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Abstract
Background: In order to improve the defects of falling into local optimum prematurely and the low global search capability in K-means
algorithm for gene clustering analysis,  an efficient hybrid algorithm by combining PK-means, Cellular Automata (CA) and Firefly Algorithm
(FA), called PK-CA-FA is presented. Materials and Methods: In the algorithm, CA is introduced for relieving the problem of easy to fall
into a local optimum at the first iterative stage of the PK-means and then FA is introduced to enhance the global search ability at the
second iterative stage. Furthermore, in order to improve the computational efficiency, this algorithm is implemented on Graphics
Processing Unit (GPU) with a Compute Unified Device Architecture (CUDA) parallelly. Results: For verifying its performance,  the algorithm
and its parallel version are utilized to cluster gene expression data on several benchmark datasets. The experimental results show that
the proposed algorithm can effectively avoid being trapped in a bad local optimum and  is  generally  more  accurate  and  stable  than
PK-means algorithm. At the same time, the parallel implementation of the algorithm on GPU is significant, by which a considerable
acceleration ratio with respect to CPU is obtained. Conclusion: It is concluded that the PK-CA-FA is an efficient algorithm for gene
clustering with strong accuracy, stability and high speedup and the algorithm can be expected to find its further applications for practical
gene clustering analysis.
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INTRODUCTION

With the development of life science study, the study
category of bioinformatics is increasingly expanded. As one of
the most promising technologies in bioinformatics, by which
expression levels of thousands of genes can be simultaneously
detected and a large number of gene expression data
contained the genetic information can be generated,
microarray technology has received a lot of attention and
been popular from scholars. How to extract the meaningful
information for human beings from analyzing efficiently the
vast amounts of gene expression data is a hot issue to be
solved urgently. Clustering analysis for gene expression data
is one of the effective methods. It can group the genes
containing similar expression levels into a co-expression
category, which would be helpful to the comprehensive
studies  of   gene  function,   gene   regulation   and   cell
subtype etc. The widely used traditional algorithms for gene
clustering mainly include K-means1, hierarchical clustering2,
self-organizing maps (SOMs)3 and Fuzzy K-means (FKM)4 etc.
The K-means is one of the well-known popular clustering
algorithms because of its simplicity and fast convergence.
However, it is sensitive to the selection of an initial clustering
and easily becoming trapped in a local minimum untimely.
Many efforts have been contributed to overcome the
problems.  In  recent  years,  an  integration  of intelligent
bionic algorithm based on natural biological characteristic
with  K-means  is  considered  as   an   alternate   solution.
Rahman and Islam5 proposed a hybrid clustering algorithm
combining a novel genetic algorithm with K-means in which
it is capable of automatically finding the right number of
clusters and identifying the right genes through a novel initial
population selection approach. The numerical results showed
that a statistically significant superiority of their algorithm over
five recent algorithms on 20 natural datasets. Prabha and
Visalakshi6  introduced an improved gene clustering algorithm
based on Particle Swarm Optimization (PSO) and K-means. The
results reflected that the improved algorithm is more efficient
than K-means algorithm. Du et al.7 presented a hybrid gene
clustering algorithm which combines particle-pair optimizer
(PPO)8 and K-means algorithm. It applied PPO for gene
clustering instead of PSO, in which two particles work
cooperatively and formed a particle-pair as a swarm with small
population size. Because population size was relatively small,
the position between particles was easy to coordinate and the
particles could move towards the optimal solutions. Their
results indicated that PK-means had a higher accuracy and
robustness than K-means. However, the algorithm would
result  in   the   lack   of   adequate  information  exchange  and

sharing between particles because of its smaller population
size in PK-means. The evolutionary formula of standard PSO
algorithm9 is still adopted, thus, it is easy to fall into local
optimum and degrade its global search ability.

