

 OPEN ACCESS Journal of Software Engineering

ISSN 1819-4311
DOI: 10.3923/jse.2017.246.254

Case Report
CloudAmulet: Promoting Software Reuse in Datacenter
Application Monitoring
1Bo Ding, 1Huaimin Wang, 1Dianxi Shi, 1Hui Liu, 2Chang Guo Guo and 2Jie Zhang

1National Key Laboratory of Parallel and Distributed Processing, School of Computer, National University of Defense Technology,
Changsha, China
2China Electric Equipment and Systems Engineering Ltd., Beijing, China

Abstract
Background: Online monitoring is of great importance to datacenter applications. Since a datacenter usually hosts a large number of
applications, it is cost-effective to provide a generic and reusable application-monitoring platform instead of creating monitoring facilities
from scratch for each application. However, it is of great challenge to fit diversified monitoring requirements of various applications by
a unified platform. Material and Methods: This study proposes such a monitoring platform named CloudAmulet. It can effectively collect,
aggregate, analyze and visualize various application-level monitoring data. To achieve this goal, this platform is designed to be a highly
configurable monitoring infrastructure whose behavior can be customized by application-specific meta entities, including application
metric meta data, visualization meta data and data aggregation rules. By dynamically loading different meta entities, CloudAmulet can
support the monitoring of different applications. Results: CloudAmulet has been successfully applied to a set of real production systems.
The case study based on a real-life datacenter application illustrates that by promoting software reuse, our approach can reduce nearly
85% lines of code in comparison with realizing the application monitoring capability from scratch. Conclusion: CloudAmulet significantly
promotes the software reuse in datacenter application monitoring and efficiently reduces the effort in enabling the online monitoring
of those applications.

Key words: Software monitoring, monitoring platform, software reuse, datacenter applcation, cloud computing

Received: September 23, 2016 Accepted: November 08, 2016 Published: March 15, 2017

Citation: Bo Ding, Huaimin Wang, Dianxi Shi, Hui Liu, Chang Guo Guo and Jie Zhang, 2017. CloudAmulet: Promoting software reuse in datacenter
application monitoring. J. Software Eng., 11: 246-254.

Corresponding Author: Bo Ding, National Key Laboratory of Parallel and Distributed Processing, School of Computer,
National University of Defense Technology, Changsha, China Tel: +8618670389632

Copyright: © 2017 Bo Ding et al. This is an open access article distributed under the terms of the creative commons attribution License, which permits
unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

http://crossmark.crossref.org/dialog/?doi=10.3923/jse.2017.246.254&domain=pdf&date_stamp=2017-03-15

J. Software Eng., 11 (2): 246-254, 2017

INTRODUCTION

In order to accommodate large amounts of user requests
simultaneously, datacenter applications are usually designed
to be a large-scale distributed software system in the backend.
It consists of multiple logical entities (e.g., load balancers,
business components and databases), runs on hundreds or
thousands of computing nodes and involves million lines of
code with complex logic. For example, in a popular Chinese
email service named Aliyun mail1, a typical user request goes
through dozens of physical nodes and invokes over 100
internal methods on average. Because of the scale and the
complexity, even ifsuch an application has passed a full and
comprehensive test, hidden bugs may still emerge under
certain running circumstances and result in unexpected
(or even disastrous) consequence.

Since software defects cannot be eliminated entirely
before the deployment, alternative ways have to be explored.
A feasible way, which has been adopted by many real
production systems is online monitoring2,3. In this approach,
the internal states of a datacenter application are deliberately
exposed. Thus software anomalies can be detected in its early
stage and the operators can take appropriate measures in
time, for example, rescheduling resources, modifying
configurations or fixing the bug before the situation gets
out of hand. However, monitoring the internal states of
datacenter applications is not a simple task. It usually needs a
large amount of code to collect, transfer, handle and visualize
the application internal states. Since a data center usually
hosts a large number of applications, it is cost-effective to
provide a generic monitoring platform instead of creating
monitoring mechanisms for each application from scratch.

