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Abstract
Background: Clustering analysis has gained popularity and imprecise methods or their hybrid approaches has attracted many researchers
of late. Fuzzy C-means clustering algorithm (FCM) is a method that is frequently used in pattern recognition. Recently, intuitionistic Fuzzy
C-means (IFCM) algorithm was introduced and studied by Tripathy and it was found to be superior to all other algorithms in this family.
Materials and Methods: This study proposes a modified IFCM method called kernel-based intuitionistic  fuzzy C-means (mKIFCM) which
is an extension of intuitionistic fuzzy C-means by adopting a kernel induced metric in the data space to replace the original Euclidean norm
metric. The mKIFCM method combines Atanassov’s Intuitionistic Fuzzy Entropy (IFE) with kernel-based fuzzy C-means and  DNA genetic
algorithms (DNA-GA) are optimally used simultaneously to choose the parameters of mKIFCM. The entire algorithm procedure is called
mKIFCM-DNAGA. Results: The mKIFCM can make use of the advantages of intuitionistic fuzzy sets, kernel functions and  DNA-GA in actual
clustering problems. Conclusion: The algorithm is evaluated through cluster validity measures. The clustering accuracy of algorithm is
investigated by classification datasets with labeled patterns. Experiments on machine learning repository datasets show that the proposed
mKIFCM-DNAGA is more efficient than conventional algorithms. The mKIFCM-DNAGA method maintains appreciable performance
compared to other methods in terms of pureness ratio.
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INTRODUCTION

Clustering analysis is commonly used as an important tool
to classify the collection of objects into homogeneous groups
such that objects within a given group are similar whereas
objects within different groups are dissimilar from each other.
Clustering analysis has been applied vastly in several fields
such as taxonomy, geology, business, engineering systems,
medicine and image processing1,2. Among the diverse
clustering techniques, the most popularly used techniques
include the hard C-means (k-means), fuzzy C-means (FCM),
their variants, evolutionary algorithms and  artificial neural
networks. The FCM is the most important for various fields3.
The FCM assigns each point to fuzzy clusters without labels
and allows points to belong to multiple clusters with varying
degrees of membership.

Fuzzy  set  theory  proposed  by  Zadeh4  has  been
successfully applied in various  fields. The theory states that
the membership of an element to a fuzzy set is a single value
between 0 and 1. However, the degree of nonmembership of
an element to a fuzzy set might not be equal to 1 minus the
degree of membership, there may be a hesitation degree. The
notion  of  Intuitionistic Fuzzy Set (IFS) coined by Atanassov5

for fuzzy set generalizations has interesting and useful
applications in different domains. But few study on clustering
is reported in the previous study on intuitionistic fuzzy sets.
Zhang et al.6 suggested a clustering approach, where an
intuitionistic fuzzy similarity matrix is transformed to interval
valued fuzzy matrix. Recently, Chaira7 proposed a novel
intuitionistic  fuzzy C-means algorithm using intuitionistic
fuzzy set theory. This algorithm incorporated another
uncertainty  factor  which  is  the  hesitation  degree  that
aroused while defining the membership function. Chaudhuri8

proposed an intuitionistic fuzzy possibilistic C-means (IFPCM)
algorithm  to cluster IFSs by hybridizing concepts of FPCM,
IFSs and distance measures. The IFPCM resolves inherent
problems  encountered  with  information  regarding
membership values of objects to each cluster by generalizing
membership and nonmembership with the hesitancy degree.

Kernel-based FCM (KFCM)9 also has been proposed by
replacing the Euclidean distance with a kernel function. The
KFCM is an alternative approach that uses the kernel method
for transforming the input data into the feature space,
allowing other clustering algorithms to address clustering
tasks. Zhang and Chen9 have shown that KFCM performs
better than FCM. Liu and Xu10 developed a novel kernelized
fuzzy attribute C-means clustering algorithm that modifies the
distance in the fuzzy attribute C-means clustering algorithm
with kernel-induced  distance.  This  clustering  algorithm  was