Cellular Automaton (CA)10 based on evolutionary
dynamics and Firefly Algorithm (FA)11 based on bionic
principle have been gradually applied in the field of gene
clustering in the last few years. Shuai et al.12 proposed a
generalized cellular automata algorithm for clustering which
showed a good clustering effect. Shi et al.13 presented a
cellular particle swarm optimization algorithm and claimed
that it was better than other variant PSO algorithms.
Senthilnath et al.14 applied FA to the clustering analysis of the
datasets according to the attribute values of data objects and
obtained better clustering results than those from PSO.
Generally, CA has an excellent local search and information
exchange ability, meanwhile FA can efficiently search solution
space and obtain the local and global optimal solutions at the
same time. It could be an effective way to develop an accurate
and efficient gene clustering algorithm by  combining CA with
FA to create a hybrid algorithm.

With the rapid development of microarray technology,
the amounts of gene expression data become more and more
large. The computational intensity and complexity of gene
clustering analysis have been far beyond the scope of a
personal computer. In recent years, Graphics Processing Unit
(GPU) has been treated as a parallel computing device on
which a large number of threads can run simultaneously. In
2007, Compute Unified Device Architecture (CUDA) suitable
for GPU general computing was launched by NVIDIA. This
technology decreases the complexity of GPU development
and  promotes its  applications  in  scientific  computations.
Many heavy computing tasks  which  were  only achieved on
a large computer previously and can be easily accomplished
by  parallel  computing  on  a  station with a few GPU cards.
Nowadays, CUDA technology has been gradually applied in
clustering analysis. Yan et al.15 and Hooda and Nandal16 used
GPU to speed up the K-means algorithm. Serapiao et al.17

accelerated  the  hybrid  algorithm  combining K-means  and
K-harmonic with fish school search algorithm by GPU. The
accelerations are obvious in these applications and GPU
computation is a promising technology to analyze gene
expression data. 

In this study, a new hybrid algorithm for gene clustering
is proposed by combining PK-means,  CA  and FA on the basis
of PK-means algorithm called PK-CA-FA. In this way, the
advantages of FA and CA mentioned above are introduced
into the PK-means algorithm and the final hybrid algorithm
may effectively avoid falling into local optimum and enhance
the global  search  capability.  The  algorithm  is  designed  and
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implemented on GPU by using CUDA technology and the
numerical results show that the computational efficiency is
improved notably. 

MATERIALS AND METHODS

PK-means algorithm: The PK-means7 is a hybrid algorithm for
gene clustering which is the integration of PPO and K-means
algorithm. The PPO inherits the basic features of PSO, two
particles work cooperatively and form a particle-pair with
small  population  size  to  replace  the  traditional  particle
swarm. In PK-means, the position of each particle is composed
of  K  clustering  centroids,   each   clustering   centroid   is   an
L-dimensional vector and the dimension of a particle N is K×L.
The structure of a particle is shown in Eq. 1 as:

zi = (yi1, yi2,…, yij,…, yiK) (1)

where, yij represents the jth clustering centroid vector of the
ith particle.

In the process of iteration, the velocity and position of a
particle are updated according to the standard PSO evolution
in Eq. 2 and 3 as:

  vid (t+1) = w×vid (t)+c1×r1×(pid (t)-xid (t))+c2×r2×(pgd (t)-xid (t)) (2)

xid (t+1) = xid (t)+vid (t+1) (3)

where, v and x represent the velocity and position of a particle,
respectively, i  is subscript of the ith particle,  i = 1, 2, d is the
dth dimension of the particle, d = 1, 2,..., N, t is times of
iterations, w is the inertia weight, it is used to control the
change of a particle flight speed, c1 and c2 are called
acceleration factors, r1 and r2 are two random numbers within
(0, 1), pi represents a previous optimal position of the ith
particle and pg represents a global optimal position of the
whole particle swarm.

A description of PK-means algorithm in detail is given in
references7.

Firefly algorithm: Firefly algorithm proposed by Yang10 is a
stochastic optimization algorithm based on swarm
intelligence. It is widely used to solve the optimization
problems and finds the best optimal solutions through
imitating the fireflies cooperative behaviors in which the
fireflies are attracted to each other by the lights generated
from their life habits such as foraging, mate choice and  so  on.

