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ABSTRACT

To solve the problem of slow convergence rate before reaching the global optimum in the
conventional Cuckoo Search algorithm {CS). This study presents an enhanced CS algorithm called
CH-EOBCCS, where elite members are introduced to generate their opposite solutions by elite
opposition-based learning. Some excellent members will carry over to the next generations from the
current. solutions and the opposite sclutions. This mechanism is helpful to enhance the ability of
global optimum for CS algorithm and to expand the search area. At the same time, 1in order to
expand diversity of the population, CH-EOBCCS algorithm introduces the chaotic disturbance to
nest location in the iteration to improve the convergence speed. The experiments are conducted on
8 classic benchmark functions and the results show that the elite opposition-based learning and
chaotic disturbance strategy has much better search performance than the generalized
opposition-based learning strategy. The novel CH-EOBCCS algorithms improve the ability of CS
to jump out of the local optima.
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INTRODUCTION

Cuckoo Search optimization (CS) 1s a relatively new optimization technique which was
developed by Yang and Deb (2009). The basicidea of this algorithm is based on the obligate brood
parasitic behavior of some cuckoo species in combination with the Lévy flight behavior of some birds
and fruit flies. The CS has obtained good performance on many optimization problems, Yang and
Deb (2010) compared CS to PSO over 100 trials for each objective function, this number of objective
function evaluations would not be feasible for application to practical engineering problems with
costly objective functions. Chandrasekaran and Simon (2012) has successfully applied CS in multi-
objective scheduling problem. A improved CS has been applied in reliability optimization problems
by Valian ef al. { 2013). A new hybrd algerithm of cuckeoo search and Particle Swarm Intelligence
(P50) was introduced by Wang and Cai (2009) to remedy the defect of PSO. Layeb (2011)
introduced a new hybridization between quantum inspired and cuckoo search for the knapsack
problem. The experimental results shows that this hybrid algorithm achieves better balance
between exploration and exploitation. Wang et al. (2011) put CS algorithm based on Gaussian
disturbance forward which adds witality nest position change. Zheng and Zhou (2013) presents a
self-adaptive step adjustment cuckoo search algorithm which speeds up the cuckoo search algorithm
speed and improves the calculation accuracy. Qu et ai. (2014) put forward the hybrid cuckoo
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algorithm based on the crossover strategy and chaos disturbance which effectively improved the
precision of algorithm and rate of convergence. However, these methods may easily become trapped
at local extreme. Many real world problems can be converted into optimization problems. As their
complexity increases, traditional optimization algorithms cannot sufficiently satisfy the problem
requirements and more effective algorithms are needed. Opposition-Based Learnming (OBL) 1s
proposed by Tizhoosh (2005) which is a new concept in computational intelligence and has been
proven to be an effective concept to enhance various optimmzation approaches. A elite opposition-
based learning for particle swarm optimization is proposed by Zhou ef al. (2013). Tuo (2013)
proposed a dynamic self-adaptive harmony search algorithm based on opposition-based computing
and Gaussian distribution estimation. A multi-dimensional dynamic self-adaptive adjustment
operator was employed to improvise a new harmony, harmony memory was selectively updated
dynamic opposition harmony vector. In addition, some scholars have proposed improvements for
the cuckoo (L.u and Gao, 2010; Wang et al., 2013; Ahandanm and Alavi-Rad, 2015).

These methods are only improved from some local aspects which are easy to fall into local
extreme and slow convergence speed. In order to enhance the performance of CS on complex
problems, this study presents a novel CS algorithm called CH-EOBCCS by using EOBL which is
an elite opposition-based learning algorithm. The main idea behind KOBL 1s to transform selutions
in the current search space to a new search space. By simultaneously considering the solutions in
the current search space and the transformed search space, KOBL can provide a higher chance of
finding sclutions which are closer to the global optimum. At the same time, the algorithm brings
the chaotic disturbance to accelerate the diversity of population. After parasitic nest owners found
foreign egg in the T generation of CS algorithm, it obtain a set of optimum location of the nest .at
this time, algorithm 1s not directly into the next iteration but continue to perform chaotic
disturbance for better parasitic nest position. Experimental simulations on 8 functions show that
CH-EOBCCS obtains better performance on the all of the test problems.

