

Journal of Software Engineering 10 (1): 1-15, 2016
ISSN 1819-4311 / DOI: 10.3923/jse.2016.1.15
© 2016 Academic Journals Inc.

AJMU: An Aspect-Oriented Framework for Evaluating the Usability
of WIMP Applications

Sandra Casas, Natalia Trejo and Roberto Farias
Research Group Pragmatic Software Engineering, Institute of Applied Technology, National University of
Austral Patagonia, Lisandro de la Torre 860-9400, Río Gallegos, Argentina

Corresponding Author: Sandra Casas, Research Group Pragmatic Software Engineering, Institute of Applied Technology,
National University of Austral Patagonia, Lisandro de la Torre 860-9400, Río Gallegos, Argentina Tel: +5492966211078
Fax: +5492966442377

ABSTRACT
Aspect-Oriented Programming (AOP) is recognized as one of the main techniques for separation

of concerns. AOP has been used for automatic evaluation of the usability of WIMP applications,
with the aim of monitoring events and GUI components and recording data in logs. A weakness of
AOP approaches is low semantic value and a low level of abstraction of the results. One possible
solution to overcome these limitations is to use an AO framework for assessing the usability of user
tasks. However, little research has been devoted the development of AO frameworks from scratch.
Although different design and programming patterns are available, insufficient experience has
been reported regarding their application in the development of frameworks. This paper presents
AJMU, an AO framework for the automatic evaluation of the usability of user tasks in desktop
applications. AJMU was developed from scratch, using AO patterns. This paper also reports on
experiments involving AJMU’s instantiation with real applications.

Key words: Usability, framework, aspect-oriented programming, design patterns, Aspect J

INTRODUCTION
Aspect-Oriented Programming (AOP; Kiczales et al., 1997) has been used to implement the

automatic evaluation of the usability of WIMP applications (Bateman et al., 2009; Holzinger et al.,
2011; Humayoun et al., 2009; Shekh and Tyerman, 2010; Tao, 2008, 2012; Tarta and Moldovan,
2006). The predominant approach in this research has been to trace events and the execution of
GUI components and store the data in a log, without any context of greater significance.
Consequently, the evaluation of usability has little relevance for the evaluator and is not at an
appropriate level of abstraction.

An AO framework that automatically assesses the different factors of usability (efficiency,
effectiveness and satisfaction) for user tasks would be a more appropriate tool. A user task is a unit
of analysis that is more relevant and more complex, requiring the implementation of diverse
functions, relationships and interactions. Even though popular AO frameworks exist (Spring AOP
and JBoss AOP), research on AO frameworks is still in a nascent stage. AOP has primarily been
proposed to overcome the weaknesses of OO frameworks (Kulesza et al., 2006; Santos et al., 2007;
Vaira and Caplinskas, 2011) and not so much for building frameworks from scratch.

When developing a framework rather than an ordinary application, some program constructs
or “design elements,” are very important. These design elements include abstract modules (classes

1

http://crossmark.crossref.org/dialog/?doi=10.3923/jse.2016.1.15&domain=pdf&date_stamp=2015-11-17

J. Software Eng., 10 (1): 1-15, 2016

or aspects), design patterns, contracts and so on. The way in which AO features are applied is
important, because this has a direct impact on how reusable aspects are and how easily they can
be applied to other programs. Hence, the application of AO language features cannot be ad hoc and
must follow deliberate design decisions. A number of studies have examined design and
programming patterns and strategies to solve common problems in the development of modules and
applications (Bynens et al., 2007; Griswold et al., 2006; Hanenberg and Schmidmeier, 2003a, b;
Hanenberg and Unland, 2001; Laddad, 2002; Lagaisse and Joosen, 2006; Miles, 2004; Noble et al.,
2007). However, there are few conclusive contributions concerning the use or application of AO
patterns for framework development from scratch.

The present study arises from the following questions: How should an AO framework for
automatic evaluation of the usability of user tasks in WIMP applications be developed? What
strategies can be applied to achieve reusable and flexible design and implementation of the AO
aspects in such a framework?

This study makes two contributions. First, the paper presents AJMU, a framework designed
and implemented with aspects for evaluating the usability of desktop applications at the level of
tasks. Second, the paper uses AJMU as a case study to analyze the application of AO patterns in
the design and implementation of a framework that is built from scratch.

The aim of this paper is to report on the design and implementation of an AO framework for
evaluating the usability of tasks in WIMP applications. At the same time, it seeks to provide
empirical evidence that the strategies used achieve a reusable, flexible and feasible design for
future evolution. The results comprise a general UML model of the modules and relevant code
segments for the functions, relationships and interactions in the model and the applied design
patterns are specifically described.

MATERIALS AND METHODS
The development process for AJMU was iterative and incremental (Pree, 1995). Beginning with

the main, initial idea of placing the task at the center, as a concept and an entity, subsequent
iterations consisted of activities such as requirement analysis, design, implementation and testing.
The first iteration focused on the representation of a task and its connection to the domain, the
second iteration on the logging service, the third iteration on the event metrics, the fourth iteration
on the satisfaction metrics and profile data and the fifth iteration on settings. Most iterations
required redesigning and reimplementing some of the modules developed in previous iterations.
Throughout the process, black box tests were performed to validate the correct functioning of the
framework (metric calculation, log registration and data capture, etc.). Throughout this process,
the guidelines for AO patterns (Section 1) were followed to verify which of these should be
implemented according to the requirements and constraints arising from the problem. AJMU was
coded in Java and AspectJ (Kiczales et al., 2001) and the modeling was specified with UML
diagrams.