The algorithm description is as follows.
Assuming that the absolute brightness of the firefly i is

bigger than that of the firefly j, the firefly j is usually attracted
by the firefly i and moves to the ith one. The definition of the
relative brightness of the firefly i-j is in Eq. 4 as:

(4)   2
ij ij i ijI r I exp r  

where, Ii is the absolute brightness of the firefly i, its value is
equal to the objective function value located at the firefly i. γ
is the light absorption coefficient, rij is the cartesian distance
from the firefly i-j. 

The attraction of  the  firefly  i  relative  to  j  is  defined in
Eq. 5 as:

(5)2
ij ij 0 ij(r ) exp ( r )    

where, $0 is the maximum attractiveness that is the attraction
from the fireflies in the light sources.

Attracted by a firefly i, firefly j moves toward to i and its
position x÷j will be updated according to Eq. 6:

x÷j (t+1) = x÷j (t)+βij (rij) (x
÷

i(t)-x
÷

j(t))+αg÷j (6)

In Eq. 6, x÷I and x÷j are the position vector of the firefly i and
j, respectively, " is a perturbation factor within (0,1) and g÷j is a
random  number  vector  obtained by the Gauss distribution
or other distributions. On the right of the Eq. 6, the first term
represents the current position of the firefly j, the second term
indicates the position variation due to being attracted by
other fireflies in the population and reflects the global
optimization ability of FA, the third term indicates the
movement process of the local search and reflects the local
optimization ability of FA.

A detailed description of the FA is given in references10.

Cellular automaton: Cellular Automaton (CA) is first proposed
by Von Neumann, it is a dynamic model capable of simulating
concurrently a complex structure and process by using a large
number of cells11. The CA model is mainly composed of cells,
space, neighbors and rules. Figure 1 is a commonly used
Moore neighborhood model of a two-dimensional cellular
automaton. In this model, each grid represents a cell, all of the
cells constitute cellular space, the eight cells around a cell are
called neighbors of this cell. The states of a cell are defined as
anyone of the solutions of the problem to be optimized as well
as the corresponding objective function values. The state of a
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Fig. 1: Moore neighborhood model

cell at the next moment is determined by both of the cell and
its neighbors. The evolution rules are the dynamic functions
with which the state of a cell at the next time is fully
determined by the current states of this cell and its neighbors.
Each cell is updated concurrently according to the given local
evolution rules and a large number of cells create the dynamic
system evolution through simple interactions with each other.

New algorithm PK-CA-FA: A new hybrid algorithm is
proposed by combining PK-means, CA and FA called PK-CA-FA
in order to overcome the defects in PK-means. The CA is
introduced in the first iterative stage of the PK-means. The
defect of the PK-means easy to fall into local optimum can be
improved by using the advantages of the strong message
passing abilities between cells in CA. Each particle is
considered as a cell and then put into the CA for evolving. The
cellular evolution rules to control the evolution of cellular state
are as follows: for each cell,  comparing  its  previous optimal
the Mean Square Error (MSE) with the one of its neighbors, if
the MSE of the neighbors is better, its previous optimal
position and MSE are updated by those of the neighbors,
respectively. When introducing the CA, there needs to
increase appropriately the number of the particles in
population in order to obtain the elite particle-pairs in a wider
range. In this way, not only the propagation velocity of the
global optimal value of particles can be improved but also a
better accuracy of the new hybrid algorithm can be obtained
because it can search the neighborhood of a particle more
adequately. In the second iterative stage of the PK-means, FA
is introduced into PK-means if the MSE fluctuation of a particle
is continuously within a specified range for INV times where
the value of the parameter INV will be given experimentally. At
this time, a particle is seen as a firefly, its fitness value is
identified as the brightness  of  the  firefly  and  its  position  is

determined by Eq. 6.  By using the advantages of obtaining
the better local and the better global optimal solutions at the
same time of FA which can efficiently search solution space,
the new algorithm can further avoid falling into local optimal
solution prematurely and improve its global search ability. 

