provider) and
manager (i.e., the DIC system administration). The second sub-layer is programming engine, it is
the main controller and user interface of the entire data processing layer and it is responsible for
uploading, editing, transforming, starting and stopping source codes. This sub-layer also takes
charge of initialization, configuration, maintaining and management of programming models in
the rule library and it controls the whole system. The third sub-layer named job management is in
charge of transforming an application into a job and then decomposing it into seme sub-jobs. This
sub-layeris able to append and update the related information in the rule library.

Massive data processing layer: This layer is the core of DIC platform, it can support many kinds
of programming models and computing frameworks. While designing this layer, the first thing to
do 1s ensure making many kinds of DIC framework work on the unified development platform.
According to advantages and usable scope, the proper programming model can be chosen and used
efficiently. This layer should let each programming model handle the calculations that they do best.
It can manage and schedule uniformly resources and jobs, so as to get better performance than
other computing systems which are based on the single programming model. In addition, new
computing frameworks can be added to DIC platform, so massive data processing layer will support
more programming models. Finally, it is necessary to use the programming moedel connections safely
and efficiently and avoid the extra overhead to build and close connection frequently.

Massive data storage layer: While designing the massive data processing layer, it should be
taken fully consideration how to store properly and access efficiently large-scale data. Structural
data and unstructured data should be store and manage, respectively. This layer also provides a
unified interface to access data.

Automatic data acquisition layer: The DIC platform is not only able to store and process
large-scale data but alse acquire new data from the external data sources constantly.

Security management layer: In a larger sense, security management. layer should ensure safety
of many aspects, including location of data center, power supply, host and network equipment,
operation system of server, database, network connection, application system and people
management. In a narrow sense, this layer includes mainly many functions related to the safety
of operation system, database, application software, account management, for example,
authentication, permission, system protection and safety audit.

692

J. Software Eng., 9 (3): 686-701, 2015

Infrastructure layer: Using virtualization technology, infrastructure layer can transform all
kinds of physical resources to resource pools represented by virtual machine, virtual network and
virtual storage. This layer provides virtual resources for the upper mass data acquisition, storage
and processing application on demand. It improves the reliability, customizability, manageability
and scalability of DIC platform.

RESULTS AND DISCUSSION

Implementation and application: In order to verify the feasibility and effectiveness of the DIC
platform architecture, a simple prototype system which was named DIC-Beginner was designed and
implemented to support massive image data parallel processing. In addition, several testing
applications were implemented for the morphological operation of binary image in parallel mode.
Compared with serial processing mode, these applications can obtain higher speed-up ratio. In the
DIC-Beginner, Hadoop and Haloop computing framework can be used, letting each kind of
programming model is responsible for handling their own best computing tasks.

In order to accelerate the development of DIC-Beginner, the seven layers structure which is
described in previous section was simplified: (1) Considering the system is operating in a local
cluster, the security management layer 1s omitted, (2) Instead of "automatic data acquisition”
function, experimental data are obtained in an offline way and saved on a local drive. Thus the
structure of DIC-Beginner has only 5 layers. DIC-Beginner and those applications were developed
and tested in Eclipse environment. Before using Hadoop and Haloop, the corresponding plugins
need to be installed.

Parallel image processing algorithm based on mathematical morphology: Digital image
processing technology has become widely-used methods and tools in the field of scientific computing
and engineering computing. In the field of computational social science and electronic commerce
it also has many successful stories. Along with the increasing scale and size, the work of managing
and processing image file shows obvious characteristics of "big data”. Image processing methods
based on a single processor has been unable to meet the demand of user.

The traditional parallel image processing 1s executed mainly in multi-core or multiprocessor
standalone mode. Ramraj and Rajan (2009) discussed how to make image processing algorithm be
effective parallelization in a multi-core environment. In recent years, some researchers use Hadoop
to solve more complex problems in image analysis and image understanding, such as image
classification (Zhu, 2011) and image retrieve (Wang ef al., 2012b). However, researches on the
low-level image processing algorithm which is implemented with Hadoop is less, especially for the
parallelization of mathematical morphology algorithm.