However, monitoring requirements on the
application-level, i.e., what should be monitored and how to
process/visualize them, are usually highly application-specific.
It is of great challenge to fit diversified monitoring

requirements of various applications by a unified platform. In
this study, such a platform named CloudAmulet is proposed.
To enable the software reuse4 in datacenter application-level
monitoring process, the run time architecture of this
platform is deliberately split into two parts: The monitoring
infrastructure and a set of application specialization
mechanisms named meta-entities. The former consists of a
set of components that are common in a monitoring system,
such as the monitoring agents running on each node and the
data aggregation service aggregating monitoring data in a
distributed system. However, unlike the predefined and fixed
behavior of their counterparts in traditional monitoring
systems such as5-7, the behavior of those entities can be
dynamically configured by the meta-entities, which defines
what should be monitored in a certain datacenter application,
how to get/aggregate them and how to visualize them at
runtime. As a result, CloudAmulet can support the monitoring
of various datacenter applications effectively. With the
development tools provided by CloudAmulet, the developers
of monitoring capability can just focus on the definition of
those meta-entities, developing them quickly and
cost-effectively instead of realizing the whole monitoring
process from scratch.

MATERIALS AND METHODS

Motivated scenario: Considering a datacenter that hosts a
set of cloud services, such as e-mail, cloud storage, instant
message and video on demand. And more cloud applications
are expected to be deployed in the future. As mentioned
earlier, the effective runtime monitoring of those applications
is of great importance. To realize this goal in a cost-effective
way, a generic application-level monitoring platform is
decided to be introduced (Fig. 1). Traditionally, while a
monitoring system is developed, the syntax and semantics
of monitoring targets are usually known in advance. For

Fig. 1: Motivated scenario

247

…

Application monitorng platform

…

Application
Running States

Application
Running

Environment

service services

E-mail service

Social network VOD service
Other cloud service

Data center operator Application monitoring platform

Application running
states

Application running
environment

J. Software Eng., 11 (2): 246-254, 2017

Fig. 2: Runtime architecture of CloudAmulet

example, before developing a CPU monitoring software, it is
already known to the developers on how to get the CPU
usage. Thus, this metric can be appropriately accessed,
handled and visualized. In contrast, a generic application-level
monitoring platform in this motivated scenario has to support
a wide variety of cloud applications (including known and
unknown ones which will be deployed in the future). While
developing this platform, it is impossible for us to know
exactly how to get various application-level metrics and how
to appropriately handle, aggregate and visualize them.

It is challenging to fit diversified monitoring requirements
of various cloud services by a single platform. In concrete, in
contrast with a traditional monitoring system, this platform
should support the following features: (1) Embracing
application-specific metrics. Since this monitoring platform
should be a “Generic” one, the target metrics cannot be
assumed in advance. This platform should be able to handle
various (known and unknown) metrics from various
applications, (2) Supporting customized visualization. The
monitoring interface of each application should be able to be
customized. For example, in order to represent the running
state of the e-mail service in an intuitive manner, the text line
chart or pie chart may be used to exhibit different metrics and
(3) Enabling application-level aggregation. Since a cloud
application is usually a distributed system, the platform has to
support the aggregation of application-specific metrics from
different computing nodes. For example, a deep-seated
anomaly may be able to be detected only by considering
metrics synthetically which are collected from both the
business logic layer and the database layer.

CloudAmulet runtime architecture: To address the
above-mentioned challenges, the runtime architecture of
CloudAmulet (Fig. 2) can be dived into two parts: The
monitoring infrastructure and the meta entities, in which the
latter specializes the former’s behavior to fit the diversified
monitoring need from application to application.