In this study, the Euclidean distance D (a, b) between the
gene a and b is used to determine the clustering partition, the
MSE function is used as the criterion function of a clustering
objective, the within-class compactness D1 is used to measure
the homogeneity and the between-class separability D2 is
used to indicate the difference in following equations as:

(7) 
n
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aj bj
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where, xij represents the expression level of the gene i under
the experimental sample condition j, M is the number of
genes, Kj is the number of genes in the jth class and cj
represents the jth clustering centroid.

The pseudo code of the PK-CA-FA algorithm shown in
algorithm 1.

Algorithm 1: PK-CA-FA algorithm
FOR i = 1:2 // Obtain two elite particles (EP) from two particle swarms
Randomly set the initial positions and velocities of the particles p1(0), p2(0),…, 
p(0)popsize
Calculate the MSEs of the particles p1(0), p2(0),…, p(0)popsize
Select the particle having the best MSE from{p1(0), p2(0),…, p(0)popsize} as pg(0)

FOR t =1:tmaxloop1
FOR s = 1: popsize
Update the position and velocity of the particle ps(t) by Eq. 2 and 3
Perform three iterations of K-means for  the particle  ps(t)  and  update

 the cluster centroid
Calculate the MSE of the particle ps(t),put all  of  the  particles  with  the
size of CELLROWS* CELLCOLS into CA
FOR idx=0: CELLROWS-1
FOR idy=0: CELLCOLS-1
Search out the particle having the best (optimal) position from
the neighborhood of the cell[idx][idy],and then take it as the
p(t)pbest(idx,idy) of the corresponding cell
END

END
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Algorithm 1: Continue
Save the best position, found so far, of the particle into p(t)pbests
Take the best position from p(t)pbest1, p(t)pbest2,…, p(t)pbests as pg(t)

END // The end of the s loop
END //The end of the t loop
EPi=pg(t)

END // The end of the i loop
p1(t)=EP1, p2(t)=EP2, // Obtain an elite particle-pair
  Set randomly the initial velocity of the particle p1(0) and p2(0)

  FOR t =1:tmaxloop2
FOR s=1: 2
   Update the position and velocity of the particle ps(t)  by Eq. 2 and 3
Perform three iterations of K-means for the particle ps(t) and update the
cluster centroid
Calculate the MSE of the particle ps(t),and then take its  best  position,
found so far, as the p (t)pbests
IF the MSE fluctuation of the particle ps(t) is continuously within the

specified range for INV times
doFA() // Perform firefly algorithm 

END
Take the best position from the p(t)pbest1, p(t)pbest2,…, p(t)pbests as pg(t)

END
EP3= pg(t)

END
// According to the EP3, the final clustering results can be obtained.

RESULTS AND DISCUSSION

Experimental datasets and parameters: The experiments
were done on Yeast18, Lym18 and Yeast_GOE19 three real
datasets. The simulation platform is shown as follows: The
operating system is 64-bit Windows 7, CPU is Intel(R) Core(TM)
i5-3470 3.20GHz and GPU is NVIDIA GeForce GTX650.
Two populations are used in the experiments, each

population consists of 16 particles and the clustering number
K is 256. The size of the cellular spaces is 4×4 and the Moore
neighborhood model is used in CA. The parameter settings in
the previous study7 are used: The inertia weight w is 0.1, the
acceleration constants c1and c2 are 0.3 and 0.5, respectively
the iteration number in the first iterative stage  MAXLOOP1  is