Mathematical morpholegy 1s a kind of mature theories and methods of the digital image
processing and recognition. It 1s composed of a set of basic operations, namely, dilation, erosion,
opening operation and closing operation. The object of each cperation can be either a binary image
or a gray image, also can be a color image. On the basis of these operations a variety of specific and
practical morphological algorithms can be combined and derived. These algorithms can be used to
analyze and process the shape and structure of images, including image segmentation, image
filtering, image enhancement, image restoration, boundary detection and feature extraction, ete.

Mathematical morphology uses a probe (1.e., the structural element) to collect the information
of a image. When the structural element is moving in a image, we can review the relationship
among the parts and understand structure characteristics of the image. Dilation, erosion, opening

693

J. Software Eng., 9 (3): 686-701, 2015

o110 1{of1
INE ofT)o
o11(0 1{of1
B, B,
00 |x x[0]0 x| 1|x x| 1[x
0 ’l:l 1 1 ’IJ 0 1 l’Il 0 0 ’j; 1
x[1]x X|1|x x| 0|0 010][x
D, D, D, D,
0lofo 1[x]0 Lf1]1 0lx|1
x 11| x I\I;O x (T x 0T 1
111 11x|0 0(0fo 0fx]1
E, E E, E,
X|[0]x x|[1]x x| 1[x X1 1]x
1T 04T 1 1 \TI 1 1 \Ir 0
x| 1]|x X X x|0]x x| 1]x
L L L, L,

Fig. 5: Structural elements

operation and closing operation can be explained by the fact that the original image A is performed
different translation (Haralick et al., 1987) operation with the structural element B. Hence,
mathematical morphology algorithms have natural structure for parallel implementation. Dilation,

erosion, opening operation and closing operation are defined as follows:

Dilation operation

ADB - [)(A+bbeB) (1)
Frosion operation
A®B = [){A-b:beB} (2)
Opening operation
AoB =| J{B+x:B+xc A} (3)
Closing operation
AsB=(A sB)0B (4)

In this study, dilation, erosion, opening operation and closing operation use two kinds of 3x3

structure elements (i.e., B, and By), their origin are all at. the center, as shown in Fig. 5.

In addition to the above four basic morphological operation, a parallel thinming algorithm 1s also

implemented, it is already improved. Thinning is a skeleton process in which most of image pixels

694

J. Software Eng., 9 (3): 686-701, 2015

are stripped continuously, eventually a wide single pixel image skeleton 1s gotten, without changing
topology among image pixels. In the traditional thinning algorithm, structural elements {D} are
responsible for removing the upper left, upper right, lower right, lower left direction pixels on the
four corners, structural elements {E.} are responsible for removing the top, bottom, left, right
upward pixels. Our thinning algorithm is that adding a set of structural elements {l.} to strip pixels
in the corner, these three kinds of structural elements (i.e., {D}, {.} and {l.}) will work together,
as shown in Fig. 5. The dotted circle denotes the origin of structural element, "1" denotes a point
on the target image, "0" indicates a point. on the background image, "x" can be either a point on the
target image, also can be a point of the background image.

In an iterative process, if {D}, {E;} and {L.} are used simultaneously to determine whether or
not the outer pixels should be stripped, the convergence speed of thinning process will be greatly
improved. However, not all of structural elements can be used at the same time, ctherwise the
connectivity of skeleton will be damaged. These structural elements are given below:

« DiandD,,

* K and K, (arbitrary i = j)
* Ljand L, (arbitrary i # j)
« K and (D ,orD,,)

« L;and (D.,orD,.)

« L;and E, (arbitrary i #j)

1=1,2,3,4; Dy, = D(i+k) mod 4

After the above structure elements are eliminated, the improved algorithms can be obtained:

(%)= J¥(XDELni) n-0L..N (5)

i=1

¥ (X,D,E.L,n,i) = {((XnG)Dj)-((x,8D,)D,))J((X,8D,,)-((X,8D,)<D,))U

(X0,) —((X.0F, Jo E))U((X.0L,) - ((X,6L,) L)}

X =X6n (DeD.eleD ek sk ek ek el al,0l.el,) n=01,.. N

As Table 1 shows, the above five kinds of binary morphology algorithm are implemented and
put as test programs with DIC-Beginner.