more  effective and robust than traditional FCM, fuzzy
attribute C-means and  KFCM. Park11 developed FCM with a
divergence-based kernel (FCM-DK) for the classification of
audio signals to improve classification accuracy. The method
outperformed conventional algorithms such as traditional
FCM.  Graves  and  Pedrycz12  presented  a  comprehensive
comparative analysis of kernel-based fuzzy clustering. In an
experiment of machine learning repository datasets, the
kernel-based fuzzy clustering algorithms were highly sensitive
to the selection of specific values of kernel parameters. Tsai
and Lin13  proposed  a  distance  metric  for  KFCM,  named
KFCM-F which allows the clustering of nonhyperspherically
shaped  data with uneven density in the mapped feature
space and achieves nonlinear separation for the data in the
observation space. Lin14  proposed a novel evolutionary kernel
intuitionistic  fuzzy  C-means clustering algorithm (EKIFCM)
that combined Atanassov’s intuitionistic fuzzy sets with
kernel-based fuzzy C-means and  genetic algorithms are
optimally used simultaneously to select the parameters of the
EKIFCM. In previous study, the adaptation of intuitionistic
fuzzy sets can obtain better performance than traditional fuzzy
clustering techniques.

Since,  Adleman15  first  developed  based  on  DNA
biological computing method for solving a computationally
hard problem  of  the  directed  Hamiltonian  path  problem,
researchers begin to devote to the study and applications of
DNA genetic algorithm (DNA-GA). Zhang and Wang16

proposed a modified  DNA genetic algorithm for parameter
estimation of the 2-chlorophenol oxidation in supercritical
water. The DNA  genetic  algorithm  can  overcome  the 
drawbacks  of traditional genetic algorithm such as weak local
search capability and premature convergence. Owing to
advantages of DNA genetic algorithms, in this stduy, DNA-GA
is used to optimize  the  similarity  graph.  It  demonstrates 
that  the similarity graph with DNA genetic algorithm can
show better system’s stability and robustness.

Firstly, this study proposes a modified kernel-based
intuitionistic fuzzy C-means which is an extension of
intuitionistic fuzzy C-means by adopting a kernel induced
metric in the data space to replace the original Euclidean norm
metric. The method with kernel functions combines the
concepts of IFE and kernel functions with FCM. By replacing
the inner product with an appropriate ‘kernel’ function, one
can  implicitly  perform  a  nonlinear  mapping  to  a  high
dimensional feature space in which the data is more clearly
separable. Then, this study incorporated DNA-GA into the
kernel intuitionistic FCM clustering to select the optima
parameters of mKIFCM-DNAGA.
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MATERIALS AND METHODS

Kernel intuitionistic fuzzy C-means Clustering
Fuzzy C-means (FCM): Fuzzy C-means clustering is the most
popular  fuzzy  clustering  algorithm.  It  partitions  a  given
dataset, X = {x1, ..., xn}dRp into c fuzzy subsets by minimizing
the following objective function:

(1)
2c n

m
FCM ik k i

i 1 k 1

J (U,V) u x v
 

 

where, c is the number of clusters and selected as a specified
value in this study, n is the number of data points, uik is the
membership of xk in class i and  V is the set of cluster centers
(vi0Rp). The matrix U with the ik-th entry uik is constrained to
contain elements in the range [0, 1] such that satisfies:

(2)
c n

ik ik ik
i 1 k 1

U u [0,1] u 1, k and u n, i
 

           
  

 

The parameter m is a weighting exponent on each fuzzy
membership and determines the amount of fuzziness of the
resulting clustering. In clustering, the FCM objective function
is minimized when high membership values are assigned to
points whose intensities are close to the centroid of its
particular class and  low membership values are assigned
when the point is far from the centroid.

Modified  intuitionistic  FCM  (mIFCM):  Intuitionistic   fuzzy
C-means clustering algorithm is based upon intuitionistic
fuzzy set theory5. Fuzzy set generates only membership
function :(x), x0X, whereas, intuitionistic fuzzy set given by
Atanassov considers both membership : (x) and
nonmembership v (x). An intuitionistic fuzzy set A in X is
written as:

(3) A AA x, (x), v (x) | x X  

where, :A (x)÷[0, 1], vA(x)÷[0, 1] are the membership and
nonmembership degrees of an element in the set A with the
condition: 0#µA(x)+vA(x)#1.

When vA(x) = 1-µA(x) for every x in the set A then the set
A becomes a fuzzy set. For all intuitionistic fuzzy sets,
Atanassov also indicated a hesitation degree πA(x)  which
arises due to lack of knowledge in defining the membership
degree of each element x in the set A and is given by:

(4)A A A A(x) 1 (x) v (x),0 (x) 1     

Due to hesitation degree, the membership values lie in
the interval:

(5)A A A[ (x), (x) (x)]  

This   study   proposes   a   modified   intuitionistic   fuzzy
C-means objective function (mIFCM). The mIFCM algorithm
contains two terms: (i) Modified objective function of
conventional    FCM    using    Intuitionistic    fuzzy    set    and
(ii) Intuitionistic Fuzzy Entropy (IFE).