19 and the iteration number of in the second iterative stage
MAXLOOP2 is 14. For FA, the maximum attractiveness $0 takes
1.0, the perturbation factor " takes 0.01 and the light
absorption coefficient γ takes 0.01. In the second stage of the
iterative process, FA is introduced if the fluctuation of a
particle’s MSE value is continuously less than the threshold
ROU for INV times. Experiments show  that  the  efficiency of
the algorithm is the highest when ROU takes 0.0001 and INV
takes 3.
In order to  verify  the  effect  of  CA being  introduced  

into   PK-means,    this    study   combines PK-means and CA in
the first iterative stage of the PK-means and obtains a so called
PK-CA algorithm in which the population  size  is expanded.
For comparison, another  based  PK-means  algorithm called
PK-noCA is also presented in which the PK-means doesn’t
combine with CA and the population size is expanded. In 
order  to  verify  the effect of FA being introduced into PK-CA,
PK-CA and  FA  is  combined in the second iterative stage and
obtained a hybrid algorithm called PK-CA-FA. The PK-CA-FA,
PK-CA, PK-noCA, PK-means and K-means algorithms are run
on the three datasets above mentioned, respectively. Each
algorithm is executed 10 times in each dataset. The average,
minimum  and  maximum  of  MSE  in 10 times  are  listed  in
Table 1.
From Table 1, it can be seen that the clustering results of

K-means is the worst in all of the three datasets (The smaller
MSE is the better the clustering result is). The PK-means and
PK-CA are followed by K-means. The optimal clustering results
are those obtained by PK-CA-FA with which the minimum
average MSE and the minimum MSE in 10 runs can be
achieved on each dataset. These results show that the 
clustering accuracy  is  improved  to  a  certain  extent  by the
PK-CA-FA.
From Table 1, it also can be seen that the within-class

compactness  D1   of   PK-CA-FA   is   better    than    four    other

Table 1: MSE, D1 and D2 of five algorithms in 10 runs
Dataset Algorithm MSE (Average) MSE (Minimum) MSE (Maximum) D1 D2
Yeast K-means 8525.1 8399.1 8621.2 87.5 561.2

PK-means 7933.3 7864.0 7996.3 85.8 564.2
PK-noCA 8040.5 7902.9 8140.7 86.2 556.7
PK-CA 7850.8 7823.0 7893.4 85.4 561.7
PK-CA- FA 7850.0 7822.6 7879.7 85.3 584.1

Lym K-means 292954.0 281182.0 305165.0 440.8 1254.6
PK-means 239049.0 234671.0 241366.0 426.3 1306.7
PK-noCA 236857.0 233674.0 240497.0 426.8 1486.4
PK-CA 232135.0 230325.0 233717.0 425.1 1416.4
PK-CA-FA 231987.0 229000.0 233954.0 424.2 2185.6

Yeast_GOE K-means 33.1 32.7 33.3 5.4 11.1
PK-means 30.5 30.4 30.7 5.4 11.4
PK-noCA 30.6 30.3 30.9 5.4 11.7
PK-CA 30.2 30.0 30.2 5.3 12.0
PK-CA- FA 30.1 29.1 30.3 5.2 16.2
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algorithms. The smaller D1 is the higher similarity of gene
expression belonging to the same class is and the gene
function may be more similar. On the other hand, the
between-class separability D2  of  PK-CA-FA is the biggest in
the five algorithms. It means the greater difference of gene
expression and the smaller association between different
classes. These results further indicate that the proposed
algorithm is improved in avoiding being fall into local
optimum prematurely and enhancing the global search
capability because of the introduction of CA and FA.
In order to analyze the effect of CA being incorporated

into PK-means in detail, the researchers compare the MSEs
obtained,  respectively  by  PK-means,  PK-noCA,  PK-CA and
PK-CA-FA after 19 iterations in the first iterative stage with
those obtained by using K-means as shown in Fig. 2. It can be
seen that the MSE values obtained by PK-CA and PK-CA-FA is
obviously smaller than those obtained by the algorithms with
noCA.  Because of CA being introduced, the particle number
of the K-means is increased suitably which can improve the
propagation speed of the global optimal value of a particle in
a population and  fully  search  neighborhood  of  a  particle by

using the CA’s powerful neighbor communication ability.
Overall,  the incorporation of CA into PK-means is effective and
it can obtain a better results.
Figure 3 is a comparison of the MSEs obtained by the

