

 OPEN ACCESS Journal of Software Engineering

ISSN 1819-4311
DOI: 10.3923/jse.2017.47.53

Research Article
Research of Operation Semantic and PI Transformation Based on
UML Sequence Diagrams
1,2Yao Wen Xia, 3Sai Dong Lv and 4Dong Xia Liu

1Solar Energy Research Institute,
2Department of Information,
3Department of Security,
4Department of Library, Yunnan Normal University, 650500 Kunming, China

Abstract
Background: The UML sequence diagram is a metamodel, didn’t have the precise formal semantics, system design and development
personnel cannot be observed system dynamic performance and can’t realize system automatic reasoning and proof: On the other hand,
in a state diagram and sequence diagram in UML, different sides of the same system, semantic inconsistencies may occur, because do
not have form semantics, UML diagrams so unable to detect different types of conflict between the semantics of the UML subgraph.
Materials and Methods: In this study, the UML sequence diagram is decomposed into the basic composition elements and the
combination of several segments of combination, the basic composition elements are mapped to the corresponding components in the
PI calculus and combination fragment is given operational semantics and then converted to PI calculus. Results: The UML sequence
diagrams have "The same" part, there are also a part of the "change". Refers to the "constant" parts: Basic composition elements of UML
sequence diagrams, such as classes, objects, messages, objects and the relationship between; part of "change" refers to that the
combination of the basic composition elements assembled segment, such as the "loop", "break", "Alt", "par" and "opt'', etc. So, from the
UML sequence diagrams of XMI file, extract the key data, structure information, including the static structure and dynamic behavior, the
assembly way, need to a few key XMI file labels for data mining. Conclusion: This study presents a UML sequence diagram is decomposed
into basic constituent elements and the combination of several combinations of fragments, the basic constituent elements are mapped
to the corresponding components of PI-calculus, operational semantics is given a combination of fragments and then converted to
PI calculus.

Key words: UML, sequence diagrams, pIcalculus, semantic, meta-model

Received: July 28, 2016 Accepted: October 30, 2016 Published: December 15, 2016

Citation: Yao Wen Xia, Sai Dong Lv and Dong Xia Liu, 2017. Research of operation semantic and PI transformation based on UML sequence diagrams.
J. Software Eng., 11: 47-53.

Corresponding Author: Sai Dong Lv, Department of Security, Yunnan Normal University, 650500 Kunming, China Tel: +86-871-65911900

Copyright: © 2017 Yao Wen Xia et al. This is an open access article distributed under the terms of the creative commons attribution License, which permits
unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

http://crossmark.crossref.org/dialog/?doi=10.3923/jse.2017.47.53&domain=pdf&date_stamp=2016-12-15
http://crossmark.crossref.org/dialog/?doi=10.3923/jse.2017.47.53&domain=pdf&date_stamp=2016-12-15

J. Software Eng., 11 (1): 47-53, 2017

INTRODUCTION

The UML state diagram describes an object in the system
response to external events, the changes of the life cycle and
dependence on the past behavior and so on. But a real
complex systems, often there are multiple objects at the same
time and their interaction1. In UML state diagram describes
multiple objects and their interactions; the description of the
UML state chart ability is insufficient, sometimes even
impossible. At this point, then use UML sequence diagrams to
model. The UML sequence diagrams depict, send messages to
each other, between multiple objects in the system of
interaction. Because UML state diagram depicting the changes
of the internal state is an object of UML sequence diagrams
depict the interactions between multiple objects, so, in a
sense, the UML sequence diagram is a kind of abstract, the
state diagram and UML state diagram is the elaboration of the
sequence diagram2.

Unified Modeling Language is by GradyBooeh
JimRumbaugh and IvarJaeobson three famous object-oriented
technology experts launched, in OOSE method, OMT method
and BOOCH representation, on the basis of widely for advice,
again and again modification and complete and effective
object-oriented analysis and design of a standard modeling
language, it is currently the most popular a kind of
object-oriented modeling language. The UML provides rich
modeling element, it can be either for member of the static
structure modeling and can be member of the dynamic
behavior modeling3.