The mIFCM minimizes the objective function as:

(6)*
i

2c n c
1* m *

mIFCM ik k i i
i 1 k 1 i 1

J (U,V) (u ) x v e 

  

    

Here,

(7)*
ik ik iku u 

where, uik denotes the conventional fuzzy membership of the
kth data in ith class, uik denotes the intuitionistic fuzzy
membership and uik is hesitation degree which is defined as:

(8)1/
ik ik ik1 u (1 u ) , 0      

and is calculated from Yager’s intuitionistic fuzzy complement
as under:

(9)1/N(x) (1 x ) , 0   

where, N(1) = 0, N(0) = 1. Thus with the help of Yager’s
intuitionistic  fuzzy  compliment,  intuitionistic  fuzzy  set
becomes:

(10)IFS 1/
A AA {x, (x),(1 (x) } | x X} 

    

and

(11)
n

*
i ik

k 1

1
, k [1, N]

N 

   

Second term in the objective function (6) is called
Intuitionistic Fuzzy Entropy (IFE). Initially the idea of fuzzy
entropy was given by Zadeh4. It is the measure of fuzziness in
a fuzzy set. Similarly in the case of IFS, intuitionistic fuzzy
entropy gives the amount  of  vagueness  or  ambiguity  in  a
set. For intuitionistic fuzzy cases, if  µA(xi),  vA(xi)  and  πA(xi)  are
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the membership, nonmembership and  hesitation degrees of 
the elements of the set X = {x1, ..., xc} then intuitionistic fuzzy
entropy, IFE that denotes the degree of intuitionism in fuzzy
set may be given as:

(12)A i

c
[1 (x )]

A i
i 1

IFE(A) (x )e 



 

Here, πA(xi) is defined in Eq. 4.
The IFE is introduced in the objective function to

maximize the good points in the class. The goal is to minimize
the entropy of the histogram given data. So, the modified
cluster centers are:

(13)
n *

ik kk 1*
i n *

ikk 1

u x
v

u









Kernel method: Kernel-based methods have attracted great
attention and have been applied in many fields such as
pattern recognition17, data mining18, forecasting19 and so on.
Kernel-based method involves performing an arbitrary
nonlinear mapping φ from the original dimensional feature
space to a higher dimensional space, called kernel space. In
the kernel space, the original data may apply classifiers. The
use of kernels has received considerable attention because
kernels make it possible to map data onto a high dimensional
feature space in order to increase the representation capability
of linear machines.

Any function that satisfies Mercer’s condition can act as
the kernel function. A common philosophy behind these
algorithms is based on the following kernel (substitution) trick
that is firstly with a (implicit) nonlinear map from the data
space to the mapped feature space, M: X÷F(x÷M(x)), a dataset 
{xi, ...xn}0X (an input data space with low dimension) is
mapped into a potentially much higher dimensional feature
space or inner product F which aims at turning the original
nonlinear problem in the input space into potentially a linear
one in rather high dimensional feature space so as to facilitate
problem solving as proved by Cover.

A kernel in the feature space can be represented as a
function K below:

K(x,y) = +Φ (x), Φ (y), (14)

where, +Φ(x), Φ(y), denotes the inner product operation.
An interesting point about kernel function is that the

inner   product   can   be   implicitly   computed  in  F  without

explicitly using or even knowing the mapping F. So, kernels
allow computing inner products in spaces, where one could
otherwise not practically perform any computations. Three
commonly used kernel functions in previous studies are18:

C Gaussian Radial Basis Function (GRBF) kernel

(15)
2

2

x y
K(x,y) exp

  
    

C Polynomial kernel

K(x,y) = (1++x,y,d) (16)

C Sigmoid kernel

K(x,y) = tanh (α+x,y,+β) (17)

where, σ, d, " and $ are the adjustable parameters of the
above kernel functions. For the sigmoid function, only a set of
parameters satisfying the Mercer theorem can be used to
define a kernel function.

Modified  kernel  intuitionistic  FCM  (mKIFCM):  Every
algorithm that only uses inner products can implicitly be
executed in the feature space F. This trick can also be used in
clustering as shown in support vector clustering20 and kernel
(fuzzy) C-means algorithms21. A common ground of these
algorithms  is  to  represent  the  clustering  center  as  a
linearly-combined sum of all Φ(xk) i.e., the clustering centers lie
in feature space.