mentioned algorithms by executing 10 runs on the three
datasets. It can  be  seen  that  the  MSE  curves  of  PK-CA and
PK-CA-FA are lower than those of the PK-noCA, the PK-means
and the K-means, the clustering results of the former is
superior to those of the latter. This also shows  that  with  the
CA being introduced, the clustering algorithms can avoid
being trapped prematurely in local optimum and thus, the
results are significantly improved. By comparison of the MSEs
of PK-CA-FA and PK-CA, it can be seen that the clustering
results of the former are better than those of the latter and this
may indicate that the global searching ability of the new
algorithm is enhanced and the clustering accuracy is
improved by the introduction of the FA being introduced. In
addition, the MSE  curve  of  PK-CA-FA  has  less  fluctuation
than those of the other algorithms and it also hints that the
PK-CA-FA has a better stability.

Fig. 2(a-c): MSE plots by 19 iterations on three datasets, (a) Yeast, (b) Lym and (c) Yeast_GOE
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Fig. 3(a-c): MSE plots by 10 runs on three datasets, (a) Yeast, (b) Lym and (c) Yeast_GOE 

CUDA programming model: The GPU is a single instruction
multiple data (SIMD) multi-core processor in the graphics card
of a personal computer. It has dozens or even hundreds of
processing cores, its core number is far more than CPU and
has a powerful floating point operation capability. The CUDA
technology based on general purpose computation on GPU
provides a similar C language development environment,
designer don’t need to know complex graphics API
knowledge and can develop a CUDA program by using C
language and the CUDA extension library. In the CUDA
programming model20 CPU is regarded as a host for
controlling the whole serial logic and the task scheduler of a
program while, GPU a coprocessor or device which performs
the  parallel  computing  parts  of  the  program. Figure 4
shows that a CUDA program is split into the host code that is
serially executed on CPU and the device code that is executed
on GPU parallelly. The device code is organized into a Kernel
in the CUDA program which is the function executed in
concurrent threads on GPU. A thread is the basic unit of the
concurrent execution, a certain number of threads are
grouped into thread blocks which execute the same
instructions on different data, thread blocks  are  grouped  into

Fig. 4: CUDA programming model

a grid and a grid is a kernel in a CUDA program. First, a CUDA
program starts its execution in host and then the host
initializes the device and  copies  data  to  the  device  memory,
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after that the host calls the kernel function and the parallel
computing is executed in device finally, the results will be
copied back to the host memory from the device.
There provide several different characteristic memories

used for programming in GPU. Global memory and shared
memory are the major kinds of them. The global memory has
large storage capacity and slow access speed, the shared
memory has limited storage capacity and but its access speed
is fast. The selection of the appropriate GPU memories will
help to improve the computational efficiency.

Parallel analysis of the new algorithm: Through analyzing
the new algorithm, it’s found that there are three cases which
can be calculated in parallel; (1) Two particles in a particle-pair
are independent of each other, (2) The Euclidean distances
between each data object and the clustering centroids and
classifying the data objects in the K-means algorithm.
Although, the update of the new clustering centroids can be
also executed in parallel, it is put on CPU to process according
to the recommendations of the previous study21 and (3) The
fitness values calculation of the particles during the two
iterative stages. The computational efficiency will be improved
significantly if the new algorithm is performed on GPU
because  the  (2)  and  (3)  are  the  most time-consuming
operations in the whole process.

Parallel design and implementation of the new algorithm:
The CUDA program consists of both of the CPU codes  and  the

GPU codes in which these two codes work cooperatively, the
CPU codes are responsible for serious computing and task
scheduling and the parallel computing is executed by the GPU
codes. The flow chart of the CUDA program for the first
iterative stage is shown in Fig. 5 and that for the second
iterative stage is omitted as is the same to the previous one.
The program execution is as follows: (1) The clustering
centroids are initialized on CPU and then the related data are
transmitted to GPU, (2) On GPU, the Euclidean distances
between each data object and clustering centroids are
calculated then all of the data objects are classified according
to the Euclidean distances and finally, the clustering results are
returned to CPU, (3) The clustering centroids are recalculated
based on the returned clustering results on CPU and then the
new clustering centroids are again transferred to GPU, (4) The
fitness values of the particles are calculated in parallel on GPU
and returned to CPU and (5) The other parts of the algorithm
are performed sequentially on CPU.
Clustering centroid data is a K×L, 2-dimensional matrix

