

 OPEN ACCESS Journal of Software Engineering

ISSN 1819-4311
DOI: 10.3923/jse.2018.1.11

Review Article
A Meta-Model for Model-Based Testing Technique: A Review
1Atifi Meriem and 2Marzak Abdelaziz

1Faculty of Sciences Ben M'sik, University Hassan II, Laboratory of Information Technology and Modeling, 33 Street Youssef Mazdaghi,
FLR 2, Casablanca, Morocco
2Faculty of Sciences Ben M'sik, University Hassan II, Laboratory of Information Technology and Modeling, Street Driss El Harti, B.P 7955,
Sidi Othmane, Casablanca, Morocco

Abstract
In software testing field, model-based testing technique is a prominent validation technique that assures the high performance and
evaluation of the systems. It is proposed to replace the manual way by generating automatically test cases from requirements. From the
fact to its high practical relevance, several approaches that support model-based testing technique have been proposed in academic and
industrial research. Although, most of these approaches differ on several important points like the specification paradigm, the model used
to design requirements but share common principal, common challenges and common characteristic that are inherited from the
fundamental concepts of model-based testing technique. In this context, proposed through this study a meta-model that represents
model-based testing concepts and characteristics in order to define the structure and entities that must take any new model-based testing
approach.

Key words: Model-based testing, software testing, meta-model, IT systems, specification paradigm

Citation: Atifi Meriem and Marzak Abdelaziz, 2018. A meta-model for model-based testing technique: A review. J. Software Eng., 12: 1-11.

Corresponding Author: Atifi Meriem, Faculty of Sciences Ben M'sik, University Hassan II, Laboratory of Information Technology and Modeling, 33 Street
Youssef Mazdaghi, FLR 2, Casablanca, Morocco Tel: +212 0 6 56 44 75 00

Copyright: © 2018 Atifi Meriem and Marzak Abdelaziz. This is an open access article distributed under the terms of the creative commons attribution
License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

http://crossmark.crossref.org/dialog/?doi=10.3923/jse.2018.1.11&domain=pdf&date_stamp=2018-03-27

J. Software Eng., 12 (1): 1-11, 2018

INTRODUCTION

Recently the testing of IT systems has emerged as a major
area of research in software engineering. It has become clear
that the result of this activity has tremendous impact on the
quality and usefulness of the ultimate product and on the
efficiency and manageability of its development. Due to the
increase of IT applications complexity, it becomes
increasingly necessary to implement appropriate validation
and verification techniques to validate IT systems. Testing is
one of the most widespread techniques used to verify and
validate the proper functioning of IT system and its conformity
with the initial specifications. It is also considered as the most
expensive phase in the software development life cycle
(SDLC). Several test techniques or methods are, thus, used in
order to optimize this phase. Model-based testing (MBT) is one
of these techniques, which aims to automatically generating
tests from a model, describing certain behaviours of the
system under test (SUT). In this context, several studies and
approaches have been proposed within the scope of MBT,
including a study that was done by Blom et al.1. This study was
provided in order to investigate the dependency between
different quality factors of test suites, generated from a formal
model and the strategy or the approach used for their
generation under realistic industrial conditions. The main
findings of this study are model-based testing discovered
faults also in previously well tested parts of the application
and using (model) coverage criteria to generate test suites
allow a good trade-off between fault-detection capability and
test suite size, for moderate-to-large size test suites, which
outperforms that of randomly generated test suites. In the
same scope, Lindvall et al.2,3 have proposed a new approach
that combines metamorphic testing principles and
model-based testing technique to perform testing of NASA's
Data Access Toolkit (DAT) system, more especially to test a
subsequent release of DAT when there is a new version. The
main purpose of this approach was to facilitate rapid testing
when a new version is delivered. Another approach
considered in Graf-Brill and Hermanns4 study for testing
asynchronous communicating systems by using model-based
testing. It is a practical approach that main to deriving test
cases directly from an input-output transitions system, it can
be applied to generate a test suite offline or to construct a test
case online, incrementally during test execution. Also,
Heam et al.5 have presented through their study a new
approach that focus on security protocols testing. This
approach relies on the use of mutations of formal models of

security protocols to generate abstract test cases. Most of the
MBT approaches proposed in academic or industrial research
have two common aspects, requirements and generating tests
from abstract model and they differ on several important
points. In this context, it proposed through this article a
meta-model that allows the characterization of different
model-based testing approaches and that illustrated the
common concepts of MBT approaches in addition to allowing
validating any proposed approach.

