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ABSTRACT

The cutput power of wind turbines or wind farms depends on wind speeds, which may have
certain correlation in one region or even in different regions. When the wind speeds correlation is
ignored, it will have a significant influence on Available Transfer Capability (ATC) of power system
with wind farms. This study established a random variables simulation method considering wind
speeds correlation to more accurately evaluate ATC. The proposed methods are concerned with rank
correlation coefficient, Copula theory and Monte Carlo Simulation (MCS), which are simple and
easy to implement. In addition, the evaluation models for ATC were built on based of Optimal
Power Flow (OPF) and Fast Voltage Stability Indices (FVSI) was considered as inequality
constraints in order to guarantee the voltage stability of system. The modern interior point method
was applied to solve the proposed models. Simulations are carried out on IEEE 118-bus system. The
results show effectiveness and availability of the propeosed methoed in evaluating on ATC of power
system considering wind speeds correlation. The conclusion can provide a technical support for the
ATC evaluation and decision-making as well as wind power forecast.
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INTRODUCTION

With the rapid development of the wind power technology, wind farm sizes are becoming larger
and larger day by day and consequently the proportion of wind electricity in power system will
present the large-scale development trend (Usaola, 2010; Zhou et al., 2010). A large scale of wind
power access to power system, will inevitably have profound influences on power system due to the
intermittency and uncertainty of wind energy (Chen et al., 2011; Falaghi et al., 2012). Therefore,
evaluating and forecasting the impacts of high penetration of wind power are becoming a hot topic
of research on power system evaluation fields.

As one of many significant influences, researches for impact on ATC of wind power have been
discussed in order to ensure operation security of electric power and improve scientific decision. ATC
of wind farm incorporated system were studied (Wang and Ding, 2010; Usaocla, 2010; Zhou et al.,
2010) and a good evaluation method was established under considering uncertainty of renewable
system (Wang and Ding, 2010; Falaghi et al., 2012). But they don’t take into account the

749



J. Software Eng., 9 (4): 749-760, 2015

correlation between different random variables such as wind speed or wind power, load, ete.
However, the wind speeds which determine the output power of wind turbine, have a certain
correlation in certain areas or different regions. And there may be a certain dependencies between
the similar loads. If the correlation between random variables is ignored, it can make some
calculation results distort. When the error results are applied in the planning, operation or analysis
fields of power system, it has direct effect to the system security stability and economy.

With the integration of large-scale wind power, power system will present more uncertainties.
For these uncertainties, Monte Carlo method is usually employed in many references
(Falaghi et al., 2012; Wang and Ding, 2010) due to its simplicity and availability for the randem
problem. However, its application in some researches also did not consider the dependent
relationships between random variables (Morales et al., 2010; Yu et al., 2009). Even if dependency
was presented, it didn’t overcome the shortcoming of computation-intensive, time-consuming and
calculation-precision of Monte Carlo method. In the study of Wang and Ding (2010), a linear
correlation coefficient was employed to approximately describe the dependency but. it still need to
consume a large amount of computing time. In the related random variable simulation (Usaola,
2010; Morales et al., 2010) applied gram-Schmidt orthogonalization, Cornish-Fisher unfolds, etc.
but models are complex and the time-consuming. The simulated annealing algorithm and genetic
algorithm are employed, respectively to the sampling of random wvariable in the study of
Vorechovsky and Novak (2009) and Liefvendahl and Stocki (2008) but the calculation-precision
is still not good enough. Kalagnanam and Diwekar (1997) proposed Hamersley sampling method
but it needs to deal with the reverse transformation of a large number of prime’s roots.

Currently, existing researches are mainly focused on the assessment of AT C under uncertainty.
In wiew of the difficulty and complexity in dealing with uncertainties, some researches adopted DC
power flow model to reduce the amount of calculation, shortening computing time in the conditions
of guaranteeing the accuracy (I1a ef al., 2008; Rodrigues and da Silva, 2007) but this causes the
voltage stability problem which should be considered sericusly when a power system is connected
with wind farms. And when ignoring the voltage stability, the evaluation effect of ATC will lead
to serious errars. Usaola (2010), Zhou et al. (2010) and Wang and Ding (2010) adopted AC power
flow moedel and incorporated the voltage stability by using the node voltage amplitude constraints.
However, Yokoyvama et al. (1991) and Paensuwan ef af. (2010) indicated the shortcoming of the
node voltage amplitude constraints. That 1s, it 1s not fully effective in avoiding voltage instability.
For example, voltage instability or voltage sag will happen when reactive power support is
insufficient. Under this environment, if corrective measures aren’t implemented, it may eventually
lead to voltage collapse.

