

 OPEN ACCESS Journal of Software Engineering

ISSN 1819-4311
DOI: 10.3923/jse.2017.183.193

Research Article
Hybrid Algorithm of Gene Clustering Based on GPU

Zhangrong Qin, Zhang Li, Xuan Zhou, Binghai Wen and Chaoying Zhang

Guangxi Key Lab of Multi-source Information Mining and Security, Guangxi Normal University, 541004 Guilin, China

Abstract
Background: In order to improve the defects of falling into local optimum prematurely and the low global search capability in K-means
algorithm for gene clustering analysis, an efficient hybrid algorithm by combining PK-means, Cellular Automata (CA) and Firefly Algorithm
(FA), called PK-CA-FA is presented. Materials and Methods: In the algorithm, CA is introduced for relieving the problem of easy to fall
into a local optimum at the first iterative stage of the PK-means and then FA is introduced to enhance the global search ability at the
second iterative stage. Furthermore, in order to improve the computational efficiency, this algorithm is implemented on Graphics
Processing Unit (GPU) with a Compute Unified Device Architecture (CUDA) parallelly. Results: For verifying its performance, the algorithm
and its parallel version are utilized to cluster gene expression data on several benchmark datasets. The experimental results show that
the proposed algorithm can effectively avoid being trapped in a bad local optimum and is generally more accurate and stable than
PK-means algorithm. At the same time, the parallel implementation of the algorithm on GPU is significant, by which a considerable
acceleration ratio with respect to CPU is obtained. Conclusion: It is concluded that the PK-CA-FA is an efficient algorithm for gene
clustering with strong accuracy, stability and high speedup and the algorithm can be expected to find its further applications for practical
gene clustering analysis.

Key words: Gene clustering, PK-means, CA, FA, GPU

Received: July 12, 2016 Accepted: August 29, 2016 Published: March 15, 2017

Citation: Zhangrong Qin, Zhang Li, Xuan Zhou, Binghai Wen and Chaoying Zhang, 2017. Hybrid algorithm of gene clustering based on GPU. J. Software
Eng., 11: 183-193.

Corresponding Authors: Binghai Wen and Chaoying Zhang, Guangxi Normal University, No. 15, Yucai Road, Guilin, Postal Code 541004 Guangxi, China
Tel:+86-0773-5811693

Copyright: © 2017 Zhangrong Qin et al. This is an open access article distributed under the terms of the creative commons attribution License, which
permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

http://crossmark.crossref.org/dialog/?doi=10.3923/jse.2017.183.193&domain=pdf&date_stamp=2017-03-15

J. Software Eng., 11 (2): 183-193, 2017

INTRODUCTION

With the development of life science study, the study
category of bioinformatics is increasingly expanded. As one of
the most promising technologies in bioinformatics, by which
expression levels of thousands of genes can be simultaneously
detected and a large number of gene expression data
contained the genetic information can be generated,
microarray technology has received a lot of attention and
been popular from scholars. How to extract the meaningful
information for human beings from analyzing efficiently the
vast amounts of gene expression data is a hot issue to be
solved urgently. Clustering analysis for gene expression data
is one of the effective methods. It can group the genes
containing similar expression levels into a co-expression
category, which would be helpful to the comprehensive
studies of gene function, gene regulation and cell
subtype etc. The widely used traditional algorithms for gene
clustering mainly include K-means1, hierarchical clustering2,
self-organizing maps (SOMs)3 and Fuzzy K-means (FKM)4 etc.
The K-means is one of the well-known popular clustering
algorithms because of its simplicity and fast convergence.
However, it is sensitive to the selection of an initial clustering
and easily becoming trapped in a local minimum untimely.
Many efforts have been contributed to overcome the
problems. In recent years, an integration of intelligent
bionic algorithm based on natural biological characteristic
with K-means is considered as an alternate solution.
Rahman and Islam5 proposed a hybrid clustering algorithm
combining a novel genetic algorithm with K-means in which
it is capable of automatically finding the right number of
clusters and identifying the right genes through a novel initial
population selection approach. The numerical results showed
that a statistically significant superiority of their algorithm over
five recent algorithms on 20 natural datasets. Prabha and
Visalakshi6 introduced an improved gene clustering algorithm
based on Particle Swarm Optimization (PSO) and K-means. The
results reflected that the improved algorithm is more efficient
than K-means algorithm. Du et al.7 presented a hybrid gene
clustering algorithm which combines particle-pair optimizer
(PPO)8 and K-means algorithm. It applied PPO for gene
clustering instead of PSO, in which two particles work
cooperatively and formed a particle-pair as a swarm with small
population size. Because population size was relatively small,
the position between particles was easy to coordinate and the
particles could move towards the optimal solutions. Their
results indicated that PK-means had a higher accuracy and
robustness than K-means. However, the algorithm would
result in the lack of adequate information exchange and

sharing between particles because of its smaller population
size in PK-means. The evolutionary formula of standard PSO
algorithm9 is still adopted, thus, it is easy to fall into local
optimum and degrade its global search ability.