Meta-models and model-based testing in literature: A
model is an abstraction of a system and a meta-model is an
abstract description of a model. Meta-model is a formal
definition of a model, it define the constructs and rules
needed to create semantic models. A meta-model facilitates
the reasoning on model structure, model semantics and
model use. According to meta-object facility standard (MOF),
a meta-model defines the structure to have by any model of
this meta-model. In other words, any model must respect the
structure defined by its meta-model6. The meta-modeling is
the activity that produces, among other things, meta-models
that reflect the static structure of the models. It consists on
specifying the concepts and the links between these concepts.
Meta-modeling is widely used in information systems
engineering and particularly in models and methods
engineering. Its played a central role in all model-driven
approaches like MDA, MDD and MDSE7. In the literature,
several research works have been carried out in this context
and several meta-models have been proposed, each of which
was concerned with specific fields. In Zachariadis et al.8 study,
a meta-model for engineering adaptable mobile systems was
proposed. It was a local component meta-model for mobile
adaptive systems, implemented in the SATIN (system
adaptation targeting integrated networks) middleware
system. The SATIN was used to create and offer a number of
applications that show different adaptation aspects. He et al.9

have proposed a meta-model in order to define a graphical
notation for graphical modeling language. They have used
three essential elements to define the notation of a modeling
language: Basic figures which are collected from UML family
and layouts as flow layout, border layout, decoration layout,
role name layout, vector graph layout and extendable layout.
Brunette et al.10 have defined a meta-model to design
polychronous systems. As the name suggests, polychronous
systems use multiple clocks, which means that signals do not
need to be present in all instants. In this context, Brunette and
Talpin10 have developed a meta-model and an open-source

2

J. Software Eng., 12 (1): 1-11, 2018

design environment for the synchronous language SIGNAL in
the GME (generic modeling environment) and eclipse
frameworks. They have also shown how this meta-model can
be easily extended to provide designers with adequate
concepts for the design of both control oriented and avionics
systems. Van Dongen et al.11 in their work, focused on the use
of meta-models in the context of process aware information
systems (PAIS). They have proposed a meta-model for event
logs generated by PAIS and then, they have defined a formal
XML definition (MXML) for event logs, to support the
proposed meta-model. In the same context, Gholizadeh and
Azgomi12 have proposed a meta-modeling approach to define
a multi-formalism modeling framework for Petri nets. They
have defined the meta-modeling structure and its
implementation using XML (extensible markup language) as
the base language for the all definition. Although most of the
literatures represented above are dedicated to subjects other
than software testing, a fundamental lack in meta-modeling
related to testing approaches was seen. For this reason, this
paper proposed a meta-modeling solution for model-based
testing (MBT) technique that contains a set of concepts
needed to validate any MBT approaches.

On the other hand, various works in the literature use the
term model-based testing. Some of them present new
approaches that support the MBT technique. For example,
Dalal et al.13 have proposed an MBT approach that consists on
using a data model to generate tests. It depends on three key
elements. The first one was the notation used to describe the
software behaviour as a model. The authors used for this aim
the AETGSpec notation which was part of the AETG TM
software system and was useful to describe the data-flow only.
The second element was the test generation algorithm in
which he used the AETG software system to generate
combinations of input values. Finally, the tools aimed to
generate the supporting infrastructure for the tests (including
the expected outputs). Hence, the major strength of Dalal's
approach was the tight coupling of between the tests to and
requirements and also the ability to regenerate tests rapidly in
response to changes. The negative aspects of this approach
were, however, the fact that only data flow was covered and
the control flow was not considered in addition to the lack of
oracle to store the test cases. Moreover, only systems of with
low complexity are concerned by this approach. Also
Deng et al.14 have proposed an MBT approach for testing and
maintenance based on semantic software development
model. In this approach, the authors use the diagrams during
the software development life cycle to generate test scenarios,

