http://www.pjbs.org

ISSN 1028-8880

Pakistan Journal of Biological Sciences

Scheduling for Occasional Omission of Irrigation Water for Crop Production in Moisture Deficit Areas

R.A. Wahed, Z. Aslam, P. Moutonnet J, C. Kirda* and G.R. Tahir

Nuclear Institute for Agriculture and Biology (NAB), Faisalabad, Pakistan Soil and Water Management & Crop Nutrition Section, Joint FAO/IAEA Division, IAEA, Vienna, Austria *Faculty of Agricultural, University of Cukurova, Adana, Turkey

Abstract

The study aimed at improving the conventional irrigation management practices to enhance yield and water use efficiency for pre-planned irrigation scheduling of wheat and cotton crops. Five field experiments were conducted during 1990-94. A 3-year study of moisture deficit irrigation (MDI) to wheat V-85205 continued with the same irrigation schedule(s) for two years and the third year irrigation schedule(s) were modified on the basis of the preceding year's results. It indicated that the crop was most sensitive to moisture deficit at tillering stage and least sensitive at flowering stage. In the fourth experiment, three preselected wheat genotypes; Sarsabz, LU-26S and Pasban-90 showed different response to moisture deficit. Comparable yields to respective conventional irrigation schedule (1111) were obtained by MDI schedule (1011), (1110) and (1101) for Sarsabz, LU-26S and Pasban-90, respectively. The fifth experiment conducted on the genetic diversity of two pre-selected cotton genotypes NIAB-86 and FH-682 subjected to moisture deficit at vegetative, generative or maturity stages yielded 7% and 9% more seed cotton at MDI (110) excess over conventional irrigation treatments (111) saving 150 mm of irrigation water. Thus, saving of 75 and 150 mm of irrigation water for wheat and cotton crops respectively was achieved by applying improved irrigation schedule without undergoing any significant yield loss.

Key words: Wheat, cotton, irrigation schedule, moisture deficits, evapotranspiration, soil matric potential

Introduction

In arid and semi-arid regions of the world the evapotranspiration of field crops always exceed rainfall leading to moisture deficit. The moisture deficit during critical crop growth stages adversely affected wheat growth and production (Musick and Dusek, 1980), drastically decreased shoot fresh weight, number of tillers and root fresh weight during early vegetative growth (Mian et al., 1993) and resulted in the reduction of size of the wheat grain in the tillers more than the size of the grain on main stem. During heavy fruiting, mild water stress associated with long irrigation cycles triggered deterioration of the root system of cotton that was very show to reverse (Radin et al., 1989). High soil matric potential inhibits root growth (Schmidhalter and Oertli, 1991). Therefore, irrigations are applied to field crops to increase yield and quality of protein (Kniep and Mason, 1991). Canal closures often lead to omission of irrigation during crop growth season. Other sources of irrigation water are scarce and expensive in arid areas. Omission of irrigation is, therefore often advisable in such cases to (i) minimize irrigation inputs without much affecting the season total biomass yield, (ii) control the weed (Norris and Ayres, 1991) and (iii) increase water use efficiency. The present studies were conducted with the following objectives:

1) To improve traditionally adapted irrigation practices for efficient use of water for crop production

- To pre-plan the irrigation scheduling for field crops by identifying specific crop growth stages sensitive to moisture deficit and
- 3) To study genetic diversity for moisture deficit in crops

Materials and Methods

All experiments were conducted at 200 m above sea level located at latitude of 31° -26' N and longitude of 73° -26' E in field plots at NIAB, Faisalabad, Pakistan (Table 2). The experiment station is situated in a semi-arid zone with less than 350 mm of annual rainfall and around 1650 mm year⁻¹ class A-pan evaporation. The irrigation was conducted with canal water (E.C. = 0.3 dS/m, pH = 7.9, SAR = 2.8). The top soil with fine nodules of lime (95-120 cm) (Table 1). All experiments were conducted in a RCBD with five replications except experiment No. 3 where three replications were maintained. Experiment No. 1 to 3 were conducted in split plot design with irrigation in the main plot and fertilizer levels in sub-plots. In experiment No. 4 the split plot design involved wheat genotypes in the main plots and irrigations in the subplots. In experiment No. 5 the irrigation were placed in the main plot and cotton varieties in the subplots. All experiments were sown in mid December each year. In the first year, no pre-sowing irrigation was applied as the soil had adequate residual moisture from the previous rice crop. In the subsequent years the crop was sown after pre-sowing irrigation for land preparation. The seed rate was 90 kg ha⁻¹ for wheat and 16 kg ha^{-1} for cotton (delinted seed). The recommended agronomic practice were employed for sowing in all cases. The cotton plants were thinned to maintain an inter-row distance of 75 cm and an inter-plant distance of 25 to 30 cm. The main plot size of all treatments was 10×7 m sq. Fertilizers were applied to all treatments in split doses as given in Table 4. Polytrin C, Novacron, Curacron and Thiodan were sprayed on the cotton crop when pest population reached economical level. The reference evapotranspiration ET. was calculated according to Penman-Monteith. Soil moisture depletion was monitored with Neutron Hydroprobe CPN-503 from the neutron access tubes installed in the soil down to 1 m for wheat and 1.65 m for cotton. Soil moisture potential was measured from tensiometers installed in the effective root zone. Actual evapotranspiration of the crop ET. was determined using water balance method considering irrigation, rainfall, soil moisture depletion and drainage (runoff being nil in the plots). Actual grain yield Y_a (kg ha⁻¹), maximum grain yield Y_a (kg ha⁻¹). Irrigation I (mm-period), field water use efficiency E_r (kg ha⁻¹ m⁻³) and crop water use efficiency E_c (kg ha⁻¹ m⁻³) were each determined. The yield response factor K₃ was calculated using:

$$\left\lceil I - Y_a Y_m^{-1} \right\rceil K_y \left(I - ET_a ET_m^{-1} \right)$$

Conventional flood irrigations were applied with 75-10 mm of irrigation water when available water AW was within the range of 60-90% and deficit irrigation were applied when the AW was at 30-60%. The CSM treatments were maintained at maximum soil matric potential of -50 kpa and the amount of irrigation water was calculated on the basis of effective root zone depth. The irrigation schedule and treatments are given in Table 3. The crop was harvested at maturity. Data was subjected to analysis of variance followed by Duncan's new multiple range test (Steel and Torrie, 1980).

Results and Discussions Yield and irrigations Wheat experiment 1991-92

The experiment, with a pre-selected wheat genotype V-85205 was conducted on a rice field without a pre-sowing irrigation that received 87 mm of rainfall well distributed over crop stages II-IV. The temperature cycle and humidity was normal. maximum grain yield (Table 5) was observed at T_1 (1111), the conventional flood irrigation treatment. At the low fertilizer level maximum grain yield was the same for T_7 (1101), T_1 (1111) and T_2 (1100) showing that at the lower fertilizer level even higher irrigation inputs could not be duly beneficial. Minimum grain yield was produced in T_9 (0000) rainfed, as expected. Comparing two irrigation in Fig. 1, T_2 (1100) produced maximum and T_3 (0011) minimum grain

vield. In the former case, 87-84% excess grain vield was produced applying the same quantity of irrigation water at the two fertilizer levels, respectively. This yield variation confirms those of Hassan et al. (1987) who reported 65% loss in grain yield owing to moisture deficit at crop stages I and II. This shows that the same irrigation water if applied at the earlier crop stage lead to consumptive use of water compared to later stages. Among three irrigation treatments the maximum grain yield was produced in $T_8(1110)$ followed by $T_7(1101)$ and minimum yields in $T_6(0111)$ at both fertilizer levels. Shifting moisture deficit from crop stage III to IV did not affect grain yield significantly at the medium fertilizer levels. At the low fertilizer level $T_7(1101)$ clearly out yielded the other moisture deficit treatments and the grain production was even better than the 4-irrigation treatment $T_1(1111)$. It showed that with one irrigation at any later stages could be saved without significant loss in grain yield. Similarly grain yield in $T_4(1001)$ and $T_5(1011)$ was the same, again indicating that the irrigation at crop stages III did not contribute significantly to the wheat grain production. Minimum E_f was observed at $T_3(0011)$ and $T_6(0111)$ - both missing an essential irrigation at crop stage I. E_f decreased with reduced fertilizer input within an irrigation but increased when exposed to moisture deficit for a prolonged period. It may be concluded that the moisture deficit at the later stages was not a detrimental toward grain yield as at earlier stages.