Cellular Automaton (CA)10 based on evolutionary
dynamics and Firefly Algorithm (FA)11 based on bionic
principle have been gradually applied in the field of gene
clustering in the last few years. Shuai et al.12 proposed a
generalized cellular automata algorithm for clustering which
showed a good clustering effect. Shi et al.13 presented a
cellular particle swarm optimization algorithm and claimed
that it was better than other variant PSO algorithms.
Senthilnath et al.14 applied FA to the clustering analysis of the
datasets according to the attribute values of data objects and
obtained better clustering results than those from PSO.
Generally, CA has an excellent local search and information
exchange ability, meanwhile FA can efficiently search solution
space and obtain the local and global optimal solutions at the
same time. It could be an effective way to develop an accurate
and efficient gene clustering algorithm by combining CA with
FA to create a hybrid algorithm.

With the rapid development of microarray technology,
the amounts of gene expression data become more and more
large. The computational intensity and complexity of gene
clustering analysis have been far beyond the scope of a
personal computer. In recent years, Graphics Processing Unit
(GPU) has been treated as a parallel computing device on
which a large number of threads can run simultaneously. In
2007, Compute Unified Device Architecture (CUDA) suitable
for GPU general computing was launched by NVIDIA. This
technology decreases the complexity of GPU development
and promotes its applications in scientific computations.
Many heavy computing tasks which were only achieved on
a large computer previously and can be easily accomplished
by parallel computing on a station with a few GPU cards.
Nowadays, CUDA technology has been gradually applied in
clustering analysis. Yan et al.15 and Hooda and Nandal16 used
GPU to speed up the K-means algorithm. Serapiao et al.17

accelerated the hybrid algorithm combining K-means and
K-harmonic with fish school search algorithm by GPU. The
accelerations are obvious in these applications and GPU
computation is a promising technology to analyze gene
expression data.

In this study, a new hybrid algorithm for gene clustering
is proposed by combining PK-means, CA and FA on the basis
of PK-means algorithm called PK-CA-FA. In this way, the
advantages of FA and CA mentioned above are introduced
into the PK-means algorithm and the final hybrid algorithm
may effectively avoid falling into local optimum and enhance
the global search capability. The algorithm is designed and

184

J. Software Eng., 11 (2): 183-193, 2017

implemented on GPU by using CUDA technology and the
numerical results show that the computational efficiency is
improved notably.

MATERIALS AND METHODS

PK-means algorithm: The PK-means7 is a hybrid algorithm for
gene clustering which is the integration of PPO and K-means
algorithm. The PPO inherits the basic features of PSO, two
particles work cooperatively and form a particle-pair with
small population size to replace the traditional particle
swarm. In PK-means, the position of each particle is composed
of K clustering centroids, each clustering centroid is an
L-dimensional vector and the dimension of a particle N is K×L.
The structure of a particle is shown in Eq. 1 as:

zi = (yi1, yi2,…, yij,…, yiK) (1)

where, yij represents the jth clustering centroid vector of the
ith particle.

In the process of iteration, the velocity and position of a
particle are updated according to the standard PSO evolution
in Eq. 2 and 3 as:

 vid (t+1) = w×vid (t)+c1×r1×(pid (t)-xid (t))+c2×r2×(pgd (t)-xid (t)) (2)

xid (t+1) = xid (t)+vid (t+1) (3)

where, v and x represent the velocity and position of a particle,
respectively, i is subscript of the ith particle, i = 1, 2, d is the
dth dimension of the particle, d = 1, 2,..., N, t is times of
iterations, w is the inertia weight, it is used to control the
change of a particle flight speed, c1 and c2 are called
acceleration factors, r1 and r2 are two random numbers within
(0, 1), pi represents a previous optimal position of the ith
particle and pg represents a global optimal position of the
whole particle swarm.

A description of PK-means algorithm in detail is given in
references7.

Firefly algorithm: Firefly algorithm proposed by Yang10 is a
stochastic optimization algorithm based on swarm
intelligence. It is widely used to solve the optimization
problems and finds the best optimal solutions through
imitating the fireflies cooperative behaviors in which the
fireflies are attracted to each other by the lights generated
from their life habits such as foraging, mate choice and so on.

The algorithm description is as follows.
Assuming that the absolute brightness of the firefly i is

bigger than that of the firefly j, the firefly j is usually attracted
by the firefly i and moves to the ith one. The definition of the
relative brightness of the firefly i-j is in Eq. 4 as:

(4) 2
ij ij i ijI r I exp r

where, Ii is the absolute brightness of the firefly i, its value is
equal to the objective function value located at the firefly i. γ
is the light absorption coefficient, rij is the cartesian distance
from the firefly i-j.

The attraction of the firefly i relative to j is defined in
Eq. 5 as:

(5)2
ij ij 0 ij(r) exp (r)

where, $0 is the maximum attractiveness that is the attraction
from the fireflies in the light sources.