for example, they use the case diagrams used to describe the
software system requirements. They also use the class
diagrams describing the static data structure, in addition to
the state-chart diagrams used to describing the state
transitions of objects. For maintenance, Dong et al.14 use the
software maintenance model which consists of on a set of fix,
bug and modification objects that link the information
generated from modifications. Krenn et al.15 have proposed a
new testing approach named model-based mutation testing
(MBMT). The proposal was a particular instance of fault based
testing and it uses a model of the system under test to
generate test cases. The system model was described using
UML diagrams, namely, UML state charts, class diagrams and
instance diagrams. The major strength of MBMT methodology
was the possibility to demonstrate the absence of certain
faults. It was considered as one of the most powerful test case
generation approaches, that allows excellent fault detection
capability, the generated test cases are both effective
in finding faults and efficient when executed.
Pretschner et al.16 in their work, have compared the model-
based test suites derived automatically or manually with the
handcrafted test suites that were directly derived from the
requirements in term of quality and then they have shown
that the first test suites detect significantly more requirements
and programming errors than the seconds. Moreover, they
showed the method on which the model, the implementation
coverage and failure detection are related. The major
contribution of this work was the provision of numbers
indicating the usefulness of explicit behaviour models in
testing. The proposal also stimulates the discussion on the
usefulness of automation and the use of structural criteria as
like C/D coverage in model-based testing.

Model-based-testing and models
Model-based testing process: The model-based testing
solution consists on producing test cases from SUT (system
under test) model and/or its environment model by following
a process composed of five phases17 (Fig. 1):

C Requirements management
C Modelling of an abstract test model dedicated to test of

the system
C Generation of abstract test cases from test model
C Concretization of abstract test cases to concrete test

cases that can be executed on the system under
test

C Execution of concrete test cases on the system and the
constitution of their verdict

3

J. Software Eng., 12 (1): 1-11, 2018

User needs,
desires and constraints

Manual tests
(physical person)

Tester

Tests
management

tools

Tester analyst

MBT tools

Automation engineer

Tests automation
tools

Automating

Automatic tests
(benchmark)

Execution

Execution resultsExpected results

Comparisons Verdict

Concrete test cases,
executable on the system

Concretization

Requirements
traceability matrix

Test selection criteria

Abstract test cases, built
from the model

Model for test purposes

Generation

Modelization

System requirementsRequirements
management tools

Business analyst Requirements
management process

Fig. 1: Model-based testing general process17

In model based testing (MBT), the requirements specify
the expected behaviour of system under test in response to
particular conditions. Requirements management step
consists on collecting customer needs, desires and constraints
and the management and classification of these later as
requirements. The second step of the MBT serves to define an
abstract model of the system under test. This model was an
abstract view of the system under test, defined in a particular
formalism according to the specification paradigm18-20. In the
next step, the abstract model was used by a test generator
which, by means of selection criteria, allows generating the
abstract tests cases and traceability matrix that illustrated the
link between the tests and the model's elements. In the
concretization step, the abstract tests cases are transformed to
concrete tests cases to link the elements of the abstract model
with the concrete elements of the system. This step was still
generally manual and requires more expertise. Finally, the
concrete tests cases can be run on the system under test to
get the verdict in order to decide if the system respects/or not
the model that have been made.

Test case in model-based testing process: In the MBT
process, a test case can take several states by when
passing from the requirement management, modelling,
generation and then concretization and execution
(Fig. 2).

Specification paradigms in model-based testing
process: Generally, the testing of IT systems begins with the
perception of requirements specification, the result of the
requirements phase in the system life cycle. Model-based
testing is a testing technique that uses a specification
described by a formal model as a reference to generate
tests cases. It was a test technique based on behavior models.
The behavioral models represent the expected behavior
of a system with respect to external stimulations. However,
when modeling the systems, the choice of modeling
formalism depends on the aspect or the paradigm of the
system to be modeled. Thus, some formalism favor a
representation oriented towards the system and their

4

J. Software Eng., 12 (1): 1-11, 2018

Modelisation

Successful test case
Expected results and executed result conform

Execution Execution

Execution

Failed test case

Requirement Element in test model

Concret test case

Generation

Expected results and executed results not conform
Concretization

Abstract test case

Modeling formalism

Stochastic specif ication
State based specif ication

History based speci fication Functional specif ication

Operational specif ication Transition based specif ication Data flow specif ication

1...* 1 Specif ication

+Contains

Requirements

+Formulate

Fig. 2: State chart diagram showing the different states of test case in MBT process

Fig. 3: Specification paradigms

evolution, while others favor a representation oriented
events that makes possible the evolvement of the
system. The starting point of this analysis was the
Lamsweerde’s classification19 of formal specifications into
different paradigms and Utting’s taxonomy20 of model-based
testing approaches. According to their results, there were
several specification paradigms and for each specification
paradigm there are several modeling formalisms to represent
it (Fig. 3).