Using kernel functions can improve traditional clustering
algorithms which are based on the Euclidean distance. This
study proposed kernel-based intuitionistic fuzzy C-means
(mKIFCM) adopts a kernel induced metric which is different
from  the  Euclidean  norm  in  the  original  intuitionistic  fuzzy
C-means. The mKIFCM minimizes the objective function:

(18)
*
i

2c n c
1-π* m *

mKIFCM ik k i i
i =  1 k = 1 i = 1

J = (u ) Φ (x )-Φ (v ) + π e 

where, Φ is an implicit nonlinear map and reviewed as an
mapped point of vi in the original space and 2Φ(xk)-Φ(vi)22 is
the square of distance between Φ (xk) and Φ (xi). The distance
in the feature space is calculated through the kernel in the
input space as follows:

2Φ (xk)-Φ (vi)2
2 =  K (xk,xk)+K (vi,vi)-2(xk,vi) (19)
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In the previous study, the GA was employed almost
exclusively because the kernel function can obtain better
performance    with    a    GA    function.   Therefore,   with   a
GA function, the designed objective function can be written
as. The study adopted the Radial basis kernel in the propose
technique in Eq. 15, the objection function in Eq. 18 can be
written as:

(20)
*
i

c n c
1* m *

mKIFCM ik k i i
i 1 k 1 i 1

J 2 (u ) (1 K (x ,v ) ) e 

  

    

Given a set of points X and minimize JmKIFCM in order to
determine vi. This study has adopted an alternating
optimization approach to minimize JmKIFCM by Eq. 7 in mKIFCM,
the prototypes vi with the DNA-GA function can be written:

(21)
1/(m 1)

* k i
ik c 1/(m 1)

k jj 1

(1 K(x ,v ))
u

(1 K(x ,v ) )

 

 







(22)
n *m

ik k i kk 1
i n *m

ik k ik 1

u K(x ,v ) x
v

u K(x ,v )





 







At each iteration, the cluster center and membership
matrix are updated and the algorithm stops when the
updated membership and the previous membership i.e.,

 is a user defined value. Table 1 describes*new *prev
ik ik ikmax |U U | ,   

the proposed mKIFCM algorithm in this study.

mKIFCM-DNAGA:   The   most   important   advantage   of
DNA-GA is its generic nature as it can be applied to several
problems that can be modeled as graphs including clustering,
dimensionality reduction and classification problems. The
proposed mKIFCM-DNAGA is an alternative fuzzy clustering
method. The mKIFCM-DNAGA can be divided into two phases:
(1)  Modified  kernel-based  intuitionistic  FCM  clustering  and
(2) parameters selection of mKIFCM with DNA-GA. The
mKIFCM-DNAGA   clustering   technique   combines   KFCM
with IFE obtaining the advantages of  both.  Furthermore,  the

DNA-GA is employed to search for optimal parameters of
mKIFCM to further improve performance.

Parameters selection is crucial to the success of the
mKIFCM model. The suitable intuitionistic fuzzy parameter
improves mKIFCM performance. Chaira7 pointed out that the
parameter m and Yager class parameter " will affect the
performance of IFCM and  Graves and Pedrycz12 also noted
that the parameter of GA σ will affect the performance of
KFCM(G).  Inspired  by  DNA-GA,  the  mKIFCM  model  uses
DNA-GA to select the parameters m, σ and " of  mKIFCM in the
proposed model. The DNA-GA operations are described in the
mKIFCM model as follows.

DNA encoding and decoding: When applying DNA-GA to the
clustering problem, it is necessary to determine the scheme of
using chromosomes to represent trial solutions. The DNA,
hereditary material that contains plentiful genetic information
necessary for almost all living organism is composed of units
called nucleotides. There are four different types of
nucleotides found in DNA differing only in the nitrogenous
base. Two of them are purines called adenine (A) and guanine
(G) and  the other two are pyrimidines called cytosine (C) and
thymine (T). Consistent with DNA molecular structures,
nucleotide bases A, G, C and  T are used to encode the
possible   solutions   of  in  an  optimization  problem.  These
4 bases should be represented by numbers for convenient
computation  and  implementation.  Therefore,  the  integers
0,  1,  2  and   3  are used to encode the four nucleotide bases
C, T, A and  G, respectively.