Monitoring infrastructure: The reusable monitoring
infrastructure captures the commonalities across applications.
The monitoring agents are deployed onto each node
(VMs or physical machines) to collect various local monitoring
data, not only the hardware resource status but also the states
of software entities running on this computing node. The data
aggregation service aggregates data collected by the agents,
analyzing them and putting them into the database for future
access. The data exhibition service generates web pages to
visualize the aggregated monitoring data. Those facilities form
a monitoring data “Collection-aggregation-exhibition” path.
This path appears frequently in many datacenter monitoring
solutions such as Gangalia, Zabbix and DARGOS3. However,
unlike existing solutions, these facilities in CloudAmulet are
not designed to only handle predefined monitoring data. They
are highly “Reusable” from application to application, which
means that their behavior can be customized by a set of
dynamically-loaded meta entities.

Meta-entities: The meta-entities contain the monitoring
knowledge specific to certain applications, making the
monitoring infrastructure suitable for various application-level
monitoring requirements.

248

Aggregation
Rules

Aggregation
Rules

Application
Component

ProberApplication
Component

Prober Monitoring
AgentApplications

Monitoring
Agent

Data Exhibition

Hardware, OS, VM...

Data A
ggregation

Application
Generic View

Resource
Generic View

App-Specfic
Aggregation

Rules

App.
Probers

Node 2

Structured
DataBase

Round Robin
DataBase

Config
Console

App-specific
Monitoring UI
App-specific

Monitoring UI
App-Specific

Monitoring UI
Application
Detailed View

Data Center
Applicatio
Operators

Monitoring
Agent

Node n

Other Monitoring Data
Consumers

Monitoring Infrastructure

Meta Entites

Monitoring Data

Applications
App.

probers
Monitoring

agent

Hardware, OS, VM…

Node 2

Monitoring
agent

Monitoring
agent

Node n
Round robin

data base

Structure
data base

Other monitoring data consumers

App-specific
aggregation
rules

App-specific
monitoring UI

Application
detailed view

Config
console

Resource
generic view

Application
generic view

Data exhibition

Monitoring infrastructure
Meta entites
Monitoring data

Data center and
application
operators

D
at

a
ag

gr
eg

at
io

n

J. Software Eng., 11 (2): 246-254, 2017

Application probers are embedded in the target
application to enable the real-time data collection of
application-specific metrics for example, the “Mails sent per
second” metric in an e-mail service or the “Average download
speed for files above 100 M” metric in a cloud storage service.
A prober observes and measures those metrics and
publishes the result to the local monitoring agent in a
self-descriptive data format. The prober also provides the
app-specific monitoring UIs which exhibit the
application-level monitoring data by a set of predefined
monitoring UI controls such as simple texts, tables, line charts
or pie charts. Those UIs will be rendered dynamically by the
data exhibition service in Fig. 2.

App-specific aggregation rules directs the data
aggregation service to gather and analyze monitoring data in
the dimension of both space and time, which may trigger
certain warnings and predefined actions. Various algorithmic,
bool and string operations on the data collected from different
computing nodes are supported, for example to calculate the
average load of a cluster in a sliding time window.

Gathering and exhibitng application internal states: The
following two subsections mainly focus on the meta entities
in CloudAmulet. The application probers in CloudAmulet is a
self-contained entity, which means that it contains not only
the logic to collect the specified monitoring metrics but also
the meta description of those metrics, including both the
definition of those metrics (i.e., metric meta data) as well as
how to exhibit those metrics at runtime (i.e., visualization meta
data).

Definition 1: Metric meta data m is defined as <id, type,
properties>.

The type of the metric can be divided into three kinds:
(1) Simple types, including string, integer, float, boolean,
datetime, etc. (2) Complex types, including sequences and
entities, (3) Template types, which are predefined types with
special monitoring semantics. The introduction of the
template type is to enable the underlying monitoring
infrastructure to handle the data flexibly. A typical example of
this type in CloudAmulet is storage space, an integer type that
the infrastructure automatically transfers it into appropriate
formats (i.e., MB, GB, TB, etc.) while exhibiting it. A property is
a key-value pair that guides the monitoring infrastructure to
handle this metric. For example, the history length for an
integer of a float type tells the infrastructure to maintain how
many history values in its round-robin database.

Definition 2: Visualization meta data v is defined as. The
metrics related to meta data v is referred to as <id, control, Sm,
properties>. The metrics related to meta data v is referred to
as metrics (v).