Finally, various experiments were performed with real applications, in order to assess the pros
and cons of adopting AJMU.

AJMU framework: A framework can be defined as an application design along with its
implementation. A classic categorization (Adair, 1995) distinguishes three types of frameworks:

2

J. Software Eng., 10 (1): 1-15, 2016

Table 1: Usability evaluation of tasks
Factors Subfactor Metrics
Efficiency Time to perform the task
Effectiveness Errors
Effectiveness Errors Number of exceptions during task execution
Effectiveness Errors Number of error messages during task execution
Effectiveness Errors Number of alerts during task execution
Effectiveness Errors Number of informative messages during task execution
Effectiveness Errors Number of interrogative messages during task execution
Effectiveness Errors Number of dialogues during task execution
Effectiveness Errors Number of help accesses during task execution
Effectiveness Completeness Completed tasks
Effectiveness Completeness Incomplete tasks
Satisfaction Satisfaction Satisfaction with the complexity of the task
Satisfaction Satisfaction Satisfaction with the time required to perform the task
Satisfaction Satisfaction Satisfaction with use of the application to perform the task
Profile Age, sex and training

application frameworks, domain frameworks and support frameworks. Domain frameworks such
as AJMU capture the knowledge and expertise related to a particular domain problem.

The AJMU framework allows the evaluation of the usability of WIMP applications in terms of
tasks. The components of the framework are a set of modules, aspects and one class. The
relationships and interactions between these components make the AJMU framework highly
reusable with minimal specialization (configuration) requirements.

Evaluation of the usability of a user task (Nielsen, 1992; Ivory and Hearst, 2001) must consider
a number of factors. We have adopted the ISO 9241-11 (ISO 9241-11, 1998) attributes: efficiency,
effectiveness and satisfaction. We chose metrics to analyze these attributes and the metrics also
determine which data about user interactions should be collected. The factors and metrics
supported by AJMU are presented in Table 1.

A user task can involve completing a form or performing a sequence of actions in which the user
interacts with the application, i.e., tasks can have different levels of complexity. The strategy used
in AJMU was to place the user task at the center of the design and implementation of the
framework, as both a concept and an entity. The aspects connect the task with the domain and the
required services for evaluation, so the user task can be easily identified and analyzed. Thus, while
the task is running, aspects capture the events of interest (start, end, errors) and record the data
required for calculating the metrics in relation to the task. Consequently, it is possible to obtain
data that can be interpreted at a higher semantic level and thus achieve usability results at a
higher level of abstraction.

The diagram in Fig. 1 shows the design of AJMU. In what follows, we analyze the most
important aspects of the design and implementation of the modules. Details have been removed in
order to highlight the code patterns. The hot-spots are identified in each case.

The Task class represents a user task and is the only class in the framework. The Task class
includes several attributes representing states that accumulate metric values or subsequently allow
their calculation. These states are initialized when the task is instantiated. For example, the init
attribute initializes the system time and complete attributes with the value false. These two
attributes will be updated when the task ends and will be used to calculate the time (the efficiency
of the task) and whether the task was completed (the effectiveness of the task). The Task class
also provides methods to properly update each attribute that counts errors or is related to
satisfaction.

3

J. Software Eng., 10 (1): 1-15, 2016

<<Abstract Aspect>>
Usability TaskConfiguration

<<Abstract Aspect>>
TaskUserProf ile

<<Abstract Aspect>>
TaskConnect

<<Abstract Aspect>>
TaskEvent

<<Abstract Aspect>>
TaskLog

<<Abstract Aspect>>
TaskException

<<Abstract Aspect>>
TaskEscape

<<Abstract Aspect>>
TaskHelp

<<Aspect>>
TaskSatisfaction

<<Aspect>>
TaskLogXML

<<Aspect>>
TaskLogTxt

<<Class>>
Task

<<crosscut>> <<crosscut>><
<

crosscut>
>

<<Abstract Aspect>>
TaskDialog

<<Abstract Aspect>>
TaskMessage

<<
 u

se
 >

>

Fig. 1: Diagram of AJMU

class Task {
private String id,
private Time init, end;
private boolean complete;
private int #exception, sat1, sat2, sat3;

Task(…){
 // initialize states
 …
finalize()
 // update states
 …
 }

}

The role of the TaskConnect abstract aspect is to connect the task with the application (domain)
to be evaluated. Two abstract pointcuts, startTask and endTask, are needed to define the joinpoints
(class and domain method) to determine the beginning and end of each task. These pointcuts are
associated with advices that order the task instantiation and completion, respectively and must be
defined in a concrete aspect by the developer. One sub-aspect of Task Connect should be created
for each different user task that is to be evaluated. Instantiation of a task is possible because
TaskConnect has a task field (object Task type) that is instantiated by this aspect when the
startTask pointcut is activated and the associated advice is executed and this occurs before each
task starts. Similarly, this aspect orders task completion when the finalize method is invoked by
the advice associated with the endTask pointcut after the joinpoint execution.