Operational specification: Operational specification was
the aspect or the paradigm that represents behaviour of a
system as a collection of executable processes running in
parallel. Process algebras21 such as CSS, CSP or ASP and
Petri nets22 are notations used to model operational
specifications.

Transition based specification: Transition specification is the
paradigm that represents the system states and the transitions
between different states. State-charts23, UML (Unified
Modeling Language) State Machines and RSML (requirements
state machine language)24 are graphic notations used to
model transition based specifications.

Data flow specification: Data flow specification is the
paradigm that represents the system data, it concentrates on
the data rather than the control flow. Lustre and the block
diagrams of Matlab Simulink, was often used to model
continuous systems.

History based specification: History based specification is the
paradigm that specifies the system by describing its
behaviours per unit of time. The system was modeled from

5

J. Software Eng., 12 (1): 1-11, 2018

Test inputs Expected outputs

Test case

Test data

Traceability matrix

Test generation algorithm

+Generated from +Trace

AETGSpec notation

+Created fromData model

System under test

+Represented by
+Represented by

Test infrastructure

Requirements' representation

Fig. 4: Model represents Dalal’s approach

temporal logical expressions on the different states of
the system, past, present and/or future. In such
specification, time can be linear or branching.
Time structures can be discrete, dense or continuous.
The properties may refer to time points, time intervals or
both19.

Functional specification: Functional specification is the
paradigm that specifies a system as a structured collection of
mathematical functions and that models it from these
functions.

Stochastic specification: Stochastic specification is the
paradigm that represents events and input data of system
as probabilistic model. Markov’s chains, was a notation used
to model such a specification.

Model for Dalal’s approach: In Dalal’s approach13,
there were three key elements for model-based testing:
The test data model, the test generation algorithm and
the tools that generate supporting infrastructure for
the tests. Test data model is created based on
requirements, representation and by using a specification
notation called AETGSpec, which is part of the AETGTM
software system. Test data as test inputs, expected
outputs and traceability matrix are generated from test
data model by using a test generation algorithm. Dalal’s
approach uses the AETG software system to generate

combinations of input values. A model that represents the
model based testing approach proposed by Dalal et al.13 was
showed in (Fig. 4).

Model for Deng’s approach: Deng has used in his approach14

a model called semantic software development model (SSDM)
that combines all information generated during the software
development life cycle. It covers all phases of the software
development process viz: requirements, design,
implementation, testing and maintenance. The software
requirements and design are described by functional and
behavioural models. For software implementation,
Deng et al.14 has used models to design the source codes and
their measurements with a set of objects. The software
measurements model computes the software metrics for each
source code file. For software testing, Deng et al.14 has used
the test scenarios, test cases and testing processes. At the end,
Deng et al.14 has used a set of fix, bug and modification objects
which record the information generated from modifications of
the software maintenance model. To generate test cases,
Deng et al.14 has used two categories of strategies viz: Test
cases generation strategies namely: All-branch testing,
boundary testing and faulty testing. In addition to the
regression test selection strategies that improve the efficiency
of software maintenance. A model representing the model
based testing approach proposed by Deng et al.14 was given
in (Fig. 5).

Model for Aichernig’s approach: Aichernig, in his promising
model-based mutation testing (MBMT) approach uses three

6

J. Software Eng., 12 (1): 1-11, 2018

Software measurement

Software maintenance model
Regression test selection strategy

0..1
+Select 1..*

.

Test case
1..* +Generate

Functional model

Testing model

Source code model

Behavioral model

Software model

+Relationship

0..*

SSDM model
+Created from

Model annotation

Software requirements
+Represented by +Represented by

Software implementation

Represented by +Represented by

+Represented bySoftware testing elements

Software maintenance elements

System under test

Test generation strategy

Software design

Fig. 5: Model represents Deng’s approach

different test case generation strategies: Random strategy,
mutation strategy and combined random and mutation
strategy15. A model representing the model based testing
approach proposed by Aichernig (Fig. 6).