In this definition, the control is the visualization form of a
specific metric or metric set, whose form may be simple text,
table, pie chart, line chart, bar chart, etc. The Sm is the metric
set which is shown in the control. The properties are key-value
pairs which tell the monitoring infrastructure how to show the
metrics, for example, the location and size of the control.

Then, a CloudAmulet prober can be defined as follows. In
this definition, Sv is the metrics that the prober are supposed
to collect is the visualization meta data set of those metrics
and the monitoring logic is the concrete code to collect the
metrics’ current value.

Definition 3: Prober p is defined as, <skeletonp, monitoring_
logicp>, in which skeletonp = <id, description, Sm, Sv>, for each
v0SvfSm.

The probers are expected to be constructed by the
developers of application monitoring capability. To facilitate
this activity, CloudAmulet provides a GUI tool to define the
metric meta data (Fig. 3a) as well as a tool to define the
visualization meta data in a control “Drag and drop” style
(Fig. 3b). Then CloudAmulet can generate the prober
skeletonin C++ or Java according to the metric meta data and
the visualization meta data.The monitoring logic is leftas blank
functions which are supposed to be filled by the developer. By
importing the skeleton into the application (as a library) and
filling in the blank functions, the monitoring capability is
added into the target application. At runtime, the monitoring
infrastructure of CloudAmulet actively inquires the interfaces
of the probers and gets all the meta information, knowing
what should be collected and how to exhibit those metrics. It
dynamically interprets the meta data and automatically starts
the application-level monitoring process. For example, the
visualization meta data are transferred to the data exhibition
service in Fig. 2 and dynamically rendered as web pages to
exhibit the application states. The whole process is illustrated
in Fig. 4.

Aggregating and analyzing application metrics: In addition
to gathering and exhibiting the application states, another
common monitoring action in a data center is to aggregate
the value of a set of application metrics to find existing or
potential software anomalies. To support this kind of actions,
CloudAmulet introduces a domain-specific language8,

249

J. Software Eng., 11 (2): 246-254, 2017

Fig. 3(a-b): Meta data defintion tools in CloudAmulet, (a) Metric meta data definition and (b) Visualization meta data definition

Fig. 4: Gathering and exhibiting application internal states

MonDSL. It enables the definition of application-level
monitoring rules, which tells the infrastructure how to analyze
application metrics at runtime. Basically, the rules are defined
in the form “When-then”. Table 1 shows that, the when part is
a boolean expression involving a set of application metrics.
Those metrics can be from different applications or even
physical nodes. MonDSLalso provide a set of built-in functions
to calculate those metrics on a sliding window, for example,

the average value or the peak value in 10 min. In the Then
part, the operator can invoke predefined actions, such as
warning in the data exhibition service, sending email,
rebooting an application or a computing node, etc. Those
MonDSL rules are dynamically interpreted by the data
aggregation service in Fig. 2. It subscribes the necessary
monitoring data from the monitoring agents and executes
those rules while new data arrive.

250

Metric Meta Data

Visualization Meta
Data

Prober
Skeleton

Monitoring
Logic

Self-Contained
Prober

Application
Source Code

Monitoring-Enabled
Application

M
apping

M
erging

Compliling

Supported by IMCDE

Monitoring Agent

Data Aggregation Service

Data Exhibition Service

Monitoring
Data

Meta
Data

Development Time Running Time

(a)

(b)

Metric meta data

Visualization meta data

Monitoring logic

Prober skeleton Self-contained
Monitoring-enabled

application
Meta data

Monitoring
data

Application
source code

Development time Running time

Monitoring agent

Data aggregation service

Data exhibition service

Meta entities-guided
and application-

specific monitoring
data handling and

exhibition

M
ap

pi
ng

M
er

gi
ng

C
om

pi
li

ng

J. Software Eng., 11 (2): 246-254, 2017

Table 1: Grammar and example of mondsl rules
Grammar Example
Rule “Name” Rule “Load alert”
When When
LHS//conditions Avg (node (192.168.10.2).app (“mail”, 0). metric (“Request response time”), 600)>5)
Then And
Action//actions Avg (node (192.168.10.2).app (“mail”,0). metric (“Request response time”), 600)>5)
End Then
Timer<timespan> Alert (“CPU overloaded in cluster 1”)
//Sample time Send mail (“xxx@a.com”, self.description)