In a system to be developed, any objects are not exist in
isolation, these objects in the system by passing messages
interact, UML sequence diagrams can be the interaction of the
system is modeled and graphical solution4. When operation is
carried out to the class of classes, objects, components, use
case and the whole system control flow modeling, interactive
behavior occurs. An interaction refers to the specific context,
in order to achieve a goal and in a set of message exchange
between a set of objects represented by behavior.

In UML 2.0 standard, the news of the UML sequence
diagram is to point to: Start an operation or to send a signal
and create or destroy an object. Messages by serial number,
name and parameters (optional). The UML sequence diagrams
of basic composition elements include: The object, the lifeline,
news and order number.

Relative to the UML 1.0 standard, UML 2.0 puts forward
the concept of combination fragment, under different
scenarios, provides more clear semantics. Portfolio pieces
include: Circulation, branch, interruption, critical region,
parallel, references, etc5.

The UML sequence diagrams of the basic composition
elements, can be assembled by combining clip, to represent
the semantics of different scenarios, enhances the ability of
UML sequence diagrams describe.

The UML state diagrams depicts the changes in internal
state of an object, UML sequence diagram depicts is the
interaction between multiple objects, so in a sense, UML
sequence diagram is an abstraction of a state diagram and
UML state diagram is refinement of sequence diagrams6,7.

The UML sequence diagram is a kind of meta model, does
not have the precise semantics of formal, system design and
development staff, cannot observe the system dynamic
operation and in the UML state diagram and sequence
diagram to describe the different aspects of the same system
may appear semantic inconsistency, because UML graph
element does not have formal semantics. Therefore, this study
will be UML state diagrams are assigned with its operational
semantics and converted to the PI calculus specification8.

MATERIALS AND METHODS

The PI calculus is a kind of process algebra, derived from
CCS, suitable for modeling mobile concurrent distributed
system, compared with CCS, PI calculus allowed on the
channel transmission channel, the dynamic channel of
creation and destruction, this feature enables the PI calculus
is especially suitable for modeling mobile concurrent
communication system9.

Definition 1: The LTS structure is formalized definition for
five-tuple array among them:

Mπ = (Σπ, Iπ, Nπ, Cπ, Δπ)

where, Eπ is the set of process id, IπfEπ is the set of active
process id, Nπ is the set of chanel and Nπ = NincNoutc {τ}, among,
Nin represent the set of input chanel, Nout is the set of output
chanel, τ is external invisible internal channels, Cπ is a
collection of matching structure, matching structure is a
Boolean represention channel.

)πfEπ×Eπ×Cπ×Eπ,)π is a function of a said migration
relations, its semantic: The current state of UML state diagram,
if has a trigger event occurs and meet the health conditions,
to perform an action, then the system migration to the
following form’s a function, from the current state to the
following state of the relationship between migration and the
label for the state transition is a trigger and a health condition.

EXtensible Markup Language (XML)6 is a powerful
technique, suitable for the data in a file. Because XML is a

48

J. Software Eng., 11 (1): 47-53, 2017

client:clientClass server:clientClass

asynMess

standard, the data can be saved as a format, for no other
applications that use to create the data, the user can through
the standard application interface, such as DOM or SAX,
extract the data in the XML document.

However, XML is not object-oriented, XML element
defines the XML and XML attributes, but does not define the
object, so it does not support object-oriented features, also
does not include the object model. If, in the XML software
tools will be the same data is expressed as different forms, so
it is difficult to through the tools to exchange data10.

In order to solve the above problems, the XML Metadata
Interchange (XMI). Because XMI defines the mapping between
the object and the XML, so once defines the objects to
exchange, if you use the XMI, you don’t need to create your
own XML representation for the object. So, now many UML
Case tools, such as ArgoUML, Poseidon-for-UML, the
Rational-Rose, supported the UML graph exported to XMI file
format11.