Attracted by a firefly i, firefly j moves toward to i and its
position x÷j will be updated according to Eq. 6:

x÷j (t+1) = x÷j (t)+βij (rij) (x
÷

i(t)-x
÷

j(t))+αg÷j (6)

In Eq. 6, x÷I and x÷j are the position vector of the firefly i and
j, respectively, " is a perturbation factor within (0,1) and g÷j is a
random number vector obtained by the Gauss distribution
or other distributions. On the right of the Eq. 6, the first term
represents the current position of the firefly j, the second term
indicates the position variation due to being attracted by
other fireflies in the population and reflects the global
optimization ability of FA, the third term indicates the
movement process of the local search and reflects the local
optimization ability of FA.

A detailed description of the FA is given in references10.

Cellular automaton: Cellular Automaton (CA) is first proposed
by Von Neumann, it is a dynamic model capable of simulating
concurrently a complex structure and process by using a large
number of cells11. The CA model is mainly composed of cells,
space, neighbors and rules. Figure 1 is a commonly used
Moore neighborhood model of a two-dimensional cellular
automaton. In this model, each grid represents a cell, all of the
cells constitute cellular space, the eight cells around a cell are
called neighbors of this cell. The states of a cell are defined as
anyone of the solutions of the problem to be optimized as well
as the corresponding objective function values. The state of a

185

J. Software Eng., 11 (2): 183-193, 2017

Fig. 1: Moore neighborhood model

cell at the next moment is determined by both of the cell and
its neighbors. The evolution rules are the dynamic functions
with which the state of a cell at the next time is fully
determined by the current states of this cell and its neighbors.
Each cell is updated concurrently according to the given local
evolution rules and a large number of cells create the dynamic
system evolution through simple interactions with each other.

New algorithm PK-CA-FA: A new hybrid algorithm is
proposed by combining PK-means, CA and FA called PK-CA-FA
in order to overcome the defects in PK-means. The CA is
introduced in the first iterative stage of the PK-means. The
defect of the PK-means easy to fall into local optimum can be
improved by using the advantages of the strong message
passing abilities between cells in CA. Each particle is
considered as a cell and then put into the CA for evolving. The
cellular evolution rules to control the evolution of cellular state
are as follows: for each cell, comparing its previous optimal
the Mean Square Error (MSE) with the one of its neighbors, if
the MSE of the neighbors is better, its previous optimal
position and MSE are updated by those of the neighbors,
respectively. When introducing the CA, there needs to
increase appropriately the number of the particles in
population in order to obtain the elite particle-pairs in a wider
range. In this way, not only the propagation velocity of the
global optimal value of particles can be improved but also a
better accuracy of the new hybrid algorithm can be obtained
because it can search the neighborhood of a particle more
adequately. In the second iterative stage of the PK-means, FA
is introduced into PK-means if the MSE fluctuation of a particle
is continuously within a specified range for INV times where
the value of the parameter INV will be given experimentally. At
this time, a particle is seen as a firefly, its fitness value is
identified as the brightness of the firefly and its position is

determined by Eq. 6. By using the advantages of obtaining
the better local and the better global optimal solutions at the
same time of FA which can efficiently search solution space,
the new algorithm can further avoid falling into local optimal
solution prematurely and improve its global search ability.

In this study, the Euclidean distance D (a, b) between the
gene a and b is used to determine the clustering partition, the
MSE function is used as the criterion function of a clustering
objective, the within-class compactness D1 is used to measure
the homogeneity and the between-class separability D2 is
used to indicate the difference in following equations as:

(7)
n

2
aj bj

j 1

D a,b (x x)

(8)
j

2m

i jy Y
i 1

1
MSE min D x , y

M

(9)
j

j

K 2K

1 i jy Y
j 1 i 1

1
D D x ,c

M

(10) 2 i j i j
i ji j

i j

1
D K K D c ,c

K K

where, xij represents the expression level of the gene i under
the experimental sample condition j, M is the number of
genes, Kj is the number of genes in the jth class and cj
represents the jth clustering centroid.

The pseudo code of the PK-CA-FA algorithm shown in
algorithm 1.

Algorithm 1: PK-CA-FA algorithm
FOR i = 1:2 // Obtain two elite particles (EP) from two particle swarms
Randomly set the initial positions and velocities of the particles p1(0), p2(0),…,
p(0)popsize
Calculate the MSEs of the particles p1(0), p2(0),…, p(0)popsize
Select the particle having the best MSE from{p1(0), p2(0),…, p(0)popsize} as pg(0)

FOR t =1:tmaxloop1
FOR s = 1: popsize
Update the position and velocity of the particle ps(t) by Eq. 2 and 3
Perform three iterations of K-means for the particle ps(t) and update

 the cluster centroid
Calculate the MSE of the particle ps(t),put all of the particles with the
size of CELLROWS* CELLCOLS into CA
FOR idx=0: CELLROWS-1
FOR idy=0: CELLCOLS-1
Search out the particle having the best (optimal) position from
the neighborhood of the cell[idx][idy],and then take it as the
p(t)pbest(idx,idy) of the corresponding cell
END

END

186

J. Software Eng., 11 (2): 183-193, 2017

Algorithm 1: Continue
Save the best position, found so far, of the particle into p(t)pbests
Take the best position from p(t)pbest1, p(t)pbest2,…, p(t)pbests as pg(t)