This study established a random variables simulation method considering wind speeds
correlation to more accurately evaluate ATC. The models for evaluation of ATC are presented on
based on the AC power flow and adding FVSI inequality constraints to guarantee the voltage
stability of system. Modern interior point method was proposed to solve optimal power flow problem.

MATERIALS AND METHODS
Description for evaluation model of ATC considering voltage stability: According to the
research content and the employed algorithms, the models focus on the following study: ATC

computing models, voltage stability indices and wind power.
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Description for ATC computing models: Load factor A which is defined as the ratio of actual
generating capacity and maximum generating capacity, is applied to measure the growth degree
of load. The value of A is zero at the beginning of load and increase with the rise of active power
at each node, which corresponds to the transmission of electricity. Therefore, ATC can be obtained
at the maximum of A. The calculation of ATC 1s shown in KEq. 1:

Pire = Z By - Z P]gi —Pepas (1)

ief) iell

where, Q is the node set. P,;cis the available transfer capability of power grid. P.gy, is Capacity
Benefit Margin (CBM) which is 5% of the maximum transmission capacity in this study, P, is
initial load power at 1 node. P, is load power at the maximum of A which is given in Kq. 2:

PD1 = P]:E))l +bP1 x A'rnax (2)

where, by, is the growth proportion of active load at 1 node, that is the ratio of existing load and the
initial load and A, is the maximum of A.

In this study, A
following:

« 18 obtained by solving optimal power flow. The optimization model is as

et

Max A
st f(xA)=0 (3)
h(x)<0

where, f(x, %) 18 AC power flow equations. The inequality equations h(x) consider generating
capacity constraints, voltage stability constraints, line thermal stability constraints, ete.

Description for voltage stability index: In existing researches, there are several types of
voltage stability index. Here Fast Voltage Stability Index (FVSI), is selected as voltage stability
constraints, whose specific theoretical derivation process can be founded in the study of Musirin and
Rahman (2002). Its formulation is as follows:

FVSI. = 4ZU2QJ — 4ZUZ(BU (e? +f12 68— flfj)* C‘Tu(ﬁbjfl - elfj ))
1] UZX le(e? +f12)

150y

(4)

where 1, j are the first and end node numbers of line. Z; and X, are the line impedance and
reactance. U, is voltage amplitude at i node. Q) is reactive power at ] node.

The greater the FVSI value 1s, the worse the voltage stability is. When FVSI is close to 1, the
voltage stability is the worst. Therefore, the voltage stability should satisfy Kq. 5:

FVSL,<1 (5)

Description for the wind power: The power of wind power depends on the wind speed which
is sensitive to the natural factors, season variation and geographic environment and ete. So, wind
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speed distribution varies substantially from place to place. Generally, two-parameter Weibull
distribution is a common and effective technique in describing wind uncertainty (Li, 2006). Its
probability density function is shown in Eq. 6:

9 = e [(%)ﬂ 6)

where, kk, cis the shape parameter and the scale parameter.,
Integrated with the actual working condition of WT Gs, the power of wind power is expressed
by the following equation:

M V£V<V
(Vr_\/vl) 1 T

P, =1P VvV, ("N
0 v>V orv<V

where, P, and P, are the rated power and active power output variables (MW) of WTGs,
respectively. V, V_and V, is orderly the cut-in wind speed, rated wind speed and cut-out wind speed
(m sec™) and v is the wind speed variable.

Simulation method of correlation wind speed: The simulation method of correlation wind
speed is carried out according to rank correlation coefficient, Copula Theory and Monte Carlo.

Rank correlation coefficient: The correlation coefficient 1s usually considered in dealing with
the correlative problems between random variables. As the known dependence measure, the
product moment (linear) correlation p or named as Pearson correlation is often used in this setting
due to the characteristics of accurate measurement for the degree of linear dependencies between
random variables and is invariant to linear transformations. In addition, it still describes the
nonlinear dependencies between normal distribution variables. So, Pearson correlation can be used
to solve the load obeying normal distribution (Vetterling et al., 1992).