A general unrestricted optimization problem with n
variables may be written in Eq. 23:

(23)1 2 n

mini i maxi

min f (x ,x ,...,x )

x x x , i 1,2,...,n


   

where, x = (x1, x2, ...,xn)is a vector of n decision or control
variables, f(x) is the objective function to be minimized and
xmini and xmaxi are the lower and upper bounds on xi.

Table 1: Proposed mKIFCM algorithm in this study
Radial basis kernel based intuitionistic fuzzy C-means clustering
Input parameters: Clustering data (X), No. of clusters (K = c+1), No. of iterations and stopping criteria
Output: Cluster centroids matrix and membership matrix
Step 1: Get clustering data
Step 2: Select initial prototypes
Step 3: Obtain the memberships with 21
Step 4: Update the prototypes with 22
Step 5: Update the memberships using 21 with updated prototypes
Step 6: Repeat steps (3-5) till  the  updated  membership  satisfies the condition:  is met for successive iterations t and t+1 where, g is a*new *prev

ik ik ikmax | U -U |< ε
small number
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In an optimization problem, each variable xi is
represented as a segment of base 4 integer string of length l.
So the precision of variable xi is (xmaxi-xmini)/4 and the length of
the sequence of one individual is L = nl. When decoding, the
individual is decoded as a n-dimensional decimal vector using
in Eq. 24:

(24)
l

l j
i

j 1

tempx bit( j) 4 



 

where, bit(j) is the jth digit from the left of the current
encoding segment for xi. Depending on the bounds of each
variable and the sequence can be converted to the
corresponding solution through in Eq. 25:

(25)i
i maxi mini minil 1

tempx
x (x x ) x

4   

Based on this DNA encoding and decoding method, more
gene-level operations can be introduced into GA to design
more effective genetic operators and improve algorithm
performance. In the proposed mKIFCM-DNAGA, the encoding
is a centroid-based representation. Each individual represents
a set of centroids as a k×dim dimensional vector.
where, k is the number of clusters and dim is the dimension of
the points.

DNA genetic operations: Different types of operations are
performed during the evolution of the genetic process in the
membranes in the different layers of the membrane structure.
The major operations are discussed in the following.

Algorithm initialization: In a standard genetic algorithm, the
initialization of chromosome is usually conducted through a
random generation which produced unlawful chromosome
easily. In this study, first, the DNA population initialization
produced a number M of N×M matrices at random. Then,
used the chromosome of natural numbers coding of [1,N] as
DNA colonies formed by initial populations, the numbers of
DNA populations are just M which is different from the
standard genetic algorithm. In the natural biological structure,
the number of A, T, G and C is not the same. For this point, the
algorithm  generates  one  chromosome  through  imitating
the portion [0.156, 0.157, 0.344 and 0.343, respectively].  To
prevent producing unlawful chromosome, used random
numbers to produce the natural numbers between [1,N] in
turn, recorded the times of each production, set each random

number only appeared M times in chromosome, otherwise,
reinitialized the population. In this way, unlawful chromosome
can be prevented.

In the study, the construction of the initial population is
based on the clustering centroids, some variants of them and
some arbitrary ones represented as matrices. Each one of
these matrices is transformed properly in order to form a
chromosome and be used in the evolutionary process. The
algorithm’s performance greatly depends on the way that the
initial population is created as suggested by the various
techniques that have been examined for the purposes of this
study.

Selection  operation:  The  purpose of selection operation is
to decide which individuals are kept to next generation and
how many individuals are replicated to offspring. Generally,
those individuals with higher fitness value have a greater
opportunity to survival or reproduce. Among the various
selection methods like roulette wheel selection, tournament
selection, ranking selection and Boltzmann selection, roulette
wheel selection is more popular and efficient. But the roulette
wheel selection method may cause the higher fitness values
individuals to dominate all the offspring individuals which
may lead to premature convergence easily. Therefore, a
roulette wheel selection with balance way is used in DNA
genetic algorithm. In this method, a group of deleterious
individuals are allowed to be picked out for the genetic
operation and the elitism is adopted to guarantee the best
individual to be reserved for the next generation.

Crossover  operation:  The  crossover  operation  is  mainly
responsible for the global searching ability of the algorithm. In
the process of transferring, genes far apart from each other
can be combined together and  then new genetic materials
can be generated. According to the biological principle, there
exist  “hot  spots” and “cold spots” in different locations of
DNA sequence. Mutation probability occurs at “hot spots” is
much larger than “cold spots”. Inspired by this, the sequences
of each individual are divided into high and low. Different
populations have different evolution emphases so, the
probabilities of crossover operation in high and low are
different.