END // The end of the s loop
END //The end of the t loop
EPi=pg(t)

END // The end of the i loop
p1(t)=EP1, p2(t)=EP2, // Obtain an elite particle-pair
 Set randomly the initial velocity of the particle p1(0) and p2(0)

 FOR t =1:tmaxloop2
FOR s=1: 2
 Update the position and velocity of the particle ps(t) by Eq. 2 and 3
Perform three iterations of K-means for the particle ps(t) and update the
cluster centroid
Calculate the MSE of the particle ps(t),and then take its best position,
found so far, as the p (t)pbests
IF the MSE fluctuation of the particle ps(t) is continuously within the

specified range for INV times
doFA() // Perform firefly algorithm

END
Take the best position from the p(t)pbest1, p(t)pbest2,…, p(t)pbests as pg(t)

END
EP3= pg(t)

END
// According to the EP3, the final clustering results can be obtained.

RESULTS AND DISCUSSION

Experimental datasets and parameters: The experiments
were done on Yeast18, Lym18 and Yeast_GOE19 three real
datasets. The simulation platform is shown as follows: The
operating system is 64-bit Windows 7, CPU is Intel(R) Core(TM)
i5-3470 3.20GHz and GPU is NVIDIA GeForce GTX650.
Two populations are used in the experiments, each

population consists of 16 particles and the clustering number
K is 256. The size of the cellular spaces is 4×4 and the Moore
neighborhood model is used in CA. The parameter settings in
the previous study7 are used: The inertia weight w is 0.1, the
acceleration constants c1and c2 are 0.3 and 0.5, respectively
the iteration number in the first iterative stage MAXLOOP1 is

19 and the iteration number of in the second iterative stage
MAXLOOP2 is 14. For FA, the maximum attractiveness $0 takes
1.0, the perturbation factor " takes 0.01 and the light
absorption coefficient γ takes 0.01. In the second stage of the
iterative process, FA is introduced if the fluctuation of a
particle’s MSE value is continuously less than the threshold
ROU for INV times. Experiments show that the efficiency of
the algorithm is the highest when ROU takes 0.0001 and INV
takes 3.
In order to verify the effect of CA being introduced

into PK-means, this study combines PK-means and CA in
the first iterative stage of the PK-means and obtains a so called
PK-CA algorithm in which the population size is expanded.
For comparison, another based PK-means algorithm called
PK-noCA is also presented in which the PK-means doesn’t
combine with CA and the population size is expanded. In
order to verify the effect of FA being introduced into PK-CA,
PK-CA and FA is combined in the second iterative stage and
obtained a hybrid algorithm called PK-CA-FA. The PK-CA-FA,
PK-CA, PK-noCA, PK-means and K-means algorithms are run
on the three datasets above mentioned, respectively. Each
algorithm is executed 10 times in each dataset. The average,
minimum and maximum of MSE in 10 times are listed in
Table 1.
From Table 1, it can be seen that the clustering results of

K-means is the worst in all of the three datasets (The smaller
MSE is the better the clustering result is). The PK-means and
PK-CA are followed by K-means. The optimal clustering results
are those obtained by PK-CA-FA with which the minimum
average MSE and the minimum MSE in 10 runs can be
achieved on each dataset. These results show that the
clustering accuracy is improved to a certain extent by the
PK-CA-FA.
From Table 1, it also can be seen that the within-class

compactness D1 of PK-CA-FA is better than four other

Table 1: MSE, D1 and D2 of five algorithms in 10 runs
Dataset Algorithm MSE (Average) MSE (Minimum) MSE (Maximum) D1 D2
Yeast K-means 8525.1 8399.1 8621.2 87.5 561.2

PK-means 7933.3 7864.0 7996.3 85.8 564.2
PK-noCA 8040.5 7902.9 8140.7 86.2 556.7
PK-CA 7850.8 7823.0 7893.4 85.4 561.7
PK-CA- FA 7850.0 7822.6 7879.7 85.3 584.1

Lym K-means 292954.0 281182.0 305165.0 440.8 1254.6
PK-means 239049.0 234671.0 241366.0 426.3 1306.7
PK-noCA 236857.0 233674.0 240497.0 426.8 1486.4
PK-CA 232135.0 230325.0 233717.0 425.1 1416.4
PK-CA-FA 231987.0 229000.0 233954.0 424.2 2185.6

Yeast_GOE K-means 33.1 32.7 33.3 5.4 11.1
PK-means 30.5 30.4 30.7 5.4 11.4
PK-noCA 30.6 30.3 30.9 5.4 11.7
PK-CA 30.2 30.0 30.2 5.3 12.0
PK-CA- FA 30.1 29.1 30.3 5.2 16.2

187

J. Software Eng., 11 (2): 183-193, 2017

0 2 4 6 8 10 12 14 16 18 20

No. of iterations

400000

380000

360000

340000

320000

300000

280000

260000

240000

220000

M
SE

(b)9800

9600

9400

9200

9000

8800

8600

8400

8200

8000

7800

M
S

E

0 2 4 6 8 10 12 14 16 18 20

No. of iterations

K-means
PK-means
PK-noCA
PK-CA
PK-CA-FA

(a)