Comparison between models structure of MBT
approaches: By comparing the above approaches and after
analyzing the structures of the proposed models for Dalal's,
Deng's and Aichernig’s approaches, its can drawed the
following conclusions:

C All MBT approaches are designed to test software
systems

C All MBT approaches use a model to generate test
cases

C Each MBT approach is characterized by the model that
represents the system, testing type, testing level, software
domain, the generation technique of test cases and the
execution technique

C Entry point or the input of each MBT approach is the
requirements that represent the system under test or its
environment

C Each approach has a specific test generation
strategy

Proposed model and meta-model for model-based
testing technique: Based on the comparison between
some MBT approaches and MBT technique description,
following entities could be defined as:

C System under test
C Requirements of the system under test and its

environment that may be functional requirements or
non-functional requirements

C Software domain that define the scope of the approach
and when it can be used

C Test model used to describe the software, it may be a
behavior model that describe the software behavior or
a structure model that describe software structure

7

J. Software Eng., 12 (1): 1-11, 2018

Random strategy Mutation strategy Combined random and mutation strategy

Behavioural model Generic fault model

Test generation strategy

Test case
+Generated from

Model

+Derived from

Random test case
Mutation test case

Requirements

+Represented by

Random mutation test case
System under test

Fig. 6: Model represents Aichernig’s approach

C Test cases that can take two states abstract or
concrete

C Traceability matrix
C Test selection criteria that allows to generate a set of test

cases sharing common properties
C Generation algorithm that allows to automatically

generating a series of test cases
C Modeling notation

A model representing the model based testing
technique is represented in Fig. 7 and meta-model
representing the model based testing technique represented
in Fig. 8.

DISCUSSION

From the fact that model-based testing has emerged as
a major research area in academic and industrial, a large
number of publications and new approaches are produced in
this field. But there is currently a lack of a unifying conceptual
framework or model that illustrates the common concepts of
model-based testing and provides the essential characteristics

of the various MBT approaches. Most of the previous studies
or publications give new MBT approaches. For example
Graf-Brill and Hermanns4 approach that use model-based
testing to test asynchronous communicating systems. Also,
Wang approach25 that use also model based testing to validate
quorum-based systems implemented using the Gorums
library through a new MBT approach. On the other hand, some
studies give the publications covering supporting techniques
for modelling and test generation26, integration into industrial
practice27, taxonomies20, industrial evaluations1, surveys and
classification. For example Utting et al.20 have provided a
taxonomy of model based testing in which the principal
aspects of MBT approaches are covered. This study helps to
understanding the characteristics, similarities and differences
of those approaches. Due to the lack of a unifying conceptual
framework or model of model based testing the main purpose
of this article is to provide a meta-model for model based
testing technique in order to present the common concepts
of model-based testing and provides the essential
characteristics of the various MBT approaches. This study gives
a new support that can be beneficial and will help researchers
who want to propose new MBT approaches.

8

J. Software Eng., 12 (1): 1-11, 2018

System
C Requirement ID
 Requirement nameC
 Requirement descriptionC
 Requirement criticityC

1..*

Requirement
1..*

1..*

0..*

0..*

1..*
1..*

0..* 1

1
1

1 1

1

1

1

1

1

1

1+for

Accept

System under test model

Environment

Non functional requirementFunctional requirement

Environment model

Traceability matrix

Obtained result

Behavior model

Test model

Structure model

Functional specification

Transition based specification

History based specification

State based specification

Data f low specif ication

Stochastic specif ication

Operational specification

Specification

Modeling notation

Test selection criteria

Generation algorithm

C Generate

C Selection criteria ID
 Selection criteria typeC

C ID
 Algorithm typeC

C Model ID
 Model redundancyC
 Model characteristicsC

C Test case ID
 Test case objectiveC
 Test case def initionC

Abstract test case

C Derive test cases

C Test case ID
 Test case objectiveC
 Test case descriptionC

Concrete test case

C Status ID

Status Expected results

<<Enumeration>>
model redundancy

C Model for test and Dev
 Model dedicated to testC

<<Enumeration>>
status

C Failed
SuccessfulC
Not executedC

C Structural model coverage
Data coverageC
Requirements coverageC
Test case specif icationsC