Asynchronous send messages
Definition 2: The UML sequence diagrams can be abstracted
as a triad (OBJ, MES and OPERATOR), among them:

OBJ : Represent the set of system object
MES : Represent the set of system message
OPERATOR : Represent the set of combination fragment

enumeration. It’s definition is follows {alt, loop
break, par, optþ}, combination fragment
represention objects and message assembly
mechanism of UML sequence diagrams,
including branch combination fragment, loop
combination fragment, break combination
fragment, concurrent combination fragment, etc.

Definition 3: The messages in UML sequence diagrams,
message refers to start an operation or to send a signal that
can be abstracted as a binary group <mName, param>,
among them, the mName represent message name, param
represent optional parameters.

Rule 1: (objYp)v(messYchannel)v(obj0OBJ)v(mess0MES)
v(p0PROCESS)v(channel0CHANNEL), among them, PROCESS
represent the set of PI calculus process CHANNEL represent
the set of PI calculus channel, the rule represent objects in
UML sequence diagrams, a mapping to process in the
PI calculus, UML sequence diagrams of messages, mapping
the channel in PI calculus.

Definition 4: Asynchronous messages defined by a function:
Send:src×mess×targ and (src0OBJ)v(mess0MES)v(targ0OBJ),

among them, the src represents the source object, targ
represents target object, mess represents momentum to send
the message. In UML sequence diagrams, the source object to
a target object sends a message, to continue, not return a
value.

The operation of the asynchronous message semantic is
defined as follows:

 
event asynMess ' event (z)

τ ' '

client client ;server server'
client | server client | (server asynMess|z)

  


Among them, τ represent internal action,
server’ {asynMess|z} represent in process server’ are replaced
with asynMess, client|server represent client and
server-execute concurrentlyB <asynMess> representevent
send message asynMess said to pass the event, the event(s) to
pass the event to receive messages and stored in the s.

Figure 1 is an example of asynchronous messages, among
them, the event is the channel between SRC and targ, to
deliver the message mess. The SRC' is the state of the
successor of SRC, targ' is targ successor state. Source object
the client to the target server sends an asynchronous message
asynMess, not return a value, asynchronous messages can be
used for asynchronous concurrent combination between two
communication parties.

By defining 4 and its operational semantics, shown in
Fig. 1 to generate the corresponding PI calculus code for:

client = <asynMess>.clientevent
server = event(z).server
system = client|server

Message of the synchronous and inside information
Definition 5: Synchronization messages is defined as a
function: Return:targ×mess×src6return Val and
(targ0OBJ)v(mess0MES)v(src0OBJ)v(return Val0MESS), among
them, retumVal is returned by the news, with other variables
definition 2. In UML sequence diagrams, synchronous
message said: After the source object a message sent to the

Fig. 1: Asynchronous messaging

49

J. Software Eng., 11 (1): 47-53, 2017

Q:class 1 P:class 2

getMess

internalEvent

returnVal

client:clientClass webpage:webpageClass

pageCont

pageNum

Fig. 2: Synchronous message sending

target object block, until the target object is returned to the
source object a reply message.

Figure 2 shows the operation of the synchronous
message is sent semantics are defined as follows:

 
pageNum.pageCont<y> pageNum.pageCont(x) '

τ '

client client ;webpage webpage'
client|webpage client y|x) | webpage'

 


The UML sequence diagram shown in Fig. 2, is an example
of a synchronous message is sent, the event, the src', the
definition of targ'. Client object to the object of webpage after
sending a message pageNum jam, until the object of webpage
return a message after webCont object client before lifting
block, continue to execute. A synchronous message sent is
suitable for the communication parties synchronous parallel
combination.

Generated by defining 5 and its operational semantics,
UML sequence diagram in Fig. 2 of the PI calculus code
for:

client = pageNum.pageCont(x).src

webpage = pageNum.pageCont<y>.webpage

Definition 6: Internal messages defined is a function: Internal:
src×mess×src and (mess0MES)v(src0OBJ) in UML sequence
diagrams, sending a message to an object, called the inside
information.

Figure 3 is an example of inside information, object P
sends a message internalEvent to itself, not return a value.