The set IdTask method should also be redefined by the developer for each task. Its purpose is
to provide specific values of the task to be assessed and it will later be used to identify the task in
contexts in which more than one task is evaluated, so it requires configuration for each task.

abstract aspect TaskConnect {
private String idTask;
private Task t;
abstract void setIdTask(); <- hot-spot
abstract pointcut startTask; <- hot-spot
abstract pointcut endTask; <- hot-spot

4

J. Software Eng., 10 (1): 1-15, 2016

before() : startTask();
{ this.setIdTask();
 t = new Task(idTask);}
after() : endTask()
{ t.finalize(); }

}

Data logging for a task seems to be a simple, uncomplicated function. However, this service has
several characteristics that must be addressed: (a) the logging for a task is performed at different
times during its execution and upon various events that may or may not happen; (b) if the log
functionality is encapsulated in modules (aspects) that record the events, this will generate
scattered and tangled code, which will be a drawback for subsequent framework evolution and (c)
the log can be recorded in different formats (text file, XML and database). Therefore, to
accommodate these characteristics, we designed an aspect hierarchy for the logging task. The
abstract aspect TaskLog establishes a set of pointcuts and abstract methods. The pointcuts are
concrete and therefore entirely subject to the execution of the task (not the domain). Abstract
methods allow log formats to be defined. The TaskLogXML and TaskLogText aspects of TaskLog
extend and implement the log in XML and TXT, respectively, by encoding events, initTask,
endTask and log methods. The initTask and endTask methods record data about the initiation and
end of the task execution, while the event and log methods record data during the task execution.
The log method is invoked by other aspects to record contextual data about an event. Specifically,
the number of events in a task, discriminated by type, are recorded in different accumulators, along
with additional information that reports where or when these events have occurred.

abstract aspect TaskLog {
abstract void events(Task t);
abstract void initTask(Task t);
abstract void endTask(Task t);
abstract void log(Task t);

pointcut logStart(Task t) : execution (Task.new(…)…)
pointcut logEnd(Task t) : execution (Task.finalize(…)…)
pointcut logEvent(Task t) : call (*.Task.setQ*(…)…)
after(Task t) : logStart(t)
{ initTask(t);}
after(Task t) : logEnd(t)
{ endTask(t);}
after(Task t) : logEvent(t)
{ events(t);}

}

The evaluation of the effectiveness factor includes metrics to calculate the number of errors
produced. Unlike other events, the succession of errors cannot be associated with unique, specific
run times or locations (in the code), which would facilitate identifying and counting them. The
errors occur “during” task execution and they manifest in different ways, which leads to different
types of errors. Noting further that execution points may also be associated with other tasks, it is
necessary to accurately identify the errors associated with the task that is being evaluated.
Therefore, the aspects that collect information related to these metrics should consider three
critical factors: they should (a) identify different types of errors, (b) capture the succession of errors
at any point in the control flow of the task that is being assessed and (c) discriminate errors
occurring at a point in the task’s control flow that do not correspond to the task that is being
evaluated.

5

J. Software Eng., 10 (1): 1-15, 2016

To meet these criteria, we designed a hierarchy of aspects, in which the first two levels are
abstract. The TaskEvent aspect is at the top of the hierarchy; it simply defines a set of pointcuts
that allow definition of the set of joinpoints in the execution control flow of the task for which errors
must be intercepted. A reference to the task that is being assessed is returned from its instantiation
(pointcut init) and the TaskEvent aspect stores this reference in the taskRef field. The TaskEvent
aspect also defines two abstract elements: the complete pointcut and logEvent methods that must
be implemented in the remaining levels of the hierarchy.

abstract aspect TaskEvent {
abstract void logEvent(); <- hot-spot
private Task taskRef=null;

pointcut init(Task t) : initialization(Task.new(…));
after(Task t) : init(t)
{ taskRef=t;}

pointcut end(): execution (* Task.finalize());

pointcut aspectFlow() : cflow(adviceexecution);
pointcut initFlow() : cflow(init(…));
pointcut endFlow() : cflow(end());
pointcut isATask() : if ((taskRef!=null) and (!taskRef.isComplete()))
abstract pointcut complete(…);

}

At the second level of the hierarchy, there is a set of aspects that adjust and/or complete the
pointcuts to capture specific errors, based on the definitions of TaskEvent. The TaskException
aspect counts exceptions, the TaskDialog aspect counts the number of dialog boxes that run and
the TaskMessage aspect captures the invocations of dialog boxes and evaluates the message types
as warning messages, informational messages, error messages, interrogative messages, or plain
messages. The TaskHelp aspect counts the online help accesses and the TaskEscape aspect
examines whether the task was abandoned before normal completion.