Random and stochasticC
Fault-basedC

C Random generation
Search based algorithmC

 Model checkingC
Symbolic execution runsC
Deductive theorem proingC
Constraint solvingC

<<Enumeration>>
selection criteria type

<<Enumeration>>
algorithm type

Software domain Testing type

Output
1..*

+Generated from
Generation technique

1

Model Specification

1..*
Paradim

+Represented by 1

1..*
Modeling formalism

Testing level Execution technique

Characteristic

+Characterised by

1..* 0..*
+Tested byMBT approach System

Fig. 7: Model represents model-based-testing technique

Fig. 8: Meta-model for model-based-testing technique

9

J. Software Eng., 12 (1): 1-11, 2018

CONCLUSION

In this paper, proposed a generic meta-model for
model-based technique. This meta-model will provide an
active support in potentially useful knowledge during
proposing any new approach based on the model-based
testing technique. In software testing technologies such as
model-based testing approaches, each approach has specific
concept and characteristics. Through this work proposed a
meta-model that represents the general concept and the
characteristics of the model-based testing technique, this
meta-model can be beneficial and will help researchers who
want to propose new MBT approaches. We are currently
working on the proposal of a meta-model that represents the
Risk-based-testing technique in order to propose a new
approach that combines MBT (model-based testing) and RBT
(risk-based testing) to overcome some model based testing
limitations and make some case studies by applying the novel
testing approach to obtain empirical results and compare our
approach over existing approaches.

SIGNIFICANCE STATEMENT

This study provides a unifying conceptual model and
meta-model for model based testing technique in order to
present the common concepts of model-based testing and
provides the essential characteristics of the various MBT
approaches. This study gives a new support that can be
beneficial and will help researchers who want to propose new
MBT approaches.

ACKNOWLEDGMENT

I would like to express here the very thanks to my
dissertation advisor, Prof. Dr. Marzak Abdelaziz, University
Hassan II, who provided me the opportunity to do such a
research in his laboratory.

REFERENCES

1. Blom, J., B. Jonsson and S.O. Nystrom, 2016. Industrial
evaluation of test suite generation strategies for model-based
testing. Proceedings of the IEEE 9th International Conference
on Software Testing, Verification and Validation Workshops,
April 11-15, 2016, Chicago, IL, USA., pp: 209-218.

2. Lindvall, M., D. Ganesan, R. Ardal and R.E. Wiegand, 2015.
Metamorphic model-based testing applied on NASA DAT: An
experience report. Proceedings of the 37th International
Conference on Software Engineering-Volume 2, May 16-24,
2015, Florence, Italy, pp: 129-138.

3. Lindvall, M., D. Ganesan, S. Bjorgvinsson, K. Jonsson,
H.S. Logason, F. Dietrich and R.E. Wiegand, 2016. Agile
metamorphic model-based testing. Proceedings of the 1st
International Workshop on Metamorphic Testing, May 14-22,
2016, Austin, Texas, pp: 26-32.

4. Graf-Brill, A. and H. Hermanns, 2017. Model-Based Testing for
Asynchronous Systems. In: Critical Systems: Formal Methods
and Automated Verification, Petrucci, L., C. Seceleanu and A.
Cavalcanti (Eds.). Springer, Cham, ISBN: 978-3-319-67113-0,
pp: 66-82.

5. Heam, P.C., F. Dadeau, R. Kheddam, G. Maatoug and
M. Rusinowitch, 2016. A model-based testing approach for
security protocols. Proceedings of the IEEE International
Conference on Computational Science and Engineering and
IEEE International Conference on Embedded and Ubiquitous
Computing and 15th International Symposium on Distributed
Computing and Applications for Business Engineering,
August 24-26, 2016, Paris, France, pp: 553-556.

6. Object Management Group, 2006. Meta Object Facility (MOF)
core specification, version 2.0. Object Management Group,
Massachusetts, USA.

7. Miller, J. and J. Mukerji, 2003. MDA guide, Version 1.0.1.
Technical Report, Object Management Group (OMG),
Massachusetts, USA.

8. Zachariadis, S., C. Mascolo and W. Emmerich, 2006. The SATIN
component system-a metamodel for engineering adaptable
mobile systems. IEEE Trans. Software Eng., 32: 910-927.