Its operational semantics are defined as follows:

internalEvent

internalEvent '

P P'
P | Q P | Q




Generated by definition 6 and its operational semantics,
PI calculus code as shown in Fig. 3:

Fig. 3: Inside information

P = event(x).([x = internalEvent]t.P+[x = getMess]
 <y>. P)returnVal

Q = <getMess>.returnVal(z).Qevent

Branches combined fragment
Definition 7: Branching behavior is defined as a function:
BranchAction: src×Ei0{1, 2, ..., n} (guardi×messi)×targ6returnVali,
among them, guardi represent the i guard condition, messi
represent the i message, returnVali represent the i return val,
n represent guard condition or the number of message.
Different gurad conditions, the source object sends a different
message to the target object different return values from the
target object.

Figure 4 is an example of a branching behavior, source
object client who type in different conditions, different
messages sent to the target server, the server returns a
different return values. Branch system is suitable for the
condition of the selective action.

Figure 4 shows that branch behavior of operational
semantics are defined as follows:

 
i i ii i

i

guard getMess .returnVal(x) getMess .returnVal'

[guard '

y

]τ '
i

client client ;server server'
client | server server | client y |x

  


By the definition 7 and its operational semantics, UML
sequence shown in Fig. 4, the corresponding PI calculus code
for:

   
 

 1 1 2

2 n n

guard event getMess guard event
client .returnval x .client

getMess guard event getMess

   
 
      

 
   

 
1 1 2

2 n n

y getMess returnVal y y getMess returnVal
server event y .

y y getMess returnVal y .server

     
 
       

50

J. Software Eng., 11 (1): 47-53, 2017

loop

getMess

messVal

client:clientClass server:serverClass

[guard]

[cancel]

break

cancel

user:userClass system:systemClass

inputLogininfo

loginResult

server:serverClassclient:clientClass

guard 1

guard 2

guardi

guardn

getMess1

getMess2

getMess

returnVal

Fig. 4: Branching behavior

Loop combination fragment
Definition 8
Cyclic behavior: In UML sequence diagrams, by the keyword
"loop" modify the behavior of the sequence, if meet the health
conditions, is executed repeatedly, until who type condition
is false.

Figure 5 is an example of a cyclic behavior, was
established in guard who type conditions under the premise
of the source object client server sends a message to the
target object repeatedly getMess and get the return value
messVal. Cyclic behavior is suitable for the system to be
executed repeatedly, until the condition is false, who type out
of circulation.

Figure 5 shows that the cyclic behavior of the operational
semantics are defined as follows:

 i

[guard]getMess.messVal(x) ' [getMess]messVal y

[guard]τ ' '
i

client client ;server server'
client | server client y |x | server

  


Generated by defining 8 and its operational semantics,
shown in Fig. 5 PI calculus code of UML sequence diagrams
are as follows:

lient = [guard = ture]event<getMess>.messVal(x).client+
[guard = false] otherActions.client

server = event(x)([x = getMess]messVal<y>.server+[x … getMess]t.server)

Among them [guard = false] otherActions.client
represent: If the guard condition is false, the client to perform
the action of other sequences.

Fig. 5: Cyclic behavior

Fig. 6: Break behavior

Break combination fragment
Definition 9: Break behavior is defined as a function: Break:
[breakGuard]? exit: continue, among them, breakGuard
represent break operation sub-health condition, exit exit the
execution sequence, said the continue to continue execution
sequence. In UML sequence diagrams by the keyword "break"
the behavior of the modified, if meet the health conditions,
the execution sequence, terminate the interaction between
objects; otherwise continue to execute.

Figure 6 is an example of break behavior, object’s system
user sending messages to objects askLogin, asked if login, if
who type cancel button pressed, the user press the cancel
button, the user sends a message cancel the system and user
and the system to return to the initial state. Interrupt behavior
applies to meet certain health conditions, system is
performing the action sequence, return to original state.