This study makes the extensive and innovative works in the following areas:

* In this study, exploration position space search area was expanded by using chaotic disturbance
strategy which expand diversity of the population and which avoid falling into local extreme

+  Chaotic disturbance process 1s bound to slow down the convergence process of algorithm in a
certain extent. This problem can be overcome effectively by using the elite opposition-based
learning strategy which accelerates the convergence rate. Because of search information space
of elite individuals 1s better than ordinary individuals, algorithm can improve the search ability
to accelerate the convergence speed

MATERIALS AND METHODS

Cuckoo Search (CS) algorithm: The CS algorithm 1s a new global search algorithm which 1s
suitable for solving optimization problems and which is proposed by Yang and Deb (2009). This
algorithm simulated process of cuckoo looking for nest for spawning, in this process, N nest location
is randomly initialized in feasible solution space and the fitness of each nest location is calculated.
The best nests with high quality of eggs (solutions) will carry over to the next generations. Some
host birds can engage direct conflict with the intruding cuckoos. The algorithm is based on the
obligate brood parasitic behavior of some cuckoo species in combination with the Lévy flight
behavior of fruit flies and some of the birds. In order to Lévy flight distribution, it is found that
animals and hbirds search for food in a random or quasi random manner and essentially follow a
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random walk because the next step 1s based on the current place and the transition probability to
the next state. The CS is based on three idealized rules:

+  Each cuckoo lays one egg at a time and dumps it in a randomly chosen nest

*  The best nests with high quality of eggs (solutions) will carry over to the next generations

*+ The number of available host nests is fixed and a host can discover an alien egg with
probability pa € [0 1]. In such case, the host bird either abandons the nest to build a completely
new nest in a new location or throw the egg away

Yang X used D-dimensional vector Xi = (xil, xi2,..., xid), 1<i<n indicates the position of the
number i nest. Yang uses Lévy fly and randomly walks to produce offspring, execute formulas
operations:

X=X +a®levy (W) (i=1,2,..,n) (1)

where, X' is represents location of number I nest in the 7th generation, levy (1) indicate the
random walk route and obey probability distribution levy~u = t* (1<A<3). The @ represent dot
product, ¢ is the step-size information which is for controlling the range of random search, in order
to obtain more useful step-size information, the Eq. 2 is used to calculate step-size information:

0L=ocuoe(xf—xbeﬁ) (2)

Opposition-based learning: Opposition-based strategy in the optimization algorithms uses the
concept of Opposition-Based Learming (OBL) which 1s a new concept in computational intelligence
and has been proven to be an effective coneept to enhance various optimization approaches. When
evaluating a solution x to a given problem, simultaneously computing its cpposite solution will
provide another chance for finding a candidate solution which is cleser to the global optimum. It
mainly is used to initial population in intelligent evolutionary algorithms. The OBL by comparing
the fitness of a member to its opposite and retaining the fitter one in the population accelerates the
EAs. The OBL was recently applied to different KAs. In order to explain easier opposition-based
learning, we need to define clearly the concept of opposite numbers.

Definition 1: The opposite number: Let A ¢ [x,v] be a real number. The opposition number is

defined by:
A=x+y-o (3)
Similarly, the opposite point in D-dimensional space can be defined as follows.

Definition 2: Opposite point: Let A, = (o, «,,,...,¢,5) is the point in D-dimensional space
(i.e,, candidate solution) and «, ¢ [x,y;] where the opposite point, A:(aim,am) in

D-dimensional space can be defined as follows:

K:x1+y]+o¢m 4)
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Definition 3: Opposite optimization: Let A, = («;,, «;,,...,&¢;,) is the point in D-dimensional space
(i.e., candidate solution) which is an effective solution for optimization problem. For the function
optimization problem, according to the definition of the opposite point, a-( o, ;) is the opposite

point of A in D-dimensional space, if f(A)<f(A), then f(A) can be replaced with f{A).

Elite opposition-based learning: Because of the opposition-based learning method that is
proposed by Tizhoosh (2005) can improve the efficiency of the algorithm and keep the population
diversity, it is blind that all individuals form the opposite solution. The reason is that population
size is enough large that search space of opposite solution is not conducive to search space of the
current solution.

Therefore, in order to form a better search space, in this study, the optimal adaptive value for
the CS algorithm is as elite member which obtained elite opposite solution by opposition-based

learning of elite member.