and gene expression data is a M×L, 2-dimensional matrix.
One GPU thread is used to correspond to a row of the gene
expression data matrix (i.e., a gene) and thus, the thread
number is M as shown in Fig. 6. Taking into account the
characteristics of GPU memory, the gene expression data and
clustering  centroid  data are stored in a 1-dimensional array
of the GPU global memory, respectively  as  the  number of
them is large. Because two particles are processed in parallel,
there  need  to  create  four   1-dimensional   arrays,  d_genes1,

Fig. 5: Flow chart of the CUDA program
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Fig. 6: Data layout on GPU global memory

d_genes2, d_cents1 and d_cents2 for storing the gene
expression data and clustering centroid data of the two
particles, respectively. It is well known that the speed of the
global memory is slow according to the recommendation of
the previous study20, one of the most effective way to improve
the access efficiency of the global memory is to make a
reasonable arrangement of the storage layout so that the
access to the global memory is as much as possible to be the
coalescent access. This study layout is shown in Fig. 6, the
gene expression data is stored in a 1-dimensional GPU array by
column. When the threads within a warp (32 threads) of a
thread block access a contiguous segment of 128 bytes (single
precision calculation is used and each data occupies 4 bytes)
in the global memory then the 32 times accesses to the global
memory will be coalesced into one time and this make the
access efficiency have a significant improvement. In addition,
in order to further improve the computational efficiency and
some of the temporary results will be used share memory.
According to the parallel analysis about the new

algorithms above mentioned two kernel functions are created
and run on GPU. The first one is DataObjectsClassify, its main
function is to calculate the Euclidean distances between each
data object and the clustering centroids and then classify data
objects and its main code is shown in algorithm 2. The second
one is CalculateFitnessValues, its main function is to calculate
the fitness value of the two particles and its main code is
shown in algorithm 3.
Experimental datasets, parameters and environment are

the same  as  those  described  above  mentioned.  The  thread

Algorithm 2: DataObjectsClassify kernel
__global__ void DataObjectsClassify (float* d_genes1,float* d_genes2, float*
d_cents1,float* d_cents2,float *rs_clu1,float *rs_clu2)
{ int idx=threadIdx.x+blockIdx.x*blockDim.x;

int idy=threadIdx.y+blockIdx.y*blockDim.y;
int offset=idx+idy*blockDim.x*gridDim.x; 
float tmp_a,eu_dist1,eu_dist2,min_index1,min_index2;
float mindist1=3.4028235E+38,mindist2=3.4028235E+38;
if (offset<M)
{ for (int j=0; j<K; j++)
 { eu_dist1=0;eu_dist2=0;

Algorithm 2: Continue
 for (int m=0; m<L; m++) 

 { tmp_a=d_genes1[offset*L+m]-d_cents1[j*L+m]; 
 eu_dist1+=tmp_a*tmp_a; //for Particle1
 tmp_a=d_genes2[offset*L+m]-d_cents2[j*L+m]; 

 eu_dist2+=tmp_a*tmp_a; // for Particle2
 } // calculate the Euclidean distance

 if (mindist1>eu_dist1)
 { mindist1=eu_dist1;min_index1=j;}
 if (mindist2>eu_dist2)
 { mindist2=eu_dist2;min_index2=j;}

 } 
if (rs_clu1[offset]!=min_index1) //Particle1 Update clustering results
 {rs_clu2[offset]=min_index1}
if (rs_clu2[offset]!=min_index2) //Particle2 Update clustering results
 {rs_clu2[offset]=min_index2}