Figure 6 shows interruption behavior operation
semantics are defined as follows:

51

J. Software Eng., 11 (1): 47-53, 2017

[cancelButtonPressed]canel cancel

[cancelButtonPressed]τ

user 0;system system'
user | system 0 | system
 



Generated by definition 9 and its operational semantics,
Fig. 6 PI calculus code as follows:

   system askLogin. (event x . x cancel t.system+

inputLoginInfo.loginResult.system)

 

  
 
user askLogin. cancelButtonPressed true event cancel .0

cancelButtonPressed false inputLoginInfo.loginResul.user)

    



RESULTS

The UML sequence diagrams have "the same" part, there
are also a part of the "change". Refers to the "constant" parts:
Basic composition elements of UML sequence diagrams, such
as classes, objects, messages, objects and the relationship
between; part of "change" refers to that the combination of
the basic composition elements assembled segment, such as
the "loop", "break", "Alt", "par" and "opt'', etc. So, from the UML
sequence diagrams of XMI file, extract the key data, structure
information, including the static structure and dynamic
behavior, the assembly way, need to a few key XMI file labels,
for data mining.

For UML sequence diagrams, UML 2.0 standards relative
to the UML 1.0 standards, increased the combination
fragment, to the UML sequence diagram provides more clear
semantics. In UML 1.0, for example, UML sequence diagrams
using "annotation" write loop condition, if the comment is
added to the loop condition is true, will perform a set of
messages; but in UML2.0 directly provides a "loop"
combination fragment, describe the cyclic behavior of UML
sequence diagrams, "loop" combination, you can set the loop
is really who type conditions. Similarly, UML2.0 in sequence
diagrams, describe the behavior of other combination
fragment is proposed.

From UML sequence diagrams to LTS form semantic
generation algorithm, its basic idea is: First, the UML sequence
diagram exported to XMI format; Second, the use of
Java+Xerces parser for XMI file to construct a DOM tree,
traverse the DOM tree, extract the five tag data/information
structure, including: <UML: Class>, <the UML2: Message>,
<the UML2: Lifeline>, <the UML2: Event Occurrence>, <the
UML2: Combined Fragment> and stored in the corresponding
dynamic linked list; again, through dynamic data information
in the list, to extract the UML sequence diagram of static

topology structure, dynamic behavior and combinations in
accordance with this study put forward transformation rules,
generate the corresponding semantic LTS form.

DISCUSSION

Many researchers in the UML to give formal semantics, to
achieve automatic system analysis, reasoning, validation, etc.,
do a lot of work12. Directly from the UML state diagram to
pi calculus conversion rules, this study first UML state diagram
abstracted as a mathematical model and then to the UML
state diagram assembly mechanism to give LTS operation
semantics12. Lam and Padget13 put forward an integrated
environment of UML state diagram. Firstly, the UML state
diagram is transformed into PI calculus and then the mapping
relation between LTS structure and Kripke structure is used.
Lam and Padget14 puts forward the transformation of
PI calculus into NuSMV code, which realizes the integration of
UML state diagram. Jansen15 presents a consistency checking
problem of UML state diagram based on class hierarchy,
which is to judge whether the state diagram of the superclass
is consistent with the state graph of the subclass.

This study differs from the study of Korenblat and
Priami12, Lam and Padget13,14 and Jansen15: First, this study
abstracts UML state diagram and LTS structure into
mathematical model and realizes the transformation between
these two mathematical models. Secondly, this study gives the
LTS operation semantics to the UML state diagram assembly
mechanism, which can be easily converted to PI calculus
process algebraic specification.

In this study, a subset of all the combined segments of
UML sequence diagram is selected, which is a subset of all the
combined fragments of the sequence diagram. There are
other operators, such as assert, consider, ignore, ref and some
and PI calculus between no implicit mapping relationship, the
LTS operational semantics given by the same method and
converts it to PI calculus code.

The UML state diagrams are assigned with its operational
semantics and then converted to PI specific form specification,
the advantage of doing so is: First give state diagram of the
LTS operational semantics and translation algorithm,
conversion for any kind of process algebra, but is not limited
to a kind of process algebra.

The PI calculus is a complex algebraic system, which
requires the user to have a certain mathematical foundation
times lower, not easy to master and the UML meta model is
now the facts of industrial standards, its intuitive easy to be
accepted by most people. For visualization of the design
program, if given to the UML sub graphFormal semantics,

52

J. Software Eng., 11 (1): 47-53, 2017

researchers can hide the complex process algebra theory, to
achieve automatic deadlock verification, language Semantic
consistency checking.