Definition 4: Elite Opposition-Based Learning (EOBL): Let B, (b,,, b, ,....b,p) is the elite
members in current populations, Bl=(b_.b,...b) then is the solution with B, corresponding of elite

opposition-based learning:
EM:S.(me +yn)-b,; (5)

where, & € (0,1) B, e[mj,nj], [Xm,, yn;] is Dynamic boundary in D-dimensional space. It is calculated
with the Eq. 6:

xm, =min(B, ), yn, =max(B, ) ©

Chaotic disturbances CS algorithm (CH-CS): The algorithm brings the chaotic disturbance to
accelerate the diversity of population. After parasitic nest owners found foreign eggin the
T generation of CS algorithm, it obtain a set of optimum location of the nest. At this time, algorithm
is not, directly into the next iteration but continue to perform chaotic disturbance for better parasitic
nest position.

Standard C8 algorithm is easy to fall into local extreme. To avoid falling into local extreme,
after parasitic nest owners found foreign egg in the T generation of CS algorithm, it obtain a set
of optimum location of the nest x% 1=1,2,...n. The x'is not made direct access to the next iteration
but continue to perform chaotic disturbance for better parasitic nest position. First, a set of chactic
variables that have same number of optimization nest were produced.

Chaos 1s introduced into optimization variables by means of the carrier, then direct to search

by using chaotic variables. It is calculated with the Eq. 7:
nest,., .= nest,  + R -(2-x,()-1) (7)

where, x, (1) is chaotic sequence.
Chaoctic sequences were generated as follows:
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*+  Generated Randomly IO dimensional vector x(1)=(x1(1),x2(1),...,xD{1))
+ Using Kent chaotic mapping to optimize

Xt 1{(1—2;7(10—(;".53&s1 (8)
where, ¢ =0.4. After the j iteration, the j chaotic sequences which are j were generated.

Binary sequence are obtained after quantifying the output of the Tent chactic map. Set the
output of chaotic map x e[m,M], quantization function is:

S(Xn) :{ 0 %, <(m+M)/2 )

1 m,2(m+M)/ 2

Randomness of common chaotic mapping output sequence were studied, the results showed that
Tent map sequence randomness 1s not 1deal. Therefore, a new measure, Piecewise Tent Chaotic
Map, is proposed for improving the randomness of Tent chaotic sequences. Piecewise Tent map; the
performances under computer finite precision are analyzed. In order to improve the randomness
of the output sequence, the following two piecewise Tent map were structured.

2
X 0<x, €0.50
04
1-2
X 0.500<x, <0.5
X'n+1: l_oc (10)
0-2x, 05050 <. <1 o5
1-o v
w 1-050<x <1
o "

The curve of Tent Chaotic Map and curve of two piecewise Tent map can be shown from
Fig. la-b.

It 1s important to determine the chaos disturbance radius when there is chaotic disturbance.

109 ) 1.0 9 (b)
0.8 1 0.8 1
0.6 1 0.6 1
“ #
0.4 1 0.4 1
0.2 1 0.2 1
0 T T T T 1 () T T T T 1
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
X, X,

Fig. 1(a-b): (a) Tent chaotic map and (b) Two piecewise Tent map
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If regional radius is too large, deviation of nest location is too much. Because of each dimension
is different, each dimension take different disturbance radius. In this study, the method with
Dimension by Dimension Improvement is used to determine the chaos disturbance radius. It is
calculated with the Eq. 11:

R, =8- ﬁ-zi‘:lnestm —nest (11)

d best,d

where, 81s Factor de escala, )7 nest,, is average values of current nest on I dimension. The nest,_ ,
1s variables values of current the best nest on D dimension.
The structure of CH-CS algorithm shown in Algorithm 1.