0 2 4 6 8 10 12 14 16 18 20

No. of iterations

(c)54

52
50

48

46
44

42

40
38

36

34
32

30

28

M
SE

K-means
PK-means
PK-noCA
PK-CA
PK-CA-FA

K-means
PK-means
PK-noCA
PK-CA
PK-CA-FA

algorithms. The smaller D1 is the higher similarity of gene
expression belonging to the same class is and the gene
function may be more similar. On the other hand, the
between-class separability D2 of PK-CA-FA is the biggest in
the five algorithms. It means the greater difference of gene
expression and the smaller association between different
classes. These results further indicate that the proposed
algorithm is improved in avoiding being fall into local
optimum prematurely and enhancing the global search
capability because of the introduction of CA and FA.
In order to analyze the effect of CA being incorporated

into PK-means in detail, the researchers compare the MSEs
obtained, respectively by PK-means, PK-noCA, PK-CA and
PK-CA-FA after 19 iterations in the first iterative stage with
those obtained by using K-means as shown in Fig. 2. It can be
seen that the MSE values obtained by PK-CA and PK-CA-FA is
obviously smaller than those obtained by the algorithms with
noCA. Because of CA being introduced, the particle number
of the K-means is increased suitably which can improve the
propagation speed of the global optimal value of a particle in
a population and fully search neighborhood of a particle by

using the CA’s powerful neighbor communication ability.
Overall, the incorporation of CA into PK-means is effective and
it can obtain a better results.
Figure 3 is a comparison of the MSEs obtained by the

mentioned algorithms by executing 10 runs on the three
datasets. It can be seen that the MSE curves of PK-CA and
PK-CA-FA are lower than those of the PK-noCA, the PK-means
and the K-means, the clustering results of the former is
superior to those of the latter. This also shows that with the
CA being introduced, the clustering algorithms can avoid
being trapped prematurely in local optimum and thus, the
results are significantly improved. By comparison of the MSEs
of PK-CA-FA and PK-CA, it can be seen that the clustering
results of the former are better than those of the latter and this
may indicate that the global searching ability of the new
algorithm is enhanced and the clustering accuracy is
improved by the introduction of the FA being introduced. In
addition, the MSE curve of PK-CA-FA has less fluctuation
than those of the other algorithms and it also hints that the
PK-CA-FA has a better stability.

Fig. 2(a-c): MSE plots by 19 iterations on three datasets, (a) Yeast, (b) Lym and (c) Yeast_GOE

188

J. Software Eng., 11 (2): 183-193, 2017

0 1 4 6 8 10

No. of runs (10 runs)

(a)

K-means
PK-means
PK-noCA
PK-CA
PK-CA-FA

1197532

8600

8500

8400

8300

8200

8100

8000

7900

7800

M
S

E

0 1 4 6 8 10

No. of runs (10 runs)

(b)

1197532

310000

300000

290000

280000

270000

260000

250000

240000

230000

M
S

E

0 1 4 6 8 10

No. of runs (10 runs)

(c)

1197532

33

32

31

30

29

M
S

E

Host

Device

Grid 0

Block (0, 0) Block (0, 1)

Host

CUDA
Program

Serial code

Parallel code

Kernel 0

Kernel 1

Parallel code

Device

Grid1

Block (0, 0) Block (0, 1)

Serial code

Fig. 3(a-c): MSE plots by 10 runs on three datasets, (a) Yeast, (b) Lym and (c) Yeast_GOE

CUDA programming model: The GPU is a single instruction
multiple data (SIMD) multi-core processor in the graphics card
of a personal computer. It has dozens or even hundreds of
processing cores, its core number is far more than CPU and
has a powerful floating point operation capability. The CUDA
technology based on general purpose computation on GPU
provides a similar C language development environment,
designer don’t need to know complex graphics API
knowledge and can develop a CUDA program by using C
language and the CUDA extension library. In the CUDA
programming model20 CPU is regarded as a host for
controlling the whole serial logic and the task scheduler of a
program while, GPU a coprocessor or device which performs
the parallel computing parts of the program. Figure 4
shows that a CUDA program is split into the host code that is
serially executed on CPU and the device code that is executed
on GPU parallelly. The device code is organized into a Kernel
in the CUDA program which is the function executed in
concurrent threads on GPU. A thread is the basic unit of the
concurrent execution, a certain number of threads are
grouped into thread blocks which execute the same
instructions on different data, thread blocks are grouped into

Fig. 4: CUDA programming model

a grid and a grid is a kernel in a CUDA program. First, a CUDA
program starts its execution in host and then the host
initializes the device and copies data to the device memory,

189

J. Software Eng., 11 (2): 183-193, 2017

GPUCPU

Evolve by CA

Yes

No Perform three
iterations?

Calculate the f itness

value of particles

Classify data objects

Update clustering centroids

No

Update the position and
velocity of the particles

Initialize clustering centroids

...