Assume that L is a lead vector, 7, 1s standard normal vector, p;, o, and p, are mean vector,
standard deviation vector and preduct moment correlation coefficient matrix of L. Then:

L=c"7 +pn, (8)

Thus load vector Li are set immediately when Z_ is specified. And Z, follows from Cholesky
decomposition, which can be shown as following:

Z €y, Z
VA C C Z

Zs _ _32 w7 — 2-1 22 - -2 (9)
Zoy € S 7 G || Zw
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where, C 1s a lower triangular matrix from Cholesky decomposition. z,= (1=1,2,... \N) is standard
normal variable.

However, Pearson correlation p is affected by the marginal distributions and is not invariant
to increasing transformations when it is applied in the actual domain of the random variables. To
overcome these shortcomings, the rank correlation p, (Spearman correlation) which is the product
moment. correlation of ranks, come forward according to cumulative distribution function. For
example, the rank correlation of the random variables X and Y with edf Fy and Fy is defined as
(Vetterling et al., 1992):

P, Y) = p (FD), Fo(Y)) (10)

From Eq. 10, for uniform variables, product moment correlation p and rank correlation p, are
the same but in general both of them are different. For the joint Normal distribution, the
relationship between p and p, is as following (Papaefthymiou and Kurowicka, 2009):

P, Y) = 251'11(% p. (X, Y)) (11)

For multivariate problems, rank correlation matrix p_ can be used to express all mutual rank
correlations between the random variables. For example, {;, ,, ..., {, are normal uncertain
variables, then the rank correlation matrix p, is:

p(8.80)p (8080 (8085 ) p(808,) ]
p(éZ’Ql):p(Q2>c2)>p(Q2>c3)“-p(c2>Qn)
Pw = P(Qg:g),P(ig,ig);P(Q:Qg)"'P(Gan)

p(%.-60). P65 ).p(40 &) p (4,06 )

Copulas: The copula, which 1s put forward by Sklar (1959), 1s actually a kind of function that joins
or ‘couple’ one-dimensional marginal distributions in multivariate distribution functions. In other
words, copulas are multivariate distribution functions whose one-dimensional marginal is uniform
on the interval [0, 1]. The marginal distribution describes the distribution of the variable while
copula function describes the correlation between variables. Nelsen (2006} defined Copula funection
as:

The random variables X, X,,..., Xy with cdf Fy, (x)), Fyy (x9) ,..., Fiypy (%)), are joined by copula
C, if their joint distribution can be written:

Flxy, %5005 = ClFx(x), Feolx), . Fag(gh) (12)

Compared with the traditional methods for dependence measures, copulas have many
incomparable advantages such as flexibility in constructing multivariate distribution, simplicity in
building models, invariance of consistency and correlation in dealing with nonlinear
transformation, feasibility and practicality in solving nonlinear, asymmetric and tail dependence
between variables. Therefore, it is introduced and borrowed in many literatures. So, far, there are
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many known families of copulas like the Normal (Gaussian) copula, the Elliptical copulas, the
Archimedean copulas, the Diagonal band copula, etc (Papaefthymiou and Kurowicka, 2009;
Nelsen, 2006). According to the research contents, this study introduces detailedly the properties
of the Normal copula.

The Normal/Gaussian copula is the copula that corresponds to the multivariate Normal
distribution. The copula can be constructed from the multivariate Normal distribution using Kq. 12,
For n-dimensional normal uncertain variables, the copula function can be expressed as:

Cluy, ugy iy R) =@ (@7 (u)), @7 (uy),..., 07" (uyy) (13)

where, R 1s product moment correlation matrix, ¢ 1s the multivariate Normal distribution funetion
and ¢! is the inverse of the standard Normal distribution.

(Generally speaking, the cdf transformation can transfer all random variables of the problem
to a uniform domain and the rank of random variables before and after the transformation is
consistent, that is, the dependence of random variables is unchanged. Furthermore, the random
variables in the field of uniform distribution can be further transformed back to their original
distributions by the inverse-cdf transformation without any loss of information. But correct and
reasonable copula function is crucial i1ssue to carry out transformation between original
distributions domain and uniform domain. Obviously, it 1s more convenient to investigate and
model stochastic dependence in the uniform domain than in the actual domain but. Therefore, here
the normal copula function shown in Eq. 13 is applied to solve the scheme design for measurement
and sample test.