Algorithm 1: CH-CS algorithm

Begin
Randomly initialize population of n host nests x;

While (stopping criterion is not meet do)
Generate x; as new solution by Lévy flights
Evaluate its fitness f;;
Choose a solution (say xj) randomly among N new and evaluate its fitness (Fj)
if Fi=Fj then

Replace j by new solution

end if
A fraction (1-pa) of nests are abandoned at random and new ones are built via random walk
Keep the best solutions
Rank the solutions and find the current best
A set of optimal nest location P perform chaotic disturbance operations using the Eq. 7 which get a new set of nest position
P1. The values of P1 are compare with the values of P2 and poor nest the nest were replaced by better nest location. The
optimal nest location will were will carry over to the next generations

End while

End

CH-CS algorithm applied elite opposition-based learning (CH-EOBCCS): Chaotic
disturbance process is bound to slow down the convergence process of algorithm in a certain extent.
This preblem can be overcome effectively by using the elite oppoesition-based learning strategy
which accelerates the convergence rate. Because of elite members have the better search
information space than ordinary members and it can improve algorithm search performance, the
elite opposite solution i1s more close to the global optimal solution than ordinary opposite solution.
In order to prove the theory, generally it could be validated by f(x) = |x-1|? as the optimized
funection.

The first example: Assume that Al is the one point of two-dimensional space,
Al =(xl,y1,), x1,¥1€[0,30], t = (15,17} is global optimal solution. Defining x1,x2 get A1 = (5,5), then
get the opposite solution Al =(25,25) according to Eq. 3. You can calculate the result f{A1) = 244,
Al =(25,25) according to funection f (x).

The second example: Assume there is elite member A2 = (12,8), you can figure out the opposite
solution. The A2 =(18,22) then you can get f{A2) = 90, f(A2)=34 according to f (x).

Obviously, according to the above two examples, the conclusion is that opposite solution of elite
members is better than opposite solution of ordinary members. Opposite solution of elite members
are more optimized than ordinary members. The examples can be shown from Fig. 2.
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30 9 A,: Ordinary members
A,: Elite members Ald
25 A
20 A
B
15 A
10 1 A2
Al<
5 <
0 T T T T T 1
0 5 10 15 20 25 30«

Fig. 2: Example of elite opposition-based learning

Ehte opposition-based learning strategy 1s applied to the CH-CS algorithm and the framework
based on the group of elite opposition-based learning is built in this study. It is necessary that how
to choose N solution as the next populations from the current populations and opposite populations.
In this study, group selection mechanism is adopted. Individuals of the current population and
individuals of opposite populations sorted by fitness. The best N individuals are selected into the
next generation. Let p(g) is current population, the corresponding opposite population, Eop(g) is
produced by the elite opposite opposition-based strategy. The N best parasitic nest are chosen to
constitute next member p{g+1) from P(g)uEop(g). Let N is population size, p, is the probability to
execute elite opposition-based learning strategy, X, is the elite individual which is the best
individual selected from current population, rande[C,1], rand is random numbers which are
distributed uniformly.

The structure of CH-EOBCCS algorithm shown in Algorithm 2.

Algorithm 2: CH-EOBCCS algorithm
Randomly initial position of parasitic nest P(g)

While stopping criterion is not meet do
if rand<p,, then
select the best individual as elite individual X, from P(g)
update [xm;yn; according to Eq. 6
generate the opposite solution of X, from the current swarm (2) by Kq. 5
if B7u< X, orBij,J >yn, then
en]?ff: rand(xm,, yi;)
Calculate the fitness value of opposite solution and add to opposite population Eop(g)
select the N best fittest solutions from p(g)uBEop(g) as the next swarm p(z+1) by population-based selection mechanism
Else
Execute the canonical CH-CS algorithm
end if
End while

RESULTS AND DISCUSSION
Experimental setting: In this experiment, a comprehensive set of benchmark problems, including
8 different global optimization problems, was chosen for the following experimental studies. These
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function are Sphere, Griewank, Rastrigrin, Rosenbrock, Ackley, Quartic, Step and Schwefel 2,22,
All the functions used in this study are minimization problems. A brief description of these
benchmark problems is listed in Table 1.

The experiments are carried out on a P4 Dual-core platform with a 1.75 GHz processor and
1 GB memory, running under the Windows 7.0 operating system. The algorithms are developed
using MATLAB Release 2010. Populations size 1s 50 and the maximum number of iterations 151000,
the probability that Foreign eggs were found is Pn = 0.25,

Comparison of CH-EOBCCS, CS, PSO and CH-CS: In this section, in order to analyze the
effectiveness of the CH-EOBCCS algorithm, for all the test functions, three different dimension
sizes are tested: 10, 20 and 20. The maximum number of generations is set as 1000, 1500 and 2000
corresponding to the dimensions 10, 20 and 30. In order to eliminate stochastic discrepancy, a total
of B0 runs for each experimental setting were conducted. The results are presented in Table 2.