The UML sequence diagram is the state diagram state
diagram is abstract, refinement of sequence diagrams, there
are in different abstract level. If you can convert it to the PI
algorithm code, can be in the process of model refinement.
The consistency checking of different UML sub graphs is
realized by using the theory of mutual simulation equivalence,
consistency, design and development staff can be supported
by the existing process algebra tools, through a single step
execution, dynamic operation of the observation system, to
confirm whether the design meets the requirements.

CONCLUSION

In this study, the UML sequence diagrams abstract as a
mathematical model, the LTS structure abstract mathematical
model for another, through the LTS operational semantics and
transformation rules, implement the conversion between
two kinds of mathematical model, finally, generate the
corresponding PI calculus code. Because the transformation
between the two mathematical models, so the algorithm
description is more accurate and easy to use mathematical
induction and analysis for the next step transform provide the
basis of the correctness of the algorithm.

ACKNOWLEDGMENTS

First Authors thank the reviewers for their constructive
comments in improving the quality for this study. This study
was supported by the YunNan province education
department fund project (No. 2014Y147), Academic
education research station in YunNan province, YunNan
province high quality basic education resource sharing and
interactive service research.

REFERENCES

1. Fu, M.L., 2015. The application of software development use
UML model technology. Science and Technology, pp: 18-19.

2. Lv, S.D. and Z.P. Li, 2014. Research on the probability of
extended UML state diagram/random kripke structure
semantic. BioTechnol. Indian J., 10: 5576-5583.

3. Lin, J.Q., 2016. The application of object-oriented are based
on UML. China CIO News, pp: 99-103.

4. Yue, S., 2015. The method of software realization based on
UML sequence. Comput. Sci., 25: 326-329.

5. Milner, R., J. Parrow and D. Walker, 1992. A calculus of mobile
processes (Parts I and II). Inform. Comput., 100: 1-77.

6. Tian, Z.Y., 2016. XML Practical Technology. Tsinghua
University Press, Beijing, pp: 427-430.

7. Messaoudi, N., A. Chaoui and M. Bettaz, 2015. An operational
semantics for UML 2 sequence diagrams supported by model
transformations. Procedia Comput. Sci., 56: 604-611.

8. Posadas, H., P. Penil, A. Nicolas and E. Villar, 2015. Automatic
synthesis of communication and concurrency for exploring
component-based system implementations considering UML
channel semantics. J. Syst. Architect., 61: 341-360.

9. Khan, M.U., 2015. Representing security specifications in UML
state machine diagrams. Procedia Comput. Sci., 56: 453-458.

10. Sheng, Y.C., 2016. The research on UML use case to XML
scheme. J. Guiyang Univ. (Natl. Sci.), 11: 25-31.

11. Cabot, J., R. Clariso and D. Riera, 2014. On the verification of
UML/OCL class diagrams using constraint programming.
J. Syst. Software, 93: 1-23.

12. Korenblat, K. and C. Priami, 2003. Extraction of Pi-calculus
specifications from a UML sequence and state diagrams.
Technical Report No. DIT-03-007. Information Engineering
and Computer Science, pp: 601-621.

13. Lam, V.S.W. and J. Padget, 2004. Symbolic model checking of
UML statechart diagrams with an integrated approach.
Proceedings of 11th IEEE International Conference and
Workshop on the Engineering of Computer-Based Systems,
May 24-27, IEEE Computer Society, Washington, DC, USA.,
pp: 337-346.

14. Lam, V.S.W. and J. Padget, 2005. Consistency checking of
statechart diagrams of a class hierarchy. Proceedings of the
19th European conference on Object-Oriented Programming,
Glasgow, UK., July 25-29, 2005, Springer-Verlag, Berlin,
pp: 412-427.

15. Jansen, D.N., 2002. Probabilistic UML statecharts for
specification and verification: A case study. Workshop on
Critical Systems Development with UML, September 30, 2002,
Dresden, German, pp: 121-132.

53

	JSE.pdf
	Page 1