9. He, X., Z. Ma, W. Shao and G. Li, 2007. A metamodel for the
notation of graphical modeling languages. Proceedings of
the 31st Annual International Computer Software and
Applications Conference, July 24-27, 2007, Beijing, China,
pp: 219-224.

10. Brunette, C., J.P. Talpin, A. Gamatie and T. Gautier, 2009. A
metamodel for the design of polychronous systems. J. Logic
Algebraic Program., 78: 233-259.

11. Van Dongen, B.F. and W.M. van der Aalst, 2005. A meta model
for process mining data. Proceedings of the 17th Conference
on Advanced Information Systems Engineering, June 13-17,
2005, FEUP, Porto, Portugal.

12. Gholizadeh, H.M. and M.A. Azgomi, 2010. A meta-model
based approach for definition of a multi-formalism modeling
framework. Int. J. Comput. Theory Eng., 2: 87-95.

13. Dalal, S.R., A. Jain, N. Karunanithi, J.M. Leaton and
C.M. Lott et al., 1999. Model based testing in practice.
Proceedings of the International Conference on Software
Engineering, May, 1999, ACM and Bellcore, pp: 285-294.

14. Deng, D., P.Y. Sheu and T. Wang, 2004. Model-based testing
and maintenance. Proceedings of the IEEE 6th International
Symposium on Multimedia Software Engineering, December
13-15, 2004, Miami, FL, USA., pp: 278-285.

10

J. Software Eng., 12 (1): 1-11, 2018

15. Krenn, W., R. Schlick, S. Tiran, B. Aichernig, E. Jobstl and
H. Brandl, 2015. Momut: UML model-based mutation testing
for UML. Proceedings of the IEEE 8th International Conference
on Software Testing, Verification and Validation, April 13-17,
2015, Graz, Austria, pp: 1-8.

16. Pretschner, A., W. Prenninger, S. Wagner, C. Kuhnel,
M. Baumgartner, B. Sostawa and T. Stauner, 2005. One
evaluation of model-based testing and its automation.
Proceedings of the 27th International Conference on
Software Engineering, May 15-21, 2005, St. Louis, MO, USA.,
pp: 392-401.

17. Atifi, M., A. Mamouni and A. Marzak, 2017. A comparative
study of software testing techniques. Proceedings of the
International Conference on Networked Systems, May 17-19,
2017, Marrakech, Morocco, pp: 373-390.

18. Utting, M. and B. Legeard, 2010. Practical Model-Based
Testing: A Tools Approach. Morgan Kaufmann, USA.,
ISBN: 9780080466484, Pages: 456.

19. Van Lamsweerde, A., 2000. Formal specification: A roadmap.
Proceedings of the Conference on the Future of Software
Engineering, June 4-11, 2000, Limerick, Ireland, pp: 147-159.

20. Utting, M., A. Pretschner and B. Legeard, 2012. A taxonomy of
model-based testing approaches. Software Test. Verificat.
Reliab., 22: 297-312.

21. Beaton, J. and W. Weijiland, 2000. Process algebra.
Cambridge Tracks in Theoretical Computer Science,
Volume 18, CUP.

22. Racloz, P., 1996. Introduction Aux Reseaux de Petri. In: Genie
Logiciel: Principes, Methodes et Techniques, Strohmeier, A.a
nd D. Buchs (Eds.)., Polytechnic and University Presses,
Romandes, pp: 207-240.

23. Harel, D., 1987. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program., 8: 231-274.

24. Leveson, N.G., M.P.E. Heimdahl, H. Hildreth and J.D. Reese,
1994. Requirements specification for process-control systems.
IEEE Trans. Software Eng., 20: 684-707.

25. Wang, R., L.M. Kristensen, H. Meling and V. Stolz, 2017.
Application of model-based testing on a quorum-based
distributed storage. Proceedings of the International
Workshop on Petri Nets and Software Engineering,
June 26-27, 2017, Zaragoza, Spain, pp: 177-196.

26. Gebizli, C.S. and H. Sozer, 2017. Automated refinement of
models for model-based testing using exploratory testing.
Software Qual. J., 25: 979-1005.

27. Peleska, J., 2013. Industrial-strength model-based
testing-state of the art and current challenges. Proceedings
of the 8th Workshop on Model-Based Testing, March 17,
2013, Rome, Italy, pp: 3-28.

11

	JSE.pdf
	Page 1