The process of permutation crossover is as follows. Firstly,
select three fathers randomly. Secondly, select a sequence
from a father’s “hot spots” randomly and  then select two
sequences  of  the  same  length  in  the  other  two  father’s
“hot  spots”,  respectively.  Finally,  exchange  the  three-stage
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sequence selected one by one to get three new individuals.
For  superior  subpopulation,  set  high  bit  position  as  the
“cold spots” and low bit position as the “hot spots”. Inferior
subpopulation’s set is opposite to superior subpopulation. For
main population, the algorithm selects the sequence from the
entire individuals randomly. Set inferior subpopulation a larger
permutation crossover probability, superior subpopulation
and main population have same permutation crossover
probability.

Mutation  operation:  The  choice  of  mutation  probability
pfm is significant to improve the performance of the algorithm.
The large value of pfm transforms the algorithm into a purely
random search algorithm whereas small value cannot
maintain the diversity of the population. During the evolution
process, when the algorithm is continuously converging, the
similarities among the individuals of population become
higher. Therefore, the diversity of the population is reduced
which makes the algorithm get trapped into local minima
easily and definitely deteriorates the performance of the
algorithm. To overcome this shortage, the mutation
probability is dynamically adjusted by considering a measure
called  diversity  index  (0m)  which  is  defined  to  indicate  the
premature convergence degree of the population. Firstly, the
fitness value fi  of  each individual is evaluated in the evolution
of every generation and  the average fitness value favg of the
population can be defined as:

(26)
Popsize

avg i
i = 1

1
f = f

Popsize 

where, popsize is the population size of the current
generation. Then, the new average fitness value of those
individuals that the fitness values are superior to favg is also
calculated and expressed as f’avg. The individuals that the
fitness values distributed between f’avg and the best fitness
value of the current population fmax are outstanding
individuals of the population. The number of outstanding
individuals is calculated and expressed with variable NS.
Obviously, a large number of outstanding individuals in the
population can lead algorithms to premature convergence.
Therefore, diversity index 0m that can reflect the diversity of
the population is defined as 0m = NS/Popsize. In early
generation, the distribution and diversity of the population are
appropriate.  As 0m decreased, the individuals in population
are more scattered, the diversity is better, the mutation
probability should be decreased. However, the diversity

becomes worse with 0m increased, the probability of mutation
should be increased. The mutation probability can be adjusted
automatically according to the varying diversity of population.
In addition, the mutation probability is also determined
according to the evolved generations. At the early stage of
evolution, larger mutation probability is set to create a lot of
new individuals and accelerate the algorithm. Then, the
algorithm reduces the mutation probability gradually during
the evolutionary process to preserve the excellent individuals
and enhance the probability of obtaining the global optimum.
Accordingly, the mutation probability is changed according to
the following equation:

(27)2
fm mp 0.5 (1 Gen /MaxGen)   

where, Gen denotes the current number of generation and
MaxGen is the maximum number of generation allowed.

Fitness function: The evolutionary algorithm is performed
based on the value of the employed fitness function that
references to some of the most common clustering criteria. In
this study, a negative E was adopted as the fitness function:

(28)Count( B F )
E 1

N
 



where, Count() is the total counting numbers, B is the correct
classification values, F is clustering values and  N is the total
pattern numbers. The clustering values were generated by
mKIFCM-DNAGA.

Stop conditions:  If the number of generations is satisfied, the
optimal chromosomes and results (U and 2) of mKIFCM with
the optimal parameters are displayed, otherwise, return to
step  2.  The  number  of  generations  in  this  study  was  set
to 1500.

To reduce forecasting errors, the error function (E) was
used as a fitness function of the DNA-GA. Therefore, each
iteration obtained a lower E value. The parameter search
procedure was conducted until the stop criterion was reached.