The design of these aspects uses common as well as diverse strategies. In all cases, the complete
pointcut is implemented at this level; it reuses the definitions of inherited pointcuts and is
completed with the necessary primitives and/or conditions to capture the specific event. In all cases,
the advice associated with a pointcut updates the Task object (corresponding error counts) and
orders a contextual data log update. The TaskException and TaskDialog aspects follow this scheme.

abstract aspect TaskException extends TaskEvent{
pointcut complete(Throwable e) : !aspectFlow() & & !endTask() & & isATask()

& & handler(Throwable+)…

before(Throwable e) : complete (e)
{ taskRef.setQException(…);

logEvent(taskRef);
}

}

Through a complete pointcut expression, the TaskException aspect allows interception of
exceptions that are generated during the execution of the task, using the previous definitions
(aspectFlow, endTask and isATask) and incorporating the specific primitive (handler). The
exception counter is updated (setQException) and the logEvent method updates the log with

6

J. Software Eng., 10 (1): 1-15, 2016

contextual data. The logEvent method is not implemented at this level, since it depends on the log
format that the developer chooses. A specific, concrete aspect, which must be created by the
developer, is required and will adjust the logEvent method with the selected log format (XML, TXT
or other). For this configuration, only one line of code is needed, as follows:

void logEvent (Task t) {
TaskLogXML.aspectOf.log(t);

}

Through a complete pointcut expression, the TaskMessage aspect intercepts the GUI
component to which a message corresponds (the component is inherited from JOptionPane), but
this definition is not sufficient to discriminate between different types of messages. The
identification of each message type is performed through the conditional expressions that analyze
how these objects were configured when created. These conditional expressions are part of the
advice and they are indispensable, since it is not possible to independently intercept each message
type.

abstract TaskMessage extends TaskEvent {
before(…) : complete (…)
{ if (type of message = informative)

taskRef.setQInforMessage(…);
 if (type of message = …)
…
…
logEvent(taskRef);

}

A special situation activates the TaskEscape aspect when a task is abandoned or voluntarily
terminated by the user before it is completed. This is extremely important because it allows the
logging of data corresponding to the effectiveness factor-since it allows the completeness of the task
to be analyzed. This event can happen at any time when the user closes the window and the
java.lang.System.exit method is invoked. But applications may also have other ways to cancel the
execution of a task at defined points-for example, before saving, the user can use a specific button
to cancel the operation (task). This last condition is specific to the application and might not even
exist, so it must be set by the developer. The TaskEscape aspect is abstract, using the pointcut
complete and reusing the above conditions and also capturing the output of the application or
particular conditions by the pointcut not Complete. The associated advice for the pointcut complete
updates the task and logs contextual data and then terminates the task.

abstract aspect TaskEscape extends TaskEvent{
abstract pointcut notComplete(); <- hot-spot
pointcut complete ():call(void java.lang.System.exit(…)) and and
!endFlow() and and !aspectFlow() and and isATask() and and notComplete();

}

A similar situation occurs with the TaskHelp abstract aspect, whose purpose is to count hits
for assistance during the task execution. The help may be an option on a menu or a button on a bar
or both. This variability must be specifically determined in a concrete aspect and represents a new
hot-spot, using the approach that has been described for the TaskEscape aspect.

7

J. Software Eng., 10 (1): 1-15, 2016

When the finalization of a task is reached (the finalize method of the Task class is invoked by
the TaskConnect aspect), the TaskSatisfaction aspect provides and activates a questionnaire to
collect subjective information related to the user satisfaction dimension. This form is very simple,
allowing the user to select a subjective rating on a scale of five different values for each of the three
questions that are displayed (Sauro and Kindlund, 2005). The aspect updates states of the task
with the satisfaction values chosen by the user.

aspect TaskSatisfaction {
pointcut satisfaction(Task t): execution(void Task.finalize(…)) and and this(t);
before(Task t): satisfaction (t) {

// display questionnaire
// get data entered by the user
// update satisfaction attributes of the task

return;}

}

The TaskUserProfile aspect is activated at the beginning of the execution of a session and
allows a user’s profile data to be obtained. The aspect presents a form that collects user information
and logs it. As in the case of events and errors, the developer must configure the chosen log file
format, so TaskUserProfile is an abstract aspect and the method for this configuration is logProfile.

 abstract aspect TaskUserProfile implements ActionListener{
// user profile attributes

 abstract void logProfile(…) {…} <- hot-spot
 pointcut initUserSession(): *.main(…);

 before(): initUserSession() {
// display questionnaire
// get data for user profile
logProfile();}

}

Finally, the UsabilityTaskConfiguration aspect configures the tasks that will be evaluated in
the particular session or execution of the desktop application. This operation is the first thing the
developer must reimplement. UsabilityTaskConfiguration is an abstract aspect that provides a
pointcut that executes at the beginning of an application’s execution (a session). The advice invokes
three methods that will be redefined in a concrete aspect. The first method allows configuration of
the application that will be evaluated, the second method allows configuration of the tasks and the
third method creates the log for these data.

 abstract aspect UsabilityTaskConfiguration {
String appName, appVersion, appTest;
// settings attributes
abstract void setApplicationTest(); <- hot-spot
abstract void addTask(…); <- hot-spot
abstract void logApp(…); <- hot-spot

 pointcut configuration(): call (*.main(…));

 before(): configuration(){
this.setApplicationTest();
this.addTask();
this.logApp(…);

}

8

J. Software Eng., 10 (1): 1-15, 2016

Aspects, patterns and hot-spots: The AJMU framework is composed of thirteen aspects and one
class (Task). In the design and implementation of twelve of the aspects, patterns with specific
purposes were used. In the design of the TaskConnect aspect, the abstract pointcut pattern was
used in the startTask and endTask pointcuts as a strategy for managing the changes that these
pieces of code require, since they will be different for each domain and each task to be evaluated.
The startTask and endTask pointcuts are hot-spots that should be defined by the developer in
specific concrete aspects that extend from TaskConnect; this allows advice reuse for instantiating
and ending the task. In the design of the TaskConnect aspect, the template advice pattern was also
used, to encapsulate the variable part of the advice that instantiates each specific task. The
setIdTask abstract method identifies each task among the different assessed tasks and domains.
The setIdTask method must be redefined by the developer by extending the aspect, which provides
flexibility and setting another hot-spot. The abstract pointcut and template advice patterns are
used in combination because the pieces of code they propose (two pointcuts and a method) must be
specialized in the same concrete aspect.