...

after that the host calls the kernel function and the parallel
computing is executed in device finally, the results will be
copied back to the host memory from the device.
There provide several different characteristic memories

used for programming in GPU. Global memory and shared
memory are the major kinds of them. The global memory has
large storage capacity and slow access speed, the shared
memory has limited storage capacity and but its access speed
is fast. The selection of the appropriate GPU memories will
help to improve the computational efficiency.

Parallel analysis of the new algorithm: Through analyzing
the new algorithm, it’s found that there are three cases which
can be calculated in parallel; (1) Two particles in a particle-pair
are independent of each other, (2) The Euclidean distances
between each data object and the clustering centroids and
classifying the data objects in the K-means algorithm.
Although, the update of the new clustering centroids can be
also executed in parallel, it is put on CPU to process according
to the recommendations of the previous study21 and (3) The
fitness values calculation of the particles during the two
iterative stages. The computational efficiency will be improved
significantly if the new algorithm is performed on GPU
because the (2) and (3) are the most time-consuming
operations in the whole process.

Parallel design and implementation of the new algorithm:
The CUDA program consists of both of the CPU codes and the

GPU codes in which these two codes work cooperatively, the
CPU codes are responsible for serious computing and task
scheduling and the parallel computing is executed by the GPU
codes. The flow chart of the CUDA program for the first
iterative stage is shown in Fig. 5 and that for the second
iterative stage is omitted as is the same to the previous one.
The program execution is as follows: (1) The clustering
centroids are initialized on CPU and then the related data are
transmitted to GPU, (2) On GPU, the Euclidean distances
between each data object and clustering centroids are
calculated then all of the data objects are classified according
to the Euclidean distances and finally, the clustering results are
returned to CPU, (3) The clustering centroids are recalculated
based on the returned clustering results on CPU and then the
new clustering centroids are again transferred to GPU, (4) The
fitness values of the particles are calculated in parallel on GPU
and returned to CPU and (5) The other parts of the algorithm
are performed sequentially on CPU.
Clustering centroid data is a K×L, 2-dimensional matrix

and gene expression data is a M×L, 2-dimensional matrix.
One GPU thread is used to correspond to a row of the gene
expression data matrix (i.e., a gene) and thus, the thread
number is M as shown in Fig. 6. Taking into account the
characteristics of GPU memory, the gene expression data and
clustering centroid data are stored in a 1-dimensional array
of the GPU global memory, respectively as the number of
them is large. Because two particles are processed in parallel,
there need to create four 1-dimensional arrays, d_genes1,

Fig. 5: Flow chart of the CUDA program

190

J. Software Eng., 11 (2): 183-193, 2017

Gene matrix
Thread 1

Thread 2

Thread 3

g11 g12 g1L

g2Lg21 g22

g31 g32 g3L

gMLgM2gM1Thread M

GPU global memory

g11 g21 gM1 g12 g22 gM2 g1L g2L gML

...

...

...

...

...

............

...

Fig. 6: Data layout on GPU global memory

d_genes2, d_cents1 and d_cents2 for storing the gene
expression data and clustering centroid data of the two
particles, respectively. It is well known that the speed of the
global memory is slow according to the recommendation of
the previous study20, one of the most effective way to improve
the access efficiency of the global memory is to make a
reasonable arrangement of the storage layout so that the
access to the global memory is as much as possible to be the
coalescent access. This study layout is shown in Fig. 6, the
gene expression data is stored in a 1-dimensional GPU array by
column. When the threads within a warp (32 threads) of a
thread block access a contiguous segment of 128 bytes (single
precision calculation is used and each data occupies 4 bytes)
in the global memory then the 32 times accesses to the global
memory will be coalesced into one time and this make the
access efficiency have a significant improvement. In addition,
in order to further improve the computational efficiency and
some of the temporary results will be used share memory.
According to the parallel analysis about the new

algorithms above mentioned two kernel functions are created
and run on GPU. The first one is DataObjectsClassify, its main
function is to calculate the Euclidean distances between each
data object and the clustering centroids and then classify data
objects and its main code is shown in algorithm 2. The second
one is CalculateFitnessValues, its main function is to calculate
the fitness value of the two particles and its main code is
shown in algorithm 3.
Experimental datasets, parameters and environment are

the same as those described above mentioned. The thread

Algorithm 2: DataObjectsClassify kernel
__global__ void DataObjectsClassify (float* d_genes1,float* d_genes2, float*
d_cents1,float* d_cents2,float *rs_clu1,float *rs_clu2)
{ int idx=threadIdx.x+blockIdx.x*blockDim.x;

int idy=threadIdx.y+blockIdx.y*blockDim.y;
int offset=idx+idy*blockDim.x*gridDim.x;
float tmp_a,eu_dist1,eu_dist2,min_index1,min_index2;
float mindist1=3.4028235E+38,mindist2=3.4028235E+38;
if (offset<M)
{ for (int j=0; j<K; j++)
 { eu_dist1=0;eu_dist2=0;