 }
}

Algorithm 3: The CalculateFitnessValues kernel
__global__void CalculateFitnessValues(float* d_genes1,float* d_genes2, float*
d_cents1,float* d_cents2,float *d_block1,float *d_block2)
{ int idx=threadIdx.x+blockIdx.x*blockDim.x;

int idy=threadIdx.y+blockIdx.y*blockDim.y;
int offset=idx+idy*blockDim.x*gridDim.x; 
int ca_index=threadIdx.x+threadIdx.y*BLOCK_SIZE; 
float mindist1=3.4028235E+38,mindist2=3.4028235E+38;

float tmp_a,eu_dist1,eu_dist2;
__shared__ float cache1[BLOCK_SIZE*BLOCK_SIZE];

__shared__ float cache2[BLOCK_SIZE*BLOCK_SIZE];
if (offset<M)

 { for (int j=0; j<K; j++)
 { …..// the code of calculating the Euclidean distance between two

particles is the same as DataObjectsClassify kernel
 if (mindist1>eu_dist1){ mindist1=eu_dist1;} //for Particle1
 if (mindist2>eu_dist2){ mindist2=eu_dist2;} //for Particle2

 }
 cache1[ca_index]=mindist1;
 cache2[ca_index]=mindist2;
}
__syncthreads();
// calculate the summation by parallel reduction
int i=BLOCK_SIZE*BLOCK_SIZE/2;
while (i!=0)

 { if (ca_index<i)
 { cache1[ca_index]=cache1[ca_index]+cache1[ca_index +i];
 cache2[ca_index]=cache2[ca_index]+cache2[ca_index +i]; 
 }
 __syncthreads();
 i/=2; 
}

 if (ca_index==0)
{ d_block1[blockIdx.x]=cache1[0]; //for Particle1
 d_block2[blockIdx.x]=cache2[0]; //for Particle2
}

}

block size is 8×8 threads, the total number of threads is M and
the number of the thread block is (M+63)/64 where, M is also
the number of the genes in the datasets. The data sizes (M×L)
of the dataset Yeast, Lym and Yeast_GOE are 2884×17,
4026×43 and 2944×173, respectively.
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Table 2: Average runtimes and the speedup
Dataset CPU (s) GPU (s) Speedup
Yeast 176.5 3.6 49.0
Lym 555.8 10.9 50.9
Yeast_GOE 1371.6 37.4 36.6

The CPU program and the program based on GPU are
executed 10 runs, respectively the average runtimes of 10 runs
and the speedup are shown in Table 2.

It can be seen from Table 2 that on the one hand, in
general, the parallel algorithm can obtained a considerable
speedup on all of the three datasets because the number of
threads is large and the efficiencies of these threads executed
in parallel on GPU are much higher than those of the threads
executed serially on CPU, on the other hand, the acceleration
effects are different in three datasets. For the Lym dataset, the
parallel algorithm has achieved 50.9 times maximum speedup
as the gene number M of this dataset is maximum, the
number of threads can be used for parallel computing is the
largest and another reason may be that its sample number L
is relatively small among the three datasets (The bigger L is
the more data needed to be processed serially in one GPU
thread are). Although, the gene number M of the dataset
Yeast and Yeast_GOE is similar, the sample number L of the
dataset Yeast_GOE is maximum and the data needed to be
processed serially is also maximum so, the speedup obtained
on the Yeast_ GOE is slower than that obtained on the Yeast.
The experimental results show that it is feasible for the new
algorithm being carried out in parallel on GPU and it can
achieve a good acceleration performance.

CONCLUSION

This study presents a new hybrid algorithm PK-CA-FA
which combines CA and FA basing on the PK-means algorithm
and the related experiments are carried out on three real
datasets. The results show that the proposed algorithm can
obtain better accuracy and stability than PK-means. At the
same time, in order to improve the computational efficiency
of the algorithm, the parallel algorithm is designed and
implemented on GPU by the CUDA technology. The
experiment results indicate that it is very feasible for the new
algorithm to be carried out in parallel on GPU and it can
achieve a good acceleration performance. This provides a very
effective new way for people to use a low-cost personal
computer to deal with large scale data and complex
optimization problems efficiently. In the future study, the
parallel computing of the new algorithm on GPU will be
further optimized to improve its computational efficiency.
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