Job management and resource management: In DIC-Beginner, Hadoop and Halecop are
deplaoyed on a cluster and they share all resources. Hadoop 1s used to carry out the tasks of TP1,

Table 1: Test programs

Program ID Program name Program function
1 TP1 Dilation

2 TP2 Erosion

3 TP3 Opening

4 TP4 Closing

5 TP5 Thinning

695

J. Software Eng., 9 (3): 686-701, 2015

Test program

G GO GO GG

Submit job

X Job management

Job and schedulement
manager

Allocate job

—— Hadoop -- Hadoop F——— Haloop F— Haloop L———
=] Scheduler |- Scheduler --—-{ Scheduler = Scheduler L ——

Request resource
Resource

management and
Resource schedulement
manager
Update node
status
Node manager Node manager Node manager
Hadoop Haloop Hadoop Haloop
executor executor executor executor

Fig. 6: Architecture of job management and resource management

TP2, TP3 and TP4. The thinning algorithm (i.e., TP5) needs to perform multiple iterative
operations. MapReduece programming model of Hadoop canncot support explicitly iterative
caleculation. If executing TP5 with Hadoop, multiple jobs must be started and iterative process is
realized 1n a cascading fashion. While a job 1s completed, an additional task must be started for
judgment. The performance is poor. Thus the tasks of TP5 are performed with Haloop. Haloop
extends MapReduce of Hadoop and it can support effectively iterative operation.

As Fig. 6 shows, resource manager is responsible for allocating and scheduling cluster resources,
node manager runs on each node and it is responsible for providing and allocating node resources.
Job manager is universally unique, it can assist developers to decompose complex jobs into subtasks
and control execution flow. Hadoop scheduler and haloop scheduler take charge of not only
applying for resources but alse allocating resources and scheduling tasks within the slave
framework. Hadoop executor and haloop executor run on the slave node, they are responsible for
starting a hadoop task or haloop task.

Image file: The test data of this study comes from Stanford 40 Action Dataset. The Stanford 40

Action Dataset contains images of humans performing 40 actions. There are 9532 images in total

with 180-300 images per action class. According to the resolution of image, we choose 300 images

896

J. Software Eng., 9 (3): 686-701, 2015

Tahle 2: Test images

Group name Resolution of images Amount of images
A 400300 300
B 800x600 300
C 400x300 1200

Tahble 3: Structural element. table

Column family

Row key Seinfo History

1D Column label Remarks
Sename Name of structural element
Rowsubscript Row subscript of array
Colsubscript Column subscript of array
Value Value of array element

(800600 resolution) and 1200 images (400x300 resclution). All of images had been transformed
into binary images after graying and thresholding segmentation and divided into three groups as
shown in Table 2.

The test image files are stored in the local file system of client machine. Before running test
programs, these image files will be copied to HDF'S. Finally, output data will be written to the local
file system. This will make the process more efficient, because HDFS can make the best of data
location, instead of the local file system. Of course, the image files also can be read directly from the
local file system, then the input directory of DIC-Beginner must be specified to local file system. For
TF5S program, multiple map and reduce tasks need run on the same image, so it is best to copy all
image files to the HDFS so as to save bandwidth and improve efficiency.

Structural element: All structural elements (i.e., {D3, {E}, {Li}) are stored in Hbase in the form
of two-dimensicnal array. Table 3 shows information of the Hbase data table. For multiple records
in which the values of column attribute "sename" are same, if, the line in which the value of ID is
the smallest indicates the origin of a structural element.

Data flow: Test programs directly sends the path of image files to DIC-Beginner, as the input of
MapReduce programs. ImagelnputFormat class is responsible for generating input splits and
dividing them into record. ImagelnputFormat class inherits from FileInputFormat class.
Analogously, ImageOutputFormat class inherits from FileOutputFormat class. It is responsible for
describing the image ocutput format of MapReduce job. In ImageCutputFormat class,
ImageRecordWriter can use image file name as a key which 1is text type and image file content as
a value which 1s image type, finally, store image files into HDF'S.