Algorithm structure: In this study, the mKIFCM-DNAGA
clustering technique combines mKFCM with IFE  and  the
DNA-GA is employed to search for the optimal parameters of
the proposed mKIFCM to further improve performance.
Therefore, the framework of the mKIFCM-DNAGA clustering
technique can be described in 0 (Fig. 1).
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No

Yes Result

mKIFCM-DNAGA

Fig. 1: Structure of the mKIFCM-DNAGA clustering algorithm

RESULTS AND DISCUSSION

In  this  section,  some  benchmark  measuring  indexes
such as DB, CA, RI and NMI are introduced by the use of some
experimental  data  which  is  evaluated  through  cluster
validity measures. Next, the study enumerates the results of
experiments performed on artificial datasets and UCI machine
learning  datasets22  with  FCM23,  KFCM(G)9,  IFCM8  and
proposed mKIFCM-DNAGA in order to demonstrate the
effectiveness of mKIFCM-DNAGA clustering algorithm. The
FCM, KFCM(G) were popular clustering methods in previous
study  and   KFCM(G)  IFCM  also showed  that  KFCM(G)  and
IFCM have good performance in many cases, respectively. The
KIFPCM-DNAGA algorithm is implemented through MATLAB.

Cluster validity measures: In the previous study, many
different criteria have been proposed that can be used in
order to measure the fitness of the clusters produced by
clustering algorithms. Some of the most widely used internal
criteria are Davies‒Bouldin index (DB)24, Dunn Index (DI)25 and
Silhouette  value  whereas,  some  external  criteria  are
Clustering Accuracy (CA)26, Rand Index (RI)27 and Normalized
Mutual Information (NMI)28. All the aforementioned criteria
have been used in the proposed algorithm, some of them
both for optimization and evaluating the performance of the
algorithm and some only for evaluation.

CA: Clustering Accuracy (CA) to evaluate the cluster quality is
defined as:

(29)
n

i ii 1
(y ,map(c ))

Accuracy
n







where, n is the number of data points, y and ci denote the true
category  label  and  the  obtained  cluster  label  of  samples
xi,  respectively. Therefore, δ(y, c) is a function that equals 1 if
y = c and equals 0 otherwise, map(A) is a permutation function
that maps each cluster label to a category label and  the
optimal matching can be found by the Hungarian algorithm29.

NMI: The NMI is an external clustering validation metric that
estimates the quality of the clustering with respect to the
given true labels of the datasets: It measures how closely the
clustering algorithm could reconstruct the underlying label
distribution in the data. If C is the random variable denoting
the category labels of the instances and Y is the random
variable denoting the cluster labels on the instances then the
NMI measure is defined as:

(30)
I (C,Y)

NMI(C,Y)
H (C)H (Y)



where, I (C, Y) is the mutual information between C and Y. The
entropies H (C) and H (Y) are used for normalizing the mutual
information to be in the range of [0,1]. The NMI effectively
measures the amount of statistical information shared by the
random variables representing the cluster assignments and
the user-labeled class assignments of the instances. The range
of NMI values is 0-1. In general, the larger the NMI value is the
better the clustering quality is. The NMI is better than other
external clustering validation measures such as purity and
entropy since, it does not necessarily increase when the
number of clusters increases.

Davies-Bouldin index: It is a criterion also based on a ratio of
within-cluster and between-cluster distances and is defined
as:
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(31)
k

i j i, j
i 1

1
DB max {D }

k 


 

where, k denotes the number of the disjoint clusters after the
partition, i, j are cluster labels and Di,j is the within-to-between
cluster  distance  ratio  for  the  ith  and  jth  clusters.  In
mathematical terms:

(32)i j
i, j

i, j

d d
D

d




where,  is the average distance between each point in theid

ith cluster and the centroid of the ith cluster,  is the averagejd

distance between each point in the ith cluster and the
centroid of the jth cluster and di,j is the Euclidean distance
between the centroids of the ith and jth clusters. The
maximum value of Di,j represents the worst-case within-to-
between cluster ratio for cluster i. The optimal clustering
solution should have the smallest Davies-Bouldin index value.

To assess the ability of mKIFCM-DNAGA algorithm, two
artificial dataset and four real-world datasets with numerical
attributes are chosen from the University of California at the
Irvine Machine Learning Repository and Knowledge Extraction
based on Evolutionary Learning Repository30.  In Table 2, these
datasets are summarized. Therefor, N denotes the number of
points in total, D describes the dimension of every dataset 
and C is the cluster number in terms of given dataset.

The  accuracy  of  mKIFCM-DNAGA  algorithm  is adhered
by removing the class labels of data before applying the
algorithm. Each attribute value of all datasets is rescaled to a
unit   interval   [0,1]   via   linear   transformation.   The  results
of  clustering   accuracy   for   FCM,   KFCM,   IFCM   and
mKIFCM-DNAGA algorithms on datasets are shown in Table 3
where, mKIFCM-DNAGA algorithm results as a benchmark
fuzzy clustering method are also provided.