End
Timer 30

RESULTS

CloudAmulet implementation: CloudAmulet supports the
monitoring of C++/Java applications both on windows and
Linux-compatible platforms currently. The runtime
communication inside the monitoring infrastructure is based
on DDS (data distribution service for real-time systems)9, a
QoS-enabled publish/subscribe middle ware specification
proposed by Object Management Group (OMG). It enables
CloudAmulet to transfer scalable monitoring data in a
large-scale data center. To enable the dynamic loading and
interpretation of MonDSL rules, CloudAmulet adopts Drools
Fusion (JBoss Community. http://drools.jboss.org/drools-
fusion), an open-source complex event processing engine. The
MonDSL rules are mapped into the rules of Drools Fusion and
the monitoring data are encapsulated as events which can be
feed into Drools Fusion. The metric meta data output by the
probers significantly facilitates the transformation from
CloudAmulet data to Drools events.

Real-life case study: CloudAmulet has been applied to a set
of real-life data center production systems. This subsection
concerns an email cloud service that provides
sending/receiving email functions by browsers as well as
POP3/IMAP protocols. To support a large number of
concurrent users ($1.8 K users at peak), the backend
implementation of this service is made up of a set of clusters
in the datacenter, including the mail handling cluster, the
database cluster, the distributed file system cluster and the
remote access cluster (being responsible for generating web
pages). Figure 5a is the home web page of CloudAmulet at
runtime, Fig. 5b is a snapshot of designing the monitoring UI
in Eclipse with the visualization definition tool and Fig. 5c is
the web page rendered by CloudAmulet according to the
visualization meta data in Fig. 5b as well as the real-time
monitoring data collected.

Before migrating the software entities running on those
clusters to CloudAmulet, they have been built in the

monitoring capabilities. However, all of them are realized in an
ad hoc manner, i.e., for each software entity, the application
developers developed the monitoring probers, monitoring
facilities and monitoring tools from scratch. As shown in
Fig. 5d, although some general reusable libraries such as
distributed computing middleware have been adopted, the
Line of Codes (LoC) of monitoring capability in this system is
50235. After migrating to CloudAmulet, there are only 7367
LoC (about 15% of the original one) to realize the similar
monitoring capabilities. In particular, the LoC of monitoring
facilities is dropped from 37435 (several monitoring GUI tools)
to 244 (MonDSL rules), since CloudAmulet provide the
capability to design monitoring UIs (i.e., defining the
visualization meta data) without coding as well as the reusable
facilities which can interpret the UIs and MonDSL rules
dynamically. Software reuse plays a significant role in
reducing development effort. It also reduces the operating
cost of the monitoring system since only one instance of this
system for all applications needs maintaining in the
datacenter.

In addition to the benefit of software reuse, another major
concern is the performance cost of introducing CloudAmulet
probers. Since the monitoring logic is realized by the
application developers, CloudAmulet provides no assurance
on it. However, as a typical example, the performance cost in
the mail handling cluster beingmade up of 8 physical servers
is tested in our experiment. Figure 5e, when the load
(i.e., the number of concurrent users) is light and medium,
there is nearly no loss in a major performance indicator, the
average request response time, while handling the mails.
When the load is near the upper bound of the cluster
(i.e., 2400 concurrent requests per second), there is 20-30%
inevitable performance loss, depending on the configured
refresh rate of the monitoring data. Furtherly, we compared
the performance before and after the migration of the
monitoring capability of the email cloud service to
CloudAmulet, in which the difference can indicate the precise
over head brought by the CloudAmulet prober skeletons itself.