ImagelnputFormat class makes the entire image file be an input split which 1s a record. For a
keyfvalue pair, the key is the text type which stores the image file path in the file system, the value
is a record which is imageWritable type. ImageWritable class rewrites two methods of the Writable
interface. These methods write and read data content of images, respectively. Input split is the
input block of map operation, each map operation only deals with one input split but this split is not,
the image file itself, it is a reference to the data. The input file will be always divided into several
units by default. In order to make map task treat the whole image file as one record,
ImagelnputFormat defines two methods:

897

J. Software Eng., 9 (3): 686-701, 2015

Run job
Client node v Master node
Job manger
TP1 program Allocate
job
Hadoop
scheduler
Local FS
Copy image .
files "Call get splits ()
Y ImageInputFormat
) v v y
Read image | Input split | | Tnput split | | Input split |

record

v v v
| ImageRecordReaderl | lmageRecordReaderl | ImageRecordReader|

| Map task | | Map :ask | | Map task |
\ y /
| Reduce task |
!
ImageOutputFormat

Output image files

Fig. 7: Data flow of TP1

« Overriding is Splitable () method and set return value as false
« Overriding GetRecordReader {) method and returning a custom ImageRecordReader to read
the entire image file

Figure 7 shows the data flow of TP1 program with Hadoop. When TP1 starts on DIC-Beginner,
JobManager calls getSplits () method of ImagelnputFormat class. Assigning the sum of the image
file to numSplits, the desired number of map tasks is determined. After creating input splits, the
client machine will send them to the HadoopScheduler. According to the information about storage
location in the input splits, HadoopScheduler will schedule them to the HadoopExecutor.

On HadoopExecutor, map task will transfer input split to GetRecordReader () method of
ImagelnputFormat, so as to obtain ImageRecordReader. Map tasks use ImageRecordReader to read
the record and generate keyfvalue pairs which will be passed to map functions.

Infrastructure setup: For our experiments, the infrastructure of DIC-Beginner consists of local
cluster of 5 machines: 1 of the machines is both master node and client node, the other 4 machines
are converted into 8 slave nodes using VMware virtualization technology. Kach machine has
1 quad-core Intel 17-3770 (3.40 GHz) processor with 16 GB memory. All machines are connected
via a megabit Ethernet switch.

698

J. Software Eng., 9 (3): 686-701, 2015

@
Grayscaleimage

Binary image
TP1result
TP2 result
TP3result

TP4 result

(b)

Grayscaleimage

Binary image

TP5 result

©
Grayscaleimage

Binary image

TP5 result

Fig. 8(a-c): Part of test data and experimental results (a) Group A, (b) Group B and (¢) Group C

Result and evaluation: In the beginning, using the first group of test data (i.e., Group A) in
Table 2 as input, the first four test programs were carried cut. Then TP5 program was run for the
other two groups of test data in Table 2. Figure 8 shows part of test data and experimental results.
In all experiments, there were two workers per slave node and each worker was pinned to use one
of two cores.

Figure 9a shows application speedup of DIC-Beginner has a satisfactory scaling performance
as the number of workers increases from 2 to 16 for the group A of test data. However, as the
number of workers increases to 16, DIC-Beginner's overhead is no longer negligible relative to
applications’ own computation, resulting in 20% less than ideal speedup.

Figure 9b shows relative runtime of TPH as the number of workers increases from 2 to 16 for
group B and group C which have similar amounts of data. TP5-B and TP5-C correspond to results
of TP5 on both groups of test data, respectively. Because the size of files is far less than the size of
HDFS block and there are many files, each map operation will only deal with few input data. As
a result, there will be a lot of map tasks, each new map operation can cause some performance loss.

699

J. Software Eng., 9 (3): 686-701, 2015

LY N)
o TPl —~
@ TP2 .

61 mTP3

B TP4
== Ideal

Speed up

f=3 o -
1 1
i
!
%
3
3
\
\
\
3
\
)
3
\
\
"
Y
.
.
.
.
S
.

Workers

208 1)
1.84 oTP5-B —
1.6 4 BTP5-C

144 Ideal -
1.2 4
1.0
0.8
0.6
0.4
0.2
0.0

Relative runtime

4

[\S]

4 8 16
Workers

Fig. 9(a-b): Scaling performance, (a) Speed up and (b) Relative runtime

CONCLUSION

In this study, an architecture of DIC platform with seven layers is studied, the requirements
of designing DIC platform are analyzed and the DIC integrated research method is discussed.
Finally, as a prototype system, DIC-Beginner was implemented to support mass image data parallel
processing, This study has high theoretical significance and application value.

REFERENCES

Armbrust, M., A. Fox, R. Griffith, A.D. Joseph and R.H. Katz ef al., 2009. Above the clouds: A
Berkeley view of cloud computing. Technical Report No. UCB/EECS-2009-28, Department of
Electrical Engineering and Computer Science, University of California, Berkeley, February 10,
2009, http:/fwww.eecs berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28 html.