Algorithm 2: Continue
 for (int m=0; m<L; m++)

 { tmp_a=d_genes1[offset*L+m]-d_cents1[j*L+m];
 eu_dist1+=tmp_a*tmp_a; //for Particle1
 tmp_a=d_genes2[offset*L+m]-d_cents2[j*L+m];

 eu_dist2+=tmp_a*tmp_a; // for Particle2
 } // calculate the Euclidean distance

 if (mindist1>eu_dist1)
 { mindist1=eu_dist1;min_index1=j;}
 if (mindist2>eu_dist2)
 { mindist2=eu_dist2;min_index2=j;}

 }
if (rs_clu1[offset]!=min_index1) //Particle1 Update clustering results
 {rs_clu2[offset]=min_index1}
if (rs_clu2[offset]!=min_index2) //Particle2 Update clustering results
 {rs_clu2[offset]=min_index2}

 }
}

Algorithm 3: The CalculateFitnessValues kernel
__global__void CalculateFitnessValues(float* d_genes1,float* d_genes2, float*
d_cents1,float* d_cents2,float *d_block1,float *d_block2)
{ int idx=threadIdx.x+blockIdx.x*blockDim.x;

int idy=threadIdx.y+blockIdx.y*blockDim.y;
int offset=idx+idy*blockDim.x*gridDim.x;
int ca_index=threadIdx.x+threadIdx.y*BLOCK_SIZE;
float mindist1=3.4028235E+38,mindist2=3.4028235E+38;

float tmp_a,eu_dist1,eu_dist2;
__shared__ float cache1[BLOCK_SIZE*BLOCK_SIZE];

__shared__ float cache2[BLOCK_SIZE*BLOCK_SIZE];
if (offset<M)

 { for (int j=0; j<K; j++)
 { …..// the code of calculating the Euclidean distance between two

particles is the same as DataObjectsClassify kernel
 if (mindist1>eu_dist1){ mindist1=eu_dist1;} //for Particle1
 if (mindist2>eu_dist2){ mindist2=eu_dist2;} //for Particle2

 }
 cache1[ca_index]=mindist1;
 cache2[ca_index]=mindist2;
}
__syncthreads();
// calculate the summation by parallel reduction
int i=BLOCK_SIZE*BLOCK_SIZE/2;
while (i!=0)

 { if (ca_index<i)
 { cache1[ca_index]=cache1[ca_index]+cache1[ca_index +i];
 cache2[ca_index]=cache2[ca_index]+cache2[ca_index +i];
 }
 __syncthreads();
 i/=2;
}

 if (ca_index==0)
{ d_block1[blockIdx.x]=cache1[0]; //for Particle1
 d_block2[blockIdx.x]=cache2[0]; //for Particle2
}

}

block size is 8×8 threads, the total number of threads is M and
the number of the thread block is (M+63)/64 where, M is also
the number of the genes in the datasets. The data sizes (M×L)
of the dataset Yeast, Lym and Yeast_GOE are 2884×17,
4026×43 and 2944×173, respectively.

191

J. Software Eng., 11 (2): 183-193, 2017

Table 2: Average runtimes and the speedup
Dataset CPU (s) GPU (s) Speedup
Yeast 176.5 3.6 49.0
Lym 555.8 10.9 50.9
Yeast_GOE 1371.6 37.4 36.6

The CPU program and the program based on GPU are
executed 10 runs, respectively the average runtimes of 10 runs
and the speedup are shown in Table 2.

It can be seen from Table 2 that on the one hand, in
general, the parallel algorithm can obtained a considerable
speedup on all of the three datasets because the number of
threads is large and the efficiencies of these threads executed
in parallel on GPU are much higher than those of the threads
executed serially on CPU, on the other hand, the acceleration
effects are different in three datasets. For the Lym dataset, the
parallel algorithm has achieved 50.9 times maximum speedup
as the gene number M of this dataset is maximum, the
number of threads can be used for parallel computing is the
largest and another reason may be that its sample number L
is relatively small among the three datasets (The bigger L is
the more data needed to be processed serially in one GPU
thread are). Although, the gene number M of the dataset
Yeast and Yeast_GOE is similar, the sample number L of the
dataset Yeast_GOE is maximum and the data needed to be
processed serially is also maximum so, the speedup obtained
on the Yeast_ GOE is slower than that obtained on the Yeast.
The experimental results show that it is feasible for the new
algorithm being carried out in parallel on GPU and it can
achieve a good acceleration performance.

CONCLUSION

This study presents a new hybrid algorithm PK-CA-FA
which combines CA and FA basing on the PK-means algorithm
and the related experiments are carried out on three real
datasets. The results show that the proposed algorithm can
obtain better accuracy and stability than PK-means. At the
same time, in order to improve the computational efficiency
of the algorithm, the parallel algorithm is designed and
implemented on GPU by the CUDA technology. The
experiment results indicate that it is very feasible for the new
algorithm to be carried out in parallel on GPU and it can
achieve a good acceleration performance. This provides a very
effective new way for people to use a low-cost personal
computer to deal with large scale data and complex
optimization problems efficiently. In the future study, the
parallel computing of the new algorithm on GPU will be
further optimized to improve its computational efficiency.