251

J. Software Eng., 11 (2): 246-254, 2017

60000

50000

40000

30000

20000

10000

0

L
in

es
 o

f
co

de

Total monitoring
LOC

Monitoring logic
LOC

Monitoring factilites
LOC

50235

7367

12800

7123

37435

244

(d) w/o ColudAmulet
w/ColudAmulet

14

12

10

8

6

4

2

0

(e)

A
ve

ra
ge

 r
es

po
ns

e
ti

m
e

400 800 1600 2000 2400

Concurrent users

No monitoring
Refresh per 5 sec
Refresh per 30 sec

w/ColudAmulet
w/o ColudAmulet

14

12

10

8

6

4

2

0

(f)

A
ve

ra
ge

 r
es

po
ns

e
ti

m
e

800 2400

Concurrent users

Fig. 5(a-f): CloudAmulet real-lif case study, (a) CloudAmulet home webpage, (b) Designing monitoring UI in eclipse, (c) Rendering
monitoring UI in browser, (d) Lines of code (LoC) comparison, (e) Performance cost of monitoring and (f) Performance
cost of CloudAmulet

In Fig. 5f, when getting the same metric sets at the same
refresh time 5 sec, the performance gap between these two
implementations (before and after adopting CloudAmulet) is
no more than 3% under both a light load (800 concurrent
requests per second) and a heavy load (2400 concurrent
requests per second). In contrast with the great benefits from
software reuse, this extra performance overhead is acceptable
in most cases.

DISCUSSION

There have been many attempts to provide monitoring
solutions in cloud computing environment. However, a large
portion of them (e.g., PCMONS10, DARGOS5 and Lattice11 are
mainly designed to support IaaS or PaaS-level resource
management. Their focus point is the running state of
low-level datacenter infrastructure, such as hardware, virtual

252

 (a) (b)

(c)

J. Software Eng., 11 (2): 246-254, 2017

machines, operating systems and common PaaS services,
instead of high-level applications this study focuses on.

Recently, some works in this field realize the magnitude
of providing generic support for application-level monitoring.
GMonE12 is a general purpose cloud monitoring tool, whose
design goal is to be “Applicable to all areas of cloud
computing”. It introduces the software entity named
“Monitoring plugins” to support customized application
metrics. The MISURE13 builds the monitoring infrastructure for
cloud applications on a streaming process framework. It can
collect and aggregate various metrics from disparate cloud
applications in a near-real time way. Katsaros et al.14, a
multi-layered monitoring framework for measuring QoS at
both application and infrastructure levels is presented. It uses
a script-based data collector to collect monitoring data, which
is a responsibility of the service developers mOSAIC15 offers a
set of tools whose goal is to generate warnings when the
target application and/or the associated resources are in
conditions which may lead to runtime problems. Kieker is
an extensible framework for runtime monitoring of the
behavior of distributed software systems, which collects the
application-level measurements by instrument probers into
target software system16. Besides, both in the commercial and
open source society3,17, some well-known monitoring
solutions such as Ganglia, Nagoisand Zabbix can support
customized metrics by adding plugins, which can be used to
support the application-level monitoring.

However, these closely-related work just focus on the
generic mechanisms to enable application-specific metrics
such as service Key Performance Indicators (KPIs). In contrast,
our platform takes this step further. As a generic
application-level monitoring platform which lays strong
emphasis on software reuse, it supports not only customized
metrics but also customized visualization of monitoring data
and customized application-level aggregation. They are
essential to effective application monitoring in real large-scale
production systems. In concrete, the customized visualization
mechanism can help the human operators to understand the
current behavior of a specific application efficiently and the
customized aggregation mechanism can cope with
monitoring requirements on the scale of a system instead of
a physical node. By providing reuse on those two aspects,
CloudAmulet can support the construction of the monitoring
capability of various complex datacenter applications
cost-effectively.