Table 2 list the testing results on the functions f1-f8 The algorithm in this study can find the
global optimal solutions for f1, f2, f3, f4, {7 and f4 the success rate attains 100% in 50 runs.
M-iteration denotes mean number of iterations before finding the glebal optimal value.

The testing results on the function of f1-f8 is given in Table 2. For the function 5, the proposed
algorithm demonstrates a far better average convergence precision than the standard CS and
improved C5 algorithms. For function 8, the proposed algorithm also yields a compelling result in
terms of average convergence precision and success rate. The M-iteration in the table denctes mean
number of iterations before success {i.e., the iteration number to converge to a given threshold). The
proposed CS has a strong ability to move out of the local optima and it can effectively prevent the
premature convergence and significantly enhance the convergence rate and accuracy in the
evolutionary process.

Tahble 1: Brief description of functions

Name Function Dom Best
Sph 2 -1,1 0
phere e [-1,1]
i=l
Griewank 1 & z Xi [-10, 10] 0
f2=—N 2] cost==)+1
400 ; ! E,[ ( X )
Rastrigi 2 -5.12, 5.12 0
astrein £3=Y [x? 10 cos(2mx, )10] [-5.12, 8.12]
i=l
Rosenbrock [-10, 10] 0

f4=3 (100x, +1-x)+{1-x )

Ackley ] [-32, 32] 0
f5=—20exp(—0.2 P yx)
nig

—exp(lz cos(2mx, N +20+e
oy

arti gy -1.28,1.28 0
Quartic £6=Y"ix! +random[0,1] L 1
i=l
£7=3 (1x,0.5 )
Step Z(l‘ Y [-100, 100] 0
f8= X, |+ X
Schwefel 2.22 §' 3 El[‘ 3 [-10, 10] 0
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Tahble 2: Testing results for the test fumction f1-f8

Function Name Pop. size Dim Gene Pn Mean M-iteration Success ratio (%)
f1l Sphere 20 10 1000 0.25 0.00E+00 44 .82 100
f1l Sphere 20 20 1500 0.25 0.00E+00 127.49 100
f1l Sphere 20 30 2000 0.25 0.00E+00 177.21 100
f2 Griewank 20 10 1000 0.25 0.00E+00 60.23 100
f2 Griewank 20 20 1500 0.25 0.00E+00 117.88 100
f2 Griewank 20 30 2000 0.25 0.00K-+00 178.24 100
3 Rastrigin 20 10 1000 0.25 0.00K-+00 25.68 100
3 Rastrigin 20 20 1500 0.25 0.00K-+00 57.45 100
3 Rastrigin 20 30 2000 0.25 0.00K-+00 BT 100
f4 Rosenbrock 20 10 1000 0.25 0.00K-+00 114.34 100
f4 Rosenbrock 20 20 1500 0.25 0.00E+00 207.19 100
f4 Rosenbrock 20 30 2000 0.25 0.00E+00 237.72 100
fa Ackley 20 10 1000 0.25 0.892E-17 49.09 94
fa Ackley 20 20 1500 0.25 7.661E-17 127.28 98
fa Ackley 20 30 2000 0.25 9.535E-18 145.96 96
fé Quartic 20 10 1000 0.25 2.853E-04 98.06 95
fé Quartic 20 20 1500 0.25 6.125E-04 146.43 98
& Guartic 20 30 2000 0.25 5.811K-05 197.08 97
7 Step 20 10 1000 0.25 0.00K-+00 68.90 100
7 Step 20 20 1500 0.25 0.00K-+00 098.22 100
7 Step 20 30 2000 0.25 0.00K-+00 165.83 100
8 Schwefel 2.22 20 10 1000 0.25 0.00K-+00 280.88 100
8 Schwefel 2.22 20 20 1500 0.25 0.00K-+00 377.35 100
f8 Schwefel 2.22 20 30 2000 0.25 0.00E+00 478.21 100