For the TaskLog aspect, the template advice pattern was used, as in this case the definition of
the pointcuts is known precisely but the implementation of the advices will be different, depending
on the different log formats. So through several methods, reuse of the abstract pointcuts and
flexibility for the particular implementation of the log are possible.

For the TaskEvent aspect, in conjunction with its extended aspects, TaskException, TaskDialog,
TaskMessage, TaskHelp and TaskEscape, the composite pointcut pattern was used. Given the
complexity of the joinpoints, several conditions are split into simpler pointcuts of the TaskEvent
aspect, allowing them to subsequently be properly combined in the complete pointcut. The more
specific aspects, such as TaskException, reuse these pointcuts to define the interception of
exceptions with other primitives, as happens with TaskDialog. Another common strategy applied
across the hierarchy was use of the template advice pattern, through which the logEvent abstract
method connects with the chosen log format in an aspect that should be implemented by the
developer and is thus a hot-spot.

In the design of the TaskMessage aspect, the pointcut method pattern was also used when
incorporating the conditions evaluated in the advice, to determine whether activation of the dialog
box corresponds to a message and thus whether the aspect execution should continue.

In the design of the TaskEscape aspect, the abstract pointcut pattern was used for the
notComplete pointcut (which is used in combination with the complete pointcut). However, this
should be redefined by the developer with an aspect extension and this is therefore another hot-spot
for defining the variation in what each application and/or task can submit. The complete pointcut
at this level is concrete, but its implementation is partial. The situation for the TaskHelp aspect
is analogous to that of the TaskEscape aspect and therefore it applies the same patterns.

Finally, for the UsabilityTaskConfiguration aspect, the template advice pattern was used to
provide flexibility in specifying the application and tasks to evaluate. The setApplicationTest
method extension allows the application to be configured. The addTask method extension allows
the task to be configured. The logApp method connects this aspect with the chosen log file format
(same situation as the logEvent method of the event-error hierarchy). These methods should be
implemented by the developer in sub-aspects, with each set as a hot-spot.

Table 2 summarizes the aspects of AJMU, the patterns that were used, the purpose of their
application and the hot-spots.

9

J. Software Eng., 10 (1): 1-15, 2016

Table 2: Aspects and patterns used in AJMU
Aspects Types Patterns Purpose Hot-spot
Task connect Abstract Abstract pointcut Manage the weak composition among StartTask and endTask pointcuts

aspects and base code, reuse advice
Template advice Flexible aspect design setIdTask method

TaskLog Abstract Template advice Flexible aspect design NO
TaskLogText Concrete
TaskLogXML
TaskMessage Abstract Pointcut method Flexible aspect design logEvent method
TaskEvent Composite pointcut Decompose and recompose complex
TaskException Template advice conditions; Reuse parts of expressions
TaskDialog of pointcuts
TaskHelp Abstract pointcut Partial implementation of pointcuts notComplete pointcut
TaskEscape
TaskSatisfaction Concrete None
TaskUserProfile Abstract Template Advice Flexible aspect design logProfile method
UsabilityTask Abstract Template Advice Flexible aspect design addTask method
Configuration setApplicationTest method

logApp method

Table 3: Applications used in experiments
Applications Descriptions Classes Methods Fields LOC
JMoney Personal finance manager 83 594 436.00 5.780

(http://sourceforge.net/projects/jmoney/files/JMoney/)
Freemind Tool for creating mind maps 820 6974 2.816 108.378

(http://sourceforge.net/projects/freemind)
LOC: Lines of code

Table 4: Set of tests
Freemind JMoney
-- --

Sets Test Log = XML Log = txt Log = XML Log = txt
Set 1 Task 1 T1 T4 T1 T4

Task 2 T2 T5 T2 T5
Task 3 T3 T6 T3 T6

Set 2 Task 1-Task 2 T7 T10 T7 T10
Task 1-Task 3 T8 T 11 T8 T 11
Task 2-Task 3 T9 T12 T9 T12

Set 3 Task 1-Task 2-Task 3 T13 T14 T13 T14

Experiments: We conducted various experiments to evaluate the development of usability testing
with the AJMU framework. Two real desktop applications whose characteristics are presented in
Table 3 were chosen for this purpose.

For each application, three tasks, each composed of three to seven actions, were defined. The
appendix describes the tasks. These tasks were used to create three test sets that included all
possible tests. In total, 28 tests were performed. Two developers coded the aspects; these were split
per application. The developed test sets are presented in Table 4.

Table 5 shows the numbers of aspects and hot-spots that were specialized for each test. Set 1,
which includes a test of only one task, required specialization of 8 aspects that included
14 hot-spots. Set 2, which includes tests of two tasks, required specialization of 15 aspects that
included 25 hot-spots. Finally, Set 3, whose single test includes three tasks, required specialization
of 22 aspects and 36 hot-spots.