Borkar, V., M. Carey, R. Grover, N. Onose and K. Vernica, 2011. Hyracks: A flexible and extensible
foundation for data-intensive computing. Froceedings of the IEEE 27th International
Conference on Data Engineering, April 11-16, 2011, Hannover, pp: 1151-1162.

Chen, G.L., GZ. Sun, Y. Xu and M. Lu, 2008, Methodoclogy of research on parallel algorithms.
J. Chin. Comput.., 31: 1493-1502,

Chen, G.L., G. Bun, Y. Xu and B. Long, 2009, Integrated research of parallel computing: Status
and future. Chin. Seci. Bull., b4: 1845-1853.

Chen, C.L.P. and CY. Zhang, 2014. Data-intensive applications, challenges, techniques and
technologies: A survey on big data. Inform. Sei., 275: 314-347.

Foster, [., C. Kesselman and 5. Tuecke, 2001, The anatomy of the grid: Enabling scalable virtual
aorganizations. Int. J. High Perform. Comput. Apple., 15: 200-222,

700

J. Software Eng., 9 (3): 686-701, 2015

Foster, ., C. Kesselman, J.M. Nick and 5. Tuecke, 2003. The Physiology of the Grid. In: Grid
Computing: Making the Global Infrastructure a Reality, Berman, F. (Ed.). John Wiley and
Sons, New York, pp: 217-249,

Garber, L., 2012, Using in-memory analytics to quickly erunch big data. Computer, 45: 16-18,

Cuo, M. and C. Xu, 2011, Programming model and separative resource management for cloud
computing. Commun. CCF, 7: 26-33.

Haralick, R.M., S.R. Sternberg and X. Zhuang, 1987. Image analysis using mathematical
morphology. IEEE Trans. Patt. Anal. Mach. Intell., : 532-550.

Hayes, B., 2008. Cloud computing. Commun. ACM.,, B1: 9-11,

Howe, D., M. Costanzo, P. Fey, T. Gojobori and L. Hannick et al., 2008, Big data: The future of
biocuration, Nature, 455; 47-50.

Kourtesis, D., J.M. Alvarez-Rodriguez and I. Paraskakis, 2014, Semantic-based QoS management
in cloud systems: Current status and future challenges. Future Gener. Comput. Syst.,
32: 307-323.

Luo, J.Z., JH. Jin, AB. Song and F. Dong, 2011. Cloud computing: Architecture and key
technologies. J. Commun., 32: 3-21 (In Chinese).

Marinos, A. and G. Briscoe, 2009. Community cloud computing. Proceedings of the 1st
International Conference on Cloud Computing, December 1-4, 2009, Beijing, China,
pp: 472-484.

Marz, N. and J. Warren, 2013, Big Data: Principles and Best Practices of Scalable Realtime Data
Systems. O'Reilly Media, US.

Ramraj, E. and A.8. Rajan, 2009, Using multi-core processor to support network parallel image
processing applications. Proceedings of the International Conference on Signal Processing
Systems, May 15-17, 2009, Singapore, pp: 232-235,

Wang, J., D. Crawl and I. Altintas, 2012a. A framework for distributed data-parallel execution in
the Kepler scientific workflow system. Procedia Comput. Sci., 9: 1620-1629,

Wang, X.W., Q.Y. Dai, W.C. Jiang and J.%. Cao, 2012b. Retrieval of design patent images based
on mapreduce model. J. Chin. Comput. Syst., 33: 626-632,

Winter, R., 2008 Why are data warehouses growing so fast? April 10, 2008,
http:/fsearchdatamanagement.techtarget.com/mews/2240111227/Why-Are-Data-Warehouses-
Growing-So-Fast.,

Zhu, Y.M,, 2011. Image classification based on hadoop platform. J. Southwest Univ. Sci. Technol.,
26: 70-73.

701

	686-701_Page_01
	686-701_Page_02
	686-701_Page_03
	686-701_Page_04
	686-701_Page_05
	686-701_Page_06
	686-701_Page_07
	686-701_Page_08
	686-701_Page_09
	686-701_Page_10
	686-701_Page_11
	686-701_Page_12
	686-701_Page_13
	686-701_Page_14
	686-701_Page_15
	686-701_Page_16
	JSE.pdf
	Page 1