We have solved the same problem by using the Farticle Swarm Algorithm (P5Q), Cuckoo
Search (CS) algorithm, Cuckoo optimization algorithm based on Chaotic disturbance (CH-CS) and
CH-EOBCCS algorithm addressed in the literature. The results were obtained by the CH-EOBCCS
algorithm for the case study problem is compared with PSO, CH-CS, CS algorithms. We tested the
algorithms with the similar parameters used in the respective literature studies and the same
number of iterations. The results that four kinds of algerithms were conducted 50 times for the case
study problem are presented in Table 3, where “Mean” indicates the mean function value, “Std”
stands for the standard dewviation. Graph optimmzation search of four kinds of algorithms for the
eight functions are displayed in Fig. 3(a-h). The results are presented in Table 4. The best results
among the four algorithms are shown in bold.

From the results in the Fig. 3(a-h), it can be concluded that the CH-EOBCCS algorithm
performs better than the PSSO, CH-CS, CS algorithms in all test cases. Especially, it can be seen
that CH-EOBCCS outperforms PSO, CH-CS and CS on {1, 2, f3, f4, 5 and f8. The CH-EOBCCS
shows excellent search abilities on f1, f2, 3, f4 and f8. Although, the evolution rate of CH-CS 1s
close to CH-EOBCCS on f1, CH-CS is premature convergence and CH-EOBCCS convergence
accuracy is much higher than CH-CS. The CH-EOBCCS found the global optimum at about 250
generations on function f2. However, other algorithms are fall into the local minima. The
CH-EOBCCS found the global optimum at about 250 generations at about 180 generations on
funection £3; it 1s faster than other algorithms. On function f4, CH-EOBCCS can fast find the global
optimum while CS, PSO and CH-CS fall into the local minima; on function 5, CH-EOBCCS can
find the global optimum CH-EOQBCCS before the 4230 generations. Although, CH-EOBCCS is slower

than CS and PSC on the convergence rate, finding the optimal solution is superior to other
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algorithms. In 7, although the four algorithm can converge to the global minimum, the
CH-EOBCCS 1s faster than other algorithms significantly. From the results in Fig. 3(a-h), PS5O,

Tahble 3: Result comparison of different algorithm

Function Mean/Std PSO (&5} CH-CS CH-EOBCCS
fl Mean 3.343E-40 1.152E-59 5.957E-100 0.00E+00
Std 5.221E-40 3.970E-59 6.349E-101 0.00E+00
f2 Mean 2.254E-04 1.776E-04 3.306E-12 0.00E+00
Std 4.112E-03 2.103E-03 7.513E-11 0.00E+00
f3 Mean 1.876E+01 7.700E+00 5.774E-09 0.00E+00
Std 3.901E+00 1.993E+00 5.712E-08 0.00E+00
f4 Mean 1.177E+01 2.771E-05 2.211E-12 0.00E+00
Std 0.875E+00 8.588E-06 0.965E-11 0.00E+00
5 Mean 2.103E-10 2.334E-15 2.504E-17 9.535E-18
Std 5417E-11 5.680E-16 1.060E-16 1.773E-18
5 Mean 7.902E-02 2.661E-03 9.241E-04 5.811E-05
Std 1.981E-02 6.337E-03 4.568E-05 3.387E-05
f7 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f8 Mean 1.082E-01 1.250K-02 7.129E-06 0.00E+00
Std 3.855E-02 1.102E-02 3.728E-05 0.00E+00

Tahble 4: Result comparison of different algorithm in literature

Function Mean/generate GCS ASCS ECCS MACS CH-EOBCCS
f1 Mean 2.679E-10 1.006E-006 5.224K-18 2.0307E -7 0.00E+00
Generate 408.3 180.9 2317.75 1200 641
f2 Mean 4.599E-11 1.2444 6.247E-14 3.0335E-8 0.00E+00
Generate 230.5 140.8 302.75 500 132
3 Mean 3.704E-07 17.9013 1.615E-12 1.3833E-3 0.00E+00
Generate 450.8 176.25 309.25 1500 96
f4 Mean 3.704E-07 17.9013 1.615E-12 0.4895 0.00E+00
Generate 450.8 176.25 309.25 1500 95
5 Mean £.324K-08 0.0019 5.482K-14 16.5568 9.535E-18
Generate 428.15 313.25 296.2 1100 1566
(2)
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Fig. 3(a-h): Continue
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CH-CS and CS fall into the local minima on funection f1-f6, {8, CH-EQOBCCS shows excellent search
abilities; either the convergence rate or convergence precision.
It can be seen that CH-EOBCCS outperforms PS50, CH-CS and CS on Mean and Std in
Table 2. The CH-EOBCCS obtains theoretical extremes O on these functions and standard deviation