ACKNOWLEDGMENTS

This study was supported by the National Natural Science
Foundation of China (Grant No. 11162002, 11462003,
11362003), Guangxi “Bagui Scholar” Teams for Innovation and
Research Project and the Project of Promoting Young and
Middle-aged Teachers' Basic Ability of Guangxi (Grant No.
KY2016YB063).

REFERENCES

1. Hartigan, J.A. and M.A. Wong, 1979. Algorithm AS136:
A K-means clustering algorithm. J. R. Stat. Soc. Series C:
Applied Stat., 28: 100-108.

2. Eisen, M.B., P.T. Spellman, P.O. Brown and D. Botstein, 1998.
Cluster analysis and display of genome-wide expression
patterns. Proc. Natl. Acad. Sci. USA., 95: 14863-14868.

3. Tamayo, P., D. Slonim, J. Mesirov, Q. Zhu and
S. Kitareewan et al., 1999. Interpreting patterns of gene
expression with self-organizing maps: Methods and
application to hematopoietic differentiation. Proc. Natl. Acad.
Sci., 96: 2907-2912.

4. Bezdek, J.C., R. Ehrlich and W. Full, 1984. FCM: The fuzzy
c-means clustering algorithm. Comput. Geosci., 10: 191-203.

5. Rahman, M.A. and M.Z. Islam, 2014. A hybrid clustering
technique combining a novel genetic algorithm with
K-Means. Knowl.-Based Syst., 71: 345-365.

6. Prabha, K.A. and N.K. Visalakshi, 2014. Improved particle
swarm optimization based k-means clustering. Proceedings
of the International Conference on Intelligent Computing
Applications, March 6-7, 2014, Coimbatore, pp: 59-63.

7. Du, Z., Y. Wang and Z. Ji, 2008. PK-means: A new algorithm for
gene clustering. Comput. Biol. Chem., 32: 243-247.

8. Ji, Z., H.L. Liao, W.H. Xu and L. Jiang, 2007. A strategy of
particle-pair for vector quantization in image coding. Acta
Electronica Sinica, 35: 1916-1916.

9. Kennedy, J., 2010. Particle Swarm Optimization. In:
Encyclopedia of Machine Learning, Sammut, C. and G.I. Webb
(Eds.). Springer, US., pp: 760-766.

10. Yang, X.S., 2010. Nature-Inspired Metaheuristic Algorithms.
2nd Edn., Luniver Press, USA., ISBN: 9781905986286,
Pages: 160.

11. Von Neumann, J., 1951. The General and Logical Theory
of Automata. In: Cerebral Mechanisms in Behavior: The
Hixon Symposium, Jeffress, L.A. (Ed.). John Wiley, New York,
pp: 1-31.

12. Shuai, D., Y. Dong and Q. Shuai, 2007. A new data clustering
approach: Generalized cellular automata. Inform. Syst.,
32: 968-977.

13. Shi, Y., H. Liu, L. Gao and G. Zhang, 2011. Cellular particle
swarm optimization. Inform. Sci., 181: 4460-4493.

192

J. Software Eng., 11 (2): 183-193, 2017

14. Senthilnath, J., S.N. Omkar and V. Mani, 2011. Clustering using
firefly algorithm: Performance study. Swarm Evol. Comput.,
1: 164-171.

15. Yan, B., Y. Zhang, Z. Yang, H. Su and H. Zheng, 2014. DVT-
PKM: An improved GPU based parallel k-means algorithm.
Proceedings of the 10th International Conference on
Intelligent Computing, August 3-6, 2014, Taiyuan, China,
pp: 591-601.

16. Hooda, H. and R. Nandal, 2014. Implementation of K-means
clustering algorithm in CUDA. Int. J. Enhanced Res. Manage.
Comput. Applic., 3: 15-24.

17. Serapiao, A.B.S., G.S. Correa, F.B. Goncalves and V.O. Carvalho,
2016. Combining k-means and k-harmonic with fish school
search algorithm for data clustering task on graphics
processing units. Applied Soft Comput., 41: 290-304.

18. Cheng, Y. and G.M. Church, 2000. Biclustering of expression
data. Pcoc. Int. Conf. Intell. Syst. Mol. Biol., 8: 93-103.

19. Gasch, A.P., P.T. Spellman, C.M. Kao, O. Carmel-Harel and
M.B. Eisen et al., 2000. Genomic expression programs in the
response of yeast cells to environmental changes. Mol. Biol.
Cell, 11: 4241-4257.

20. NVIDIA Corporation, 2010. NVIDIA CUDA compute unified
device architecture programming guide, version 3.2. NVIDIA
Corporation, California, USA.

21. Farivar, R., D. Rebolledo, E. Chan and R.H. Campbell, 2008.
A parallel implementation of K-means clustering on GPUs.
Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications,
July 14-17, 2008, Las Vegas, Nevada, USA., pp: 340-345.

193

	JSE.pdf
	Page 1