Another highly-related field is cloud application SLA and
performance monitoring. Service Level Agreement (SLA)
supervision is common in the management of datacenter
applications18, in which the application behavior is monitored
to detect the violation of predefined SLAs. The CASViD19 is an

architecture that monitors and detects the application-level
SLA violation, which includes tools for resource allocation,
scheduling and deployment. M4Cloud20 provide a generic
application level monitoring system to detect SLA violation in
a resource-shared cloud environment. An approach allows
application developers to specify and monitor high-level
application performance metrics is presented in Leitner et al.21,
which adopts the complex event processing paradigm to
handle correlated events. Since SLA is a contract between the
client and Cloud Service Provider (CSP), these existing work
mainly focus on the externally observable metrics of cloud
applications. In contrast, CloudAmulet concerns the internal
states of cloud applications in this study, which can contribute
to datacenter application maintenance in two ways: Detecting
software anomaly as early as possible and promoting the
diagnose accuracy of the root cause of a software anomaly.
Application Performance Management (APM) is another
booming field in cloud computing practices22. It aims at
detecting application performance problems as well as their
roots by integrating mining approaches on monitoring data
into performance indicator collecting tools. Although, some
solutions support the manual instrumentation of application
code which is similar to our study23, it does not concern
customized visualization of monitoring data and customized
application-level aggregation, what makes our work a
generalized and reusable application monitoring platform
instead of just a performance anomaly detection/analyzation
tool.

CONCLUSION

This study presents CloudAmulet, a monitoring platform
for data center applications which aims at promoting software
reuse in the application-level monitoring process. To achieve
this goal, the runtime architecture of CloudAmulet is divided
into two parts: The common monitoring infrastructure and the
application-specific meta entities. The dynamically-loading
meta entities can guide the behavior of the common
monitoring infrastructure, customizing them to fit the
monitoring requirement of different applications. The
application in real production systems has validated the great
benefits of introducing CloudAmulet into datacenter
application monitoring.

ACKNOWLEDGMENT

This study is supported by the National Natural Science
Foundation of China (No. 91118008, No. 61202117). The
authors would like to thank all those who contributed to the
implementation of CloudAmulet.

253

J. Software Eng., 11 (2): 246-254, 2017

REFERENCES

1. Mi, H., H. Wang, Y. Zhou, M.R.T. Lyu and H. Cai, 2013. Toward
fine-grained, unsupervised, scalable performance diagnosis
for production cloud computing systems. IEEE Trans. Parallel
Distrib. Syst., 24: 1245-1255.

2. Wang, H. and B. Ding, 2016. Growing construction and
adaptive evolution of complex software systems. Sci. China
Inform. Sci., 59: 1-3.

3. Aceto, G., A. Botta, W. De Donato and A. Pescape, 2013. Cloud
monitoring: A survey. Comput. Networks, 57: 2093-2115.

4. Krueger, C.W., 1992. Software reuse. ACM Comput. Surv.,
24: 131-183.

5. Povedano-Molina, J., J.M. Lopez-Vega, J.M. Lopez-Soler,
A. Corradi and L. Foschini, 2013. DARGOS: A highly adaptable
and scalable monitoring architecture for multi-tenant clouds.
Future Gener. Comput. Syst., 29: 2041-2056.

6. Calero, J.M.A. and J.G. Aguado, 2015. MonPaaS: An adaptive
monitoring platformas a service for cloud computing
infrastructures and services. IEEE Trans. Serv. Comput.,
8: 65-78.

7. Barth, W., 2008. Nagios: System and Network Monitoring.
2nd Edn., No Starch Press, San Francisco, CA.,
ISBN: 9781593271794, Pages: 720.

8. Mernik, M., J. Heering and A.M. Sloane, 2005. When and how
to develop domain-specific languages. ACM Comput. Surv.,
37: 316-344.

9. Pardo-Castellote, G., 2004. OMG data-distribution service:
Architectural overview. Real-Time Innovations, pp: 200-206.
https://community.rti.com/sites/default/files/DDS_Architec
tural_Overview.pdf

10. De Chaves, S.A., R.B. Uriarte and C.B. Westphall, 2011. Toward
an architecture for monitoring private clouds. IEEE Commun.
Magaz., 49: 130-137.