Wheat experiment 1992-93

The experiment conducted on Mung bean (Vigna radiata) fields applying a pre-sowing irrigation for land preparation. During the year 1992-93 the crop season was relatively dry and hot with an elevated temperature cycle of 4°C over average of the season and no rainfall at DAS 41 to 60. The total rainfall of the season was 41 mm of which 35 min was received in crop stage III. The generative processes started 1-15 d earlier reducing the vegetative growth duration of crop. The overall grain yield (Table 5) decreased compared to that of the previous year. This yield decrease was in accordance with the finding of Aggarwal and Kalra (1994) who reported an average grain yield loss of 428 kg-(ha C°)⁻¹ with temperature during vegetative growth period in this region. Maximum grain yield produced in T7(1101) at both fertilizer levels (Fig. 2) with 4-6% increase over $T_1(111)$ the conventional flood irrigation treatment, saving at least 75 mm irrigation water. The lowest grain yield produced in the rainfed treatment. Comparable grain yield at medium fertilizer levels were observed in $T_2(1100)$, $T_4(101)$ and $T_{5}(1011)$ all involving irrigation at crop stage I. The later treatments did not differ significantly from each other showing no contribution of irrigation to grain yield at crop stage III. Two stages of irrigation treatments showed grain yield increase of 29% and 84% in $T_2(1100)$ over $T_3(0011)$ at two fertilizer levels, respectively, applying the same quantity of irrigation water. Similar results were reported by Storrier (1965). Thus, irrigating this wheat variety at early stages was

more productive than irrigating at late stages as observed last year. The treatment with and without irrigation at crop stage 1 could be separated into different groups with 3 to 55% variation in grain yield. The E_f was maximum under rainfed conditions followed by $T_2(1100)$, $T_4(1001)$ and $T_7(1101)$. The conventional flood irrigation treatment $T_1(1111)$ could be ranked as lowest efficiency group at both fertilizer levels. The E_f increased with reduction in fertilizer inputs within irrigations.

Wheat experiment 1993-94

The experiment was conducted on the field left fallow from monsoon rain up to wheat sowing in 1993-94. A pre-sowing irrigation was applied to facilitate land preparation. The crop observed a normal season with respect to temperature and rainfall (42 mm) over crop stages II to IV. The experiment was conducted with irrigation schedule modified on the basis of results obtained from the previous experiments of 1991-93. Adequate soil moisture in the soil profile at the crop stage 1 and uniformly distributed rainfall led to a good harvest. Maximum grain yield (Table 5) produced under rainfed conditions in T₃(0000) with 35 and 47% loss at the two fertilizer levels, respectively. Comparable grain yield (Fig. 3) produced from $T_2(1111)$, $T_7(1100)$ and $T_3(1101)$ all were irrigated at early crop stages at both fertilizer levels. E_f was maximum in $T_3(0000)$ followed by $T_4(1000)$. All deficit irrigation treatment observed higher E_f than those for $T_1(CSM)$ and $T_2(1111)$ controls. The three year study on the same variety during different season showed that early crop stages of wheat were more sensitive to drought. An irrigation at crop stage III did not contribute significantly to the total variation in grain yield.

Genetic diversity of wheat to moisture deficit

This experiment was conducted in 1993-94 crop season to verify the result obtained during 1991-94 experiments on a wheat genotype. Three pre-selected wheat genotypes (Sarsabz, LU-26S and Pasban-90) were exposed to moisture deficit irrigations as per irrigation schedule given in Table 3. Under rainfed conditions, 33 to 44% yield loss occurred (Table 5). Different pattern of stage sensitivity (Fig. 4) was observed in the three wheat genotypes. Sarsabz in $T_4(1011)$ and $T_6(1110)$, LU26S in $T_6(1110)$ and Pasban-90 in $T_5(1101)$ with the moisture deficit irrigation treatments produced wheat grain comparable to $T_2(1111)$. Thus, at least 175 mm of irrigation water was saved without affecting the ultimate grain yield. Under rainfed conditions LU26S produced up to 12% higher grain yield than those of Sarsabz and Pasban-90. The field water use efficiency E_f was maximum with rainfed irrigation treatment $T_3(0000)$ in all wheat varieties. Generally, the E_f was lower in $T_2(1111)$ than all other irrigation treatments.

Genetic diversity of cotton to moisture deficit

A field experiment was conducted in field after wheat crop.

Pre-sowing irrigation was applied for land preparation. The crop observed a normal season with respect to meteorology. A total of 164 mm of rainfall received; 80 and 83 mm received at the generative and maturity stages, respectively which reduced the deficit period. Two pre-selected cotton genotypes, NIAB-86 and FH-682, exposed to moisture deficit irrigations responded differently to moisture deficit. Maximum seed cotton yield (Table 5) of both genotypes was observed in treatment T_1 (CSM) and minimum in $T_3(000)$ under the rainfed conditions. However, the yield under rainfed conditions was higher than expected owing to favorable climatic conditions that prevailed during crop stages II and III. The well distributed rainfall over these stages was probably used most efficiently under $T_3(000)$. Irrigation treatments $T_3(000)$ and $T_6(011)$ were the lowest yielding. $T_1(CSM)$ and $T_5(110)$ were not significantly different from each other indicating that irrigation at vegetative and generative stages was efficiently used. The seed cotton yields of NIAB-86 in treatments T₁(CSM), $T_2(111)$, $T_5(110)$ and $T_8(010)$ were not significantly different from each other. The moisture deficit treatments with and without irrigation at crop stage II differed by 23% employing the same quantity of irrigation water. Similar results were reported by Radin et al. (1989). T_5 (110) and $T_8(010)$ produced comparable yield by employing 300 and 150 mm of irrigation water, respectively. These results showed that irrigation at crop stage II contributed maximum to seed cotton yield of this variety. $T_5(110)$ yielded 23% and 12% more than $T_6(011)$ and $T_7(100)$, respectively. The overall order of contribution of irrigation to the seed cotton yield of NIAB-86 was:

Crop stage II > Crop stage 1 > Crop stage III

For variety FH-682 yields from $T_5(110)$ and $T_7(100)$ did not differ significantly from each other, with each receiving irrigation at the vegetative stage. The treatments, with and without irrigation at vegetative stage, differed by 29% employing the same quantity of irrigation water. Similarly $T_7(100)$ using 150 mm less irrigation water produced 26% more seed cotton than did $T_6(011)$. In this treatment, the irrigation at crop stage III rather lowered the seed cotton yield owing to the initiation of re-vegetation process which probably limited the photo-synthates material supply to cotton bolls. Thus, the order of contribution of irrigation to seed cotton yield for FH-682 variety was:

Crop stage I > Crop stage II > Crop stage III

Water use efficiently E_c and yield response factor k₃

Wheat crop 1991-92

Actual water use efficiency E_c of crop was maximum (Table 5) in $T_5(1001)$ followed by $T_7(1101)$ and $T_8(0111)$. Lowest E_c was observed in $T_3(0011)$ and $T_6(0111)$ in which both

missed an irrigation at crop stage 1. The E_c values of $T_7(1101)$ and $T_8(1110)$ were comparable at both fertilizer levels showing that moisture deficit at irrigation stage III and IV had similar effects. E_c was maximum in $T_2(1100)$ and minimum in $T_3(0011)$ showing that water was more efficiently used at earlier stages. The yield response factor k_y was lowest in $T_2(1100)$ and $T_1(1111)$ while it was maximum in $T_6(0111)$ indicating maximum sensitivity to moisture deficit at tillering. At the low fertilizer level k_y was minimum for $T_7(1101)$ comparable to lower doses. These results confirm those of Gajri *et al.* (1993) who reported that higher

N fertilizer application enhanced evapotranspiration.

Wheat crop 1992-93

Highest water use efficiency E_c was observed (Table 5) in treatment $T_9(0000)$ followed by $T_2(1100)$, $T_7(1101)$, $T_8(1110)$ and $T_5(1011)$ all involving and irrigation at crop stage 1. Lower E_{C} values were observed in $T_{1}(1111)$, $T_3(0011)$ and $T_6(0111)$ owing to either over-irrigation or missing an irrigation at crop stage 1. E_c increased in the irrigation treatment with higher fertilizer inputs. The overall E_{c} decreased owing to high evaporation as is obvious from ET_o being 345 min for the year 1992-93 compared to that of 315 mm for 1991-92. $T_2(1100)$ at the low fertilizer level gave a similar value as that for $T_4(1001)$ at medium fertilizer level. Thus, shifting the irrigation schedule from crop stage IV to II saved fertilizer inputs by 50% without effecting the E_c . Maximum yield response factor k_v was observed in $T_6(0111)$ and $T_3(0011)$ both missing an irrigation at crop stage 1. The crop showed least sensitivity to moisture deficit at crop stage III as evident in $T_7(1101)$.

Wheat 1993-94

Maximum water use efficiency E_c was observed (Table 5) in treatment $T_3(0000)$ under rainfed condition. Among the

Table 1: Soil profile description of experimental site

moisture deficit irrigations involving irrigation treatment maximum EC was observed in $T_7(1100)$ followed by $T_5(1001)$, both involving irrigation at crop stage 1 and maximum in $T_6(0101)$ missing an irrigation in crop stage 1. At the lower fertilizer level $T_2(1111)$ and $T_8(1101)$ had the lowest E_c values indicating that at low fertilizer input large amounts of irrigation did not maintain E_c . The yield response factor k_y was maximum in $T_2(1111)$. At the medium fertilizer k_y was minimum in $T_7(1100)$ and maximum in $T_6(0101)$ supporting that the moisture deficit exposed at later stage did not affect the yield as compared to crop stage 1. Three years studies on the same variety showed that the irrigation at crop stage 1 contributed most to the total variation in grain yield. On the other hand, the moisture deficit at crop sage III did not affect the yield significantly.

Genetic diversity of wheat to moisture deficit

Maximum water