The threshold g for effectiveness measure is set to 0.0001
for all the datasets and provided that atleast two clusters are
explored. For fairness of comparison between comparison
algorithms, the number of clusters as a parameter for each
dataset is set when initialization. As evident from results in
Table 3, the performance of mKIFCM-DNAGA is better as
compared to other algorithms in all datasets except Vertebral
dataset.

Table 4 shows the DB and NMI results of the selected
machine learning datasets by various clustering methods.
Although, proposed mKIFCM-DNAGA may not lower the DB
measurement value in Vertebral with IFCM and higher NMI
indexes with FCM, it did obtain better results than other
algorithms especially the higher complexity of datasets in the
selected machine learning datasets. This means the proposed
method may better fit the real machining learning dataset and
outperform other techniques when the dataset has larger
numbers or more attributes.

Table 2: Main features of data sets
Dataset Gaussians Half-moons Hepta Seeds Banknotes Vertebral
N 2000 2000 212 210 1372 310
D 2 2 3 7 4 6
C 3 2 7 3 2 2

Table 3: Comparison results of clustering accuracy
Dataset FCM KFCM IFCM MKIFCM-DNAGA
Gaussians 0.9950 0.9965 0.7460 0.9970
Half-moons 0.7690 0.9960 0.9990 0.9995
Hepta 0.6509 0.6274 0.6698 1.0000
Seeds 0.8333 0.8476 0.6381 0.8762
Vertebral 0.7387 0.6742 0.6484 0.6903
Banknotes 0.8520 0.8958 0.8261 0.9231

Table 4: Comparison results for the artificial datasets in terms of DB and NMI
FCM KFCM IFCM MKIFCM-DNAGA
----------------------------- ------------------------------ -------------------------------- -------------------------------

Dataset DB NMI DB NMI DB NMI DB NMI
Gaussians 0.9928 0.9733 0.9950 0.9799 0.8645 0.7525 0.9960 0.9792
Half-moons 0.6445 0.3733 0.9920 0.9624 0.9980 0.9896 0.9990 0.9943
Hepta 0.8639 0.8414 0.7854 0.7153 0.8703 0.8466 1.0000 1.0000
Seeds 0.8096 0.6034 0.8226 0.6230 0.7196 0.4437 0.8547 0.6794
Vertebral 0.6127 0.2847 0.5593 0.0108 0.5426 0.0001 0.5771 0.0371
Banknotes 0.7477 0.4079 0.8131 0.6111 0.7324 0.3964 0.8151 0.7426
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Moreover, using the kernel function technique can obtain
better performance than traditional algorithms in the
experiments. From observing the experiments, this study can
conclude: (1) The intuitionistic fuzzy set and kernel function
can improve traditional fuzzy set technique and distance
function in traditional clustering algorithms and (2) The DNA-
GA could effectively determine the parameters of mKIFCM.

CONCLUSION

This study proposes a modified kernel-based intuitionistic
C-means clustering method using DNA-GA algorithms to
cluster datasets. The algorithm is developed by integrating
concepts of IFE, kernel functions and DNA genetic algorithm.
The proposed modified algorithm adopts DNA-GA to search
for the optimal parameters to improve the performance. The
algorithm overcomes problems involved with membership
values of objects to each cluster by generalizing degrees of
membership of objects to each cluster. This is achieved by
extending membership and nonmembership degrees with
hesitancy degree. The algorithm also provides information
about membership and typicality degrees of samples to all
clusters.

Experiments on both real world and simulated datasets
show that mKIFCM-DNAGA has some notable advantages over
other clustering algorithms. The mKIFCM-DNAGA algorithm is
simple and flexible. It generates valuable information and
produces overlapped clusters where instances have different
membership degrees in accordance with different real world
applications.

Combined with the kernel function, intuitionistic fuzzy set
and  DNA-GA and mKIFCM-DNAGA improves the current fuzzy
clustering algorithm to achieve more accurate classification
rates. Furthermore, the mKIFCM-DNAGA can obtain stable
performance because of its DNA-GA mechanism. However, the
DNA-GA mechanism requires more processing time.
Therefore, future study may focus on designing a novel cluster
initialization for mKIFCM-DANGA. Future studies may include
the application of mKIFCM-DANGA to other fields such as data
mining, medicine and  image processing.
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