11. Clayman, S., A. Galis and L. Mamatas, 2010. Monitoring virtual
networks with lattice. Proceedings of the IEEE/IFIP Network
Operations and Management Symposium Workshops, April
19-23, 2010, IEEE Computer Society Washington, DC, USA.,
pp: 239-246.

12. Montes, J., A. Sanchez, B. Memishi, M.S. Perez and G. Antoniu,
2013. GMonE: A complete approach to cloud monitoring.
Future Gener. Comput. Syst., 29: 2026-2040.

13. Smit, M., B. Simmons and M. Litoiu, 2013. Distributed,
application-level monitoring for heterogeneous clouds
using stream processing. Future Gener. Comput. Syst.,
29: 2103-2114.

14. Katsaros, G., G. K ousiouris, S.V. Gogouvitis, D. Kyriazis,
A. Menychtas and T. Varvarigou, 2012. A self-adaptive
hierarchical monitoring mechanism for clouds. J. Syst.
Software, 85: 1029-1041.

15. Rak, M., S. Venticinque, T. Mahr, G. Echevarria and G. Esnal,
2011. Cloud application monitoring: The mOSAIC approach.
Proceedings of the IEEE 3rd International Conference on
Cloud Computing Technology and Science, November
29-December 1, 2011, IEEE Computer Society, Washington,
DC, USA., pp: 758-763.

16. Van Hoorn, A., J. Waller and W. Hasselbring, 2012. Kieker: A
framework for application performance monitoring and
dynamic software analysis. Proceedings of the 3rd Joint
WOSP/SIPEW International Conference on Performance
Engineering, Boston, MA, USA., April 22-25, 2012, ACM Press,
New York, pp: 247-248.

17. Alhamazani, K., R. Ranjan, K. Mitra, F. Rabhi and
P.P. Jayaraman et al., 2015. An overview of the commercial
cloud monitoring tools: Research dimensions, design issues
and state-of-the-art. Computing, 97: 357-377.

18. Baset, S.A., 2012. Cloud SLAs: Present and future. ACM SIGOPS
Operat. Syst. Rev., 46: 57-66.

19. Emeakaroha, V.C., T.C. Ferreto, M.A. Netto, I. Brandic and
C.A.F. De Rose, 2012. CASViD: Application level monitoring for
SLA violation detection in clouds. Proceedings of the IEEE
36th Annual Computer Software and Applications
Conference, July 16-20, 2012, EEE Computer Society
Washington, DC, USA., pp: 499-508.

20. Mastelic, T., V.C. Emeakaroha, M. Maurer and I. Brandic, 2012.
M4Cloud-Generic application level monitoring for
resource-shared cloud environments. Proceedings of the
CLOSER 2012, 2nd International Conference on Cloud
Computing and Services Science, April 18-21, 2012, Porto,
 Portugal, pp: 522-532.

21. Leitner, P., C. Inzinger, W. Hummer, B. Satzger and S. Dustdar,
2012. Application-level performance monitoring of cloud
services based on the complex event processing paradigm.
Proceedings of the 5th IEEE International Conference on
Service-Oriented Computing and Applications, December
17-19, 2012, IEEE Computer Society Washington, DC, USA.,
pp: 1-8.

22. Rabl, T., S. Gomez-Villamor, M. Sadoghi, V. Muntes-Mulero,
H.A. Jacobsen and S. Mankovskii, 2012. Solving big data
challenges for enterprise application performance
management. Proc. VLDB Endowment, 5: 1724-1735.

23. Ahmed, T.M., C.P. Bezemer, T.H. Chen, A.E. Hassan and
W. Shang, 2016. Studying the effectiveness of Application
Performance Management (APM) tools for detecting
performance regressions for web applications: An experience
report. Proceedings of the 13th International Conference on
Mining Software Repositories, Austin, TX, USA., May 14-15,
2016, ACM Press, New York, pp: 1-12.

254

	JSE.pdf
	Page 1