(b) Criewank/f2,
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is also 0. Especially, CH-EOBCCS shows excellent search abilities and search precision on f1, £2,
3, f4, 5, 6 and f8. Although CH-EOBCCS did not obtain optimal theoretical extremes O on f5 and
6, it obtain better solution than other algorithms. The result of CH-ECBCCS algorithm improves
60 the number of level than other algorithm on f1 on funection f2. The result of CH-EOBCCS
algorithm improves 9 number level than other algorithm. On function f3, although, CH-EOBCCS
performs slightly better than CH-CS on Mean, CH-EOBCCS is obvious better than other two
algorithms. The result of CH-EOBCCS algorithm improves 5 number level than other algorithm
on function f4, the result of CH-EOBCCS algorithm improves 8 number level than other algorithm
on function fB. The result of CH-EOBCCS algorithm improves 3 number level than other algorithm
on function 6. The result of CH-EOBCCS algorithm improves 6 number level than other algorithm
on funetion f8. In addition, through the comparison of Std, the stability of the CH-EOBCCS is
higher than other algorithms.

Comparison of CH-EOBCCS and previous best-known improved CS algorithms: To
further verify the effectiveness of the algorithm, we compare the performance of CH-EOBCCS with
4 previous best-known algorithms from the literature. They are: GCS algorithm (Wang et al.,
2011), ASCS algorithm (Zheng and Zhou, 2013), KECCS algorithm (Qu ef al., 2014} and MACS
algorithm (Zhang et al., 2012). The numerical results are shown in Table 4, where the best
solutions of each problem are reported and compared with solutions reported previously in the
literature. The results of each algorithm are as follows.

From Table 4, we observe that the mean solution cbtained by CH-EOBCCS for f,-f, 1s 0.00K+00
which 1s superior to those all by the other typical approaches in the literature.

For function f1, although, the ASCS algorithm demonstrates a far better average convergence
precision than CH-EOBCCS algorithm, the ASCS prematurely into local optima. In the
optimization process the convergence rate of CH-KOBCCS algorithm are 133.1, 95.7 and 94.9 on
f2, f3 and f4. For the convergence rate, the CH-EOBCCS algorithm demonstrates a far better
average convergence precision than GCS, ASCS, ECCS, C5-PS0 and MACS and CH-EOBCCS
obtains theoretical extremes 0. For function 5, although, the CH-EOBCCS algorithm demonstrates
slower than CH-EOBCCS algorithm for average convergence precision. The mean solution
improves 4 number level than ECCS algorithm. According to the analysis results of optimal solution
and results of the convergence rate: It conclude that CH-EOBCCS algorithm has more advantages
than these improved CS algorithm.

CONCLUSION

This study presents an enhanced CS algorithm called CH-EOBCCS by using elite
opposition-based learning and chaotic disturbance. Exploration position space search area was
expanded by using chaotic disturbance strategy which expand diversity of the population and
which avoid falling into local extreme. Opposition-based learning 1s used to accelerate the
convergence rate by simultaneocusly evaluating the current population and the opposite population.
The algorithm generates current population with a certain probability and searches other members
among field of opposite solution to form opposite populations. This method use fully the
characteristics those elite members are better than ordinary members search space. The elite
opposition-based learning sampling scheme could provide more chance of finding better solutions
by transforming candidate solutions from current population inte a new search space. With the help
of a new elite selection mechanism, we can select better eggs. The CH-EOBCCS algorithm can
improve the search ability to accelerate the convergence speed. From the analysis and experiments,
we observe that the elite opposition-based learning enables the CH-EOBCCS to achieve better
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results on search abilities when CH-EOBCCS is compared with three other algorithms. Elite
apposition-based learning 1s used to accelerate the convergence rate by simultaneously evaluating
the current population and the opposite population. It performs badly on shifted and large scale
problems. Possible future work is to investigate the effectiveness of elite opposition-based learning
on many different kinds of problems.
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