RESULTS
The number of aspects needing specialization is directly proportional to the number

of tasks to assess; indeed, it is possible to establish the relationship: number of

10

J. Software Eng., 10 (1): 1-15, 2016

Table 5: Aspects and hot-spots required per test
Code element Set 1 Set 2 Set 3
and -- --- ------------------
applications T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14
Aspects
Freemind 8 8 8 8 8 8 15 15 15 15 15 15 22 22
JMoney 8 8 8 8 8 8 15 15 15 15 15 15 22 22
Hot-spots
Freemind 14 14 14 14 14 14 25 25 25 25 25 25 36 36
JMoney 14 14 14 14 14 14 25 25 25 25 25 25 36 36

aspects = (number of tasks * 7)+1. Similarly, the number of hot-spots needing specialization is also
directly proportional to the number of tasks to assess: Number of hot-spots = (number of
tasks * 11)+3. These relationships can be critical, considering that in the same session the
assessment of a significant number of tasks (e.g., 10 or more) may be required. Clearly, an
undesirable and unmanageable proliferation of aspects will occur. In our experiments, the aspects
and their hot-spots associated with each task were coded once, with different log formats. To use
a new test configuration, only one aspect needed to be coded (UsabilityTaskConfiguration). Most
specialized aspects require minimal code (one pointcut or method), which is simple enough. Given
that the framework allows the evaluation of 13 metrics, this effort does not appear to be overly
complex.

The number of aspects and hot-spots to be specialized can be reduced if the choice between
different log formats is removed. But this results in a loss of flexibility. The number of aspects and
hot-spots that must be specialized when there are many tasks could be a weakness in our proposal;
thus, future work should propose alternatives for improvement. Modularity and flexibility are
desirable features, but they have an associated cost that must be reduced.

DISCUSSION
As mentioned above, some studies have applied AOP to evaluate the usability of WIMP

applications. The main limitation of these studies is that they do not distinguish between aspects
and tasks. Aspects are simply monitors of events that record data in a log. A major intervention of
developers is required in this case and the aspects do not provide much reusability and flexibility.

Tarta and Moldovan (2006) propose a design with aspects that supports automatic usability
evaluations in desktop applications. They argue that through a hierarchy of aspects, pointcuts can
be reused to share the same entry and exit points (joinpoints). The derived aspects define new
pointcuts for error handling, completion of tasks, screenshots and data acquisition through
questionnaires. Concrete aspects (advices) perform the data logging. These aspects code tracking
and logging in the same advice, but they must be executed repeatedly since there are aspects for
errors, calculation time and so on. Thus, developers must configure many aspects, the notion of a
task gets lost and the whole structure is specific to each application in which it is used. The authors
present simple diagrams and sample code in AspectJ.

Shekh and Tyerman (2010) develop a framework for evaluating usability with AOP. The
authors record UI events such as mouse events. No details are provided regarding the
characteristics of the framework or the design of the aspects, but the authors state that they have
followed Tarta and Moldovan (2006) recommendations. The framework is developed in AspectJ. The
authors present the results of controlled experiments performed in a laboratory.

Holzinger et al. (2011) propose implementing aspects to track some interface events (keyboard
input, menu actions and drag and drop actions). They propose using Objective-C, adding aspects

11

J. Software Eng., 10 (1): 1-15, 2016

to the object hierarchy through the technique of “method swizzling” and extending classes. The
design focuses on an aspect that performs the logging centrally and three aspects are necessary to
identify the targeted interface events.

Tao (2008) uses AOP to automatically capture user interface events in applications
with Model-View-Controller (MVC) architectures. The author proposes a hierarchy of aspects that
reuse a single method that constructs a report (time/date and event). The pointcuts and
advices need to be redefined for each case and application, e.g., observer updating, notifiers
and event handlers and dialog boxes. The author presents sample AspectJ code and a simple case
study.

Tao (2012) presents a scheme that is very similar to previous work. The approach is based on
AO techniques that run traces of GUI events and collect contextual information about WIMP
applications. Tao proposes a hierarchy of aspects, which is basically a method containing the logic
that enables the report. The concrete aspects define the events to intercept in the pointcuts and the
advices invoke the method that executes the report. The author presents simple example code in
AspectJ.

Bateman et al. (2009) present an approach called “Interactive Usability Instrumentation” (IUI).
Usability evaluators specify which actions will be registered (logged) when a user interacts with
the interface elements of the object of evaluation in the application, thus eliminating the need for
additional support programming. This initial activity is based on AOP and allows direct interaction
with the application to be instrumented to decide which (interface) elements of a system are related
to particular tasks and usability issues.

Humayoun et al. (2009) present a tool called “UEMan” to manage and automate usability
evaluation activities based on a User-Centered Design (UCD) approach during the software
development process. The model and the tool incorporate the concept of a user task and facilitate
the implementation of various types of experiments: Heuristic evaluation experiments, task-
type experiments, experiments based on questionnaires and dynamic experiments that
employ logging implemented with aspects. The tool uses very basic aspects that perform simple
actions such as timing the duration of an activity (from an entry point to an exit point, defined by
two pointcuts) and counting the number of mouse clicks and key strokes occurring in that time
interval.