Simulation method for wind speed based on normal copula function: The following three
tasks should be followed when extracting n-dimension random variables corresponding to rank
correlation coefficient matrix R, based on the normal Copula function:

*+ The random variable with standard normal distribution should be obtained according to the
given rank correlation coefficient matrix R,

+  The uniform distribution number U_ in interval [0, 1] with rank correlation coefficient matrix
R, are generated by using the random variable with standard normal distribution and the
normal Copula funetion

+ The random variable with marginal distribution W_ are obtained by the inverse of the
cumulative distribution function which is shown in Eq. 14:

W, =F,'(U,) (14)

When applying the normal copula function to simulate the correlation wind speeds, the detailed
flows are described as following:

Step 1: Integrated with the rank correlation coefficient matrix of wind speeds R, given by wind
power plant or wind turbine generator. Produet moement correlation coefficient matrix Ris
calculated by Eq. 11

Step 2: N independent standard normal distribution sampling =z, = 1, 2,..., N) are realized by
Monte Carlo simulation method
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Step 3: By the Cholesky decompaosition of R, lower triangular matrix C; can be obtained. N
dependent standard normal distribution random variables Y, whose product moment

correlation coefficient matrixis R, are calculated by Kq. 15:

Yw'l CRI] Zl
Y. Cpqy C z

Y, = o —C, xZ= wiz frz 2 (15)
Yo Crart Crann " Crawr || Zw

Step 4: Based on the normal copula function, N uniform distribution random variables U_ in
interval [0, 1] with rank correlation coefficient matrix R, are generated by the
transformation of Y and Eq. 13, that is:

U,=® =m=1,3.N (16)

Step 5: The wind speed sampling with rank correlation coefficient matrix R, is carried out by
Eq. 14

Calculation process for available transfer capability of power grid: Combined with the
aforementioned formulations and the sample method, the calculation process for available transfer
capability of Power Grid mainly include generation of random samples for wind speed and load,
determination of the parameter and the state of the systems, calculation of available transfer
capability, evaluation and analysis of different probability index. Its detailed information is
enunciated as follows:

Step 1: According to simulation method, the random samples for wind speed are generated by wind
speed information such as Weibull distribution funection, rank correlation coefficient matrix,
the mean, standard deviation, ete

Step 2: The systematical parameters and states are given by determining equipment status
corresponding to each sampling

Step 3: Based on Monte Carlo simulation, the available transfer capability corresponding to each
sampling is obtained by Kq. 3. The specific calculation method can be founded in the
method of Wei and Ding (2002)

Step 4: The evaluation and analysis of systematical ATC is implemented by computing probability
index like the mean, standard deviation and risk degree of ATC. Here the risk degree is
defined as the probability of ATC less than or equal to the specific ATC values required by

power system. It can be shown in Kq. 17:

N.(ATC, < ATC,) amn

R, (ATC )= NS

where, NS 1s the number of Monte Carlo simulations. ATC, is the specific ATC values required by
power system. N;is the number of ATC less than or equal to ATC,.
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RESULTS AND DISCUSSION

Test system and simulation parameters: To demonstrate the proposed method and analyze the
impact of wind speeds correlation on ATC of Power Grid, simulation 1s carried out on IEEE 118-bus
system. Its topelogical structure and the branch, load parameters are founded in MATPOWER 4.1,
Here the [EEE 118-bus system 1s divided into two zones: One for power generation, the other for
reception energy. The schematic of partitions is shown in Fig. 1. This study assumed that there are
four wind power plants in the zone for reception energy which are respectively set up at the node
44, 60, 83 and 83. The parameters for wind power plant are shown in Table 1.

Validity analysis for interior-point method: Interior-point method is employed to solve
optimization with nonlinear equality and inequality constraints. Considering with FVSI inequality
constraint, the effectiveness and the adaptability of interior-point method are simulated and
analyzed. Complement. clearance are taken as performance index of reflecting effectiveness of the
interior-point method. The convergence criterion of algorithm is whether complement clearance can
attain the required accuracy or not. Figure 2 shows the iterative curves of algorithm with or
without FVSI constraint. From Fig. 2, the iteratives iterates with FVSI constraint are slightly more
than that without FVSI constraint, that is, the former 1s 19 and the latter is 23. So, the algorithm
has good robustness.

Impact of wind speeds correlation on ATC: Table 2 list mean and variance of ATC under
different rank correlation coefficient of wind speeds. From Table 2, the mean of ATC is almost

invariable under different correlation coefficient but the variance of ATC is continuously increasing

Table 1: Relevant parameters of wind farms

Rated power Cut-in wind speed Cut-out wind
Wind farms No. of wind turbines (MW) (m sec™) speed (m sec™™ ) K C
1 50 1.7 4 15 1.5 6.5
2 50 2.0 3 14 1.5 5.5
3 50 1.5 4 15 1.5 6.5
4 50 1.7 3 14 1.5 5.5

Area for power generation
Area for reception energy

Fig. 1: Schematic of partitions for IEKE 118-bus system
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Fig. 2: ATC probability density for different correlation coefficient

Tahble 2: Mean value and variance of ATC under different correlation coefficient

Rand correlation coefficient

ATC index 0.0 0.2 0.4 0.6 0.8 1.0
Mean value 1417.2 1420.6 1417.5 1420.8 1417.4 1417.5
Variance 3757.7 5176.9 GOE8 5 8910.5 11500 15016

Tahble 3: ATC index for different risk level
ATC value for risk level (MW)

Correlation coefficient 0.0 0.2 04 0.6 0.8 1.0

0.0 1333.86 1363.59 1385.98 1402.98 1416.99 1435.90
0.2 1319.52 1358.62 1384.12 1407.17 1424.15 1442.65
0.4 1301.43 1337.86 1373.59 1395.74 1422.97 1446.71
0.6 1280.43 1327.57 1367.61 1402.67 1438.21 14652.09
0.8 1254.06 1307.50 1352.75 1392.26 1432.50 1465.14
1.0 1218.30 1284.85 1336.39 1383.28 1428.18 1475.29

with the increase of correlation coefficient. In other words, the bigger fluctuation of ATC will
happen on the condition of the bigger correlation coefficient. These fluctuations show that bigger
correlation coefficient may exert a bigger influence upon the accuracy of the probability evaluation
of ATC.

Meanwhile, in order to understand how the rank correlation coefficient of wind speeds influence
on the probability evaluation of ATC, the ATC indexes of different risk level are obtained by
Eq. 17. The numerical results are listed in Table 3. Figure 3 and 4 show, ATC probability density
and ATC cumulative distribution for different correlation coefficient.

Table 3, Fig. 3 and 4 all show that ATC probability distribution have quite a large difference
under the same risk level but different correlation coefficient. Therefore, if the correlation of wind
speed 1s 1ignored when carrying on evaluation of ATC, the assessment results could be incorrect. or

imprecision. It further shows that ATC is affected greatly by the wind speed correlation.
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Fig. 3(a-f): ATC probability density for different correlation coefficient, ATC probability density for
(@) p,=0,(b) p,=0.2, (¢) p,= 0.4, (d) p=056, () p, =08 and () p,=1.0

From Fig. 3, it 1s founded that with the continuous increase of the correlation coefficient. The
profiles of ATC probability density change gradually from high central portion and low on both
sides to low central portion and high on both sides, namely the bigger the correlation coefficient,
the greater the probability density of ATC boundary values.

From Fig. 4, ATC cumulative distributions under different correlation coefficient have almost.
the intersection point, where TAC 1s about 1412 MW and the risk level is about 46%. Below the
intersection point, ATC under the same risk level decreases with the increase of correlation
coefficient while above the intersection point, it is just the opposite. That is to say, ATC under the
same risk level increase with the increase of correlation coefficient.

From Fig. 4, ATC cumulative distributions under different correlation coefficient have almost
the intersection point, where TAC is about 1412 MW and the risk level is about 46%. Below the
intersection point, ATC under the same risk level. Decrease with the increase of correlation
coefficient while above the intersection point, it 1s just the opposite. That is to say, ATC under the
same risk level increase with the increase of correlation coefficient.
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1412MW

1200 1300 1400 1500 1600
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Fig. 4: ATC cumulative distribution under different correlation coefficient

CONCLUSION

In order to more accurately evaluate ATC, this study investigated the effectiveness and the
adaptability of interior-point method in sclving optimization with nonlinear equality and inequality
constraints including FVSI. The simulations demonstrate that the effectiveness and the
adaptability of interior-point method are very high and the convergence criterion and convergence
speed is satisfied for selving nonlinear optimization problem. In addition, the propesed random
variables simulation methods considering wind speeds correlation based on rank correlation
coefficient, Copula theory and Monte Carlo Simulation (MCS) are simple and easy to implement
in modeling dependences between multi-variables of wind speed. The simulations on [EEE-118
demonstrate that the mean of ATC is almost invariable under different correlation coefficient but
the variance of ATC is continuous increase with the increase of correlation coefficient. A large
amount of simulations concluded that wind speeds correlations have a significant influence on ATC
of wind farms grid-connected power system. Therefore, wind speeds correlations must not be
ignored when calculating ATC. The presented methed and the conclusion can provide a technical
support for the ATC evaluation and decision-making as well as wind power forecast.
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