Our analysis of these approaches is that the concept/entity “task” is missing, both in the domain
to be evaluated and in the frameworks. This is because the modules (aspects) that are designed and
implemented to automate usability testing are restricted to the existing concepts (entities) in the
domain, namely, methods/attributes and classes and this loses the conception of a task. Moreover,
none of the approaches described above explicitly applies to AO patterns.

The strategy used in AJMU was to place the user task at the center of the design and
implementation of the framework, as both a concept and an entity. We use AO patterns to aspects
connect the task with the domain and the required services for evaluation, so the user task can be
easily identified and analyzed.

The proliferation of aspects discovered in the experiments can be avoided if an XML
configuration file is used to define the log format and other data required by AJMU instantiation,
such as the set of tasks to evaluate, with their init and end points (joinpoints). Use of an XML file
is an alternative solution (for managing the proliferation) that does not require changing the
framework design and thus losing flexibility.

12

J. Software Eng., 10 (1): 1-15, 2016

CONCLUSION
AJMU is a domain framework that supports usability evaluations of user tasks in WIMP

applications. From the point of view of the usability expert, AJMU enables evaluation of the three
typical usability dimensions: effectiveness, efficiency and satisfaction, with mechanisms for
collecting and recording information and automatically calculating more than 10 metrics and
contextual data associated with the tasks defined in the tests. AJMU facilitates analysis of the
usability of a user task, identifying the most complex operations for the user, making comparisons
between different users, comparing results between different tasks and identifying critical common
factors in user interactions, among other possibilities. AJMU generates information relevant to the
assessment of usability with a higher level of abstraction and semantic value than other
frameworks.

From the point of view of the developer who uses AJMU for different applications, AJMU is a
noninvasive framework for those applications on which execution tests are to be performed. AJMU
is easily configurable and requires only the extension of aspects, which minimizes the effort
required for the developer to learn how to configure and specialize the framework. The use of AO
patterns is transparent at this level.

From the point of view of the construction of AJMU, the design and implementation of the
modularization mainly employ aspects that are built using a set of AO patterns that individually
and in combination enabled the construction of this framework from scratch. The AO patterns
guided this construction and served as guidelines for improving the reuse of different pieces of code
(pointcuts and advices), managing the variability presented by different domains and tasks and
providing flexibility in AJMU. The use of AO patterns in the design of AJMU will also facilitate its
evolution, since the incorporation of new log formats, events and metrics should follow a clear
scheme and a modularized design.

APPENDIX
JMoney
Task 1: Create a new account:

C Click the right side panel and select the “new account” option
C Enter the account properties from the account properties panel
C Enter entries in the account entries panel
C Save using the “save” button on the toolbar or on the File/Save menu, using the shortcut “ctrl + s” or answering “yes” to the prompt

to save changes before closing the application

Task 2: Add entries to an existing account:

C Click the “Entries” tab of the workspace where tickets and properties of the account are shown
C Click the “New” button and enter data for the fields Check, Data Value, Category Memo, Debit, Credit, Balance, etc.
C Save using the “save” button on the toolbar or on the File / Save menu, using the shortcut “ctrl + s” or answering “yes” to the prompt

to save changes before closing the application

Task 3: Generate report balances for existing accounts:

C Click on the “Account Balance” button on the lateral panel
C Apply filters to the report, choosing from: All Entries/Cleared Entries/Date
C Click the “Generate” button on the right panel

Freemind
Task 1: Create a basic mental map:

C Create a new map by clicking on the “New” button on the toolbar or on the File menu
C Complete text of the map’s root node is created
C Build a three-level hierarchy with son and brother nodes (at least 11). For this, select the node for which a child or sibling node is

13

J. Software Eng., 10 (1): 1-15, 2016

to be created and the new node can be inserted using the Context menu options or the Insert menu
C Using the Tools menu, sort the nodes by name
C Save the mind map on the desktop with a meaningful name

Task 2: Create an encryption mind map:

C Create a map encryption using “Create encrypted map” on the main menu
C Enter a password to encrypt the map
C After creating the map, add 11 nodes organized in a hierarchy of three levels that contains at least five encrypted nodes. The nodes

can be inserted using the Context menu options or the Insert menu
C Save the mind map on the desktop with a meaningful name

Task 3: Open an existing map and edit it:

C Open the mental map provided for the task
C Remove two nodes
C Add at least three child nodes and three brother nodes
C Prioritize the nodes
C Add an image to the root node
C Change the text format for the root node
C Save the mind map on the desktop with a meaningful name

REFERENCES
Adair, D., 1995. Building object-oriented frameworks. AIXpert, February and May 1995.
Bateman, S., C. Gutwin, N. Osgood and G. McCalla, 2009. Interactive usability instrumentation.

Proceedings of the 1st ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, July 15-17, 2009, Pittsburgh, PA., USA., pp: 45-54.

Bynens, M., B. Lagaisse, W. Joosen and E. Truyen, 2007. The elementary pointcut pattern.
Proceedings of the 2nd Workshop on Best Practices in Applying Aspect-Oriented Software
Development, March 12-16, 2007, Vancouver, BC.

Griswold, W.G., M. Shonle, K. Sullivan, Y. Song, N. Tewari, Y. Cai and H. Rajan, 2006. Modular
software design with crosscutting interfaces. IEEE Software, 23: 51-60.

Hanenberg, S. and A. Schmidmeier, 2003a. AspectJ idioms for aspect-oriented software
construction. Proceedings of the 8th European Conference on Pattern Languages of Programms,
June 25-29, 2003, Irsee, Germany, pp: 617-644.

Hanenberg, S. and A. Schmidmeier, 2003b. Idioms for building software frameworks in AspectJ.
Proceedings of the Workshop on Aspects, Components and Patterns for Infrastructure Software,
March 17-21, 2003, Boston, Massachusetts, USA., pp: 55-60.

Hanenberg, S. and R. Unland, 2001. Using and reusing aspects in AspectJ. Proceedings of the
Workshop on Advanced Separation of Concerns, October 14-18, 2001, Tampa Bay, USA.

Holzinger, A., M. Brugger and W. Slany, 2011. Applying aspect oriented programming in usability
engineering processes-on the example of tracking usage information for remote usability
testing. Proceedings of the International Conference on E-Business, {ICE-B} is part of {ICETE}-
the International Joint Conference on E-Business and Telecommunications, July 18-21, 2011,
Seville, Spain, pp: 53-56.

Humayoun, S.R., Y. Dubinsky and T. Catarci, 2009. UEMan: A tool to manage user evaluation in
development environments. Proceedings of the 31st International Conference on Software
Engineering, May 16-24, 2009, Vancouver, Canada, pp: 551-554.

ISO 9241-11, 1998. Ergonomic requirements for office work with visual display terminals (VDTs).
Part 11: Guidance on Usability. International Organization for Standardization, Geneva,
Switzerland.

14

J. Software Eng., 10 (1): 1-15, 2016

Ivory, M.Y. and M.A. Hearst, 2001. The state of the art in automating usability evaluation of user
interfaces. ACM. Comput. Surv., 33: 470-516.

Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W.G. Griswold, 2001. An overview
of AspectJ. Proceedings of the 15th European Conference on Object-Oriented Programming,
June 18-22, 2001, Budapest, Hungary, pp: 327-353.

Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M. Loingtier and J. Irwin, 1997.
Aspect-oriented programming. Proceedings of the 11th European Conference on Object-
Oriented Programming, June 9-13, 1997, Jyvaskyla, Finland, pp: 220-242.

Kulesza, U., V. Alves, A. Garcia, C. de Lucena and P. Borba, 2006. Improving Extensibility of
Object-Oriented Frameworks with Aspect-Oriented Programming. In: Reuse of Off-the-
Shelf Components, Morisio, M. (Eds.). LNCS., 4039, Springer-Verlag, Berlin, Heidelberg,
ISBN: 978-3-540-34606-7, pp: 231-245.

Laddad, R., 2002. AspectJ in Action: Practical Aspect-Oriented Programming. Manning
Publications, Greenwich, CT., USA.

Lagaisse, B. and W. Joosen, 2006. Decomposition into elementary pointcuts: A design principle for
improved aspect reusability. Proceedings of the Workshop on Software Engineering Properties
of Languages and Aspect Technologies, March 20-24, 2006, Germany.

Miles, R., 2004. AspectJ Cookbook. O'Reilly Media, New York, USA.
Nielsen, J., 1992. The usability engineering life cycle. Computer, 25: 12-22.
Noble, J., A. Schmiedmeier, D.J. Pearce and A.P. Black, 2007. Patterns of aspect-oriented

design. Proceedings of the 12th European Conference on Pattern Languages of Programs,
July 4-8, 2007, Irsee, Germany, pp: 769-796.

Pree, W., 1995. Hot-spot-driven framework development. Summer School on Reusable
Architectures in Object-Oriented software Development, pp: 123-127.

Santos, A.L., A. Lopes and K. Koskimies, 2007. Framework specialization aspects. Proceedings
of the 6th International Conference on Aspect-Oriented Software Development, March
12-16, 2007, Vancouver, British, Columbia, Canada, ACM, pp: 14-24.

Sauro, J. and E. Kindlund, 2005. A method to standardize usability metrics into a single
score. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
April 2-7, 2005, Portland, OR., USA., pp: 401-409.

Shekh, S. and S. Tyerman, 2010. An Aspect-Oriented Framework for Event Capture and Usability
Evaluation. In: Evaluation of Novel Approaches to Software Engineering, Maciaszek, L.A.,
C. Gonzalez-Perez and S.J. Heidelberg (Eds.). Springer, New York, USA., pp: 107-119.

Tao, Y., 2008. Automated data collection for usability evaluation in early stages of application
development. Proceedings of the 7th WSEAS International Conference on Applied Computer
and Applied Computational Science, April 6-8, 2008, Hangzhou, China, pp: 135-140.

Tao, Y., 2012. Aspect-oriented instrumentation for capturing task-based event traces.
Int. J. Control Syst. Instrum., 3: 32-35.

Tarta, A.M. and G.S. Moldovan, 2006. Automatic usability evaluation using AOP. Proceedings of
the IEEE International Conference on Automation, Quality and Testing, Robotics, Volume 2,
May 25-28, 2006, Romania, pp: 84-89.

Vaira, Z. and A. Caplinskas, 2011. Application of pure aspect-oriented design patterns in the
development of AO frameworks: A case study. Informacijos Mokslai, 6: 146-155.

15

	JSE.pdf
	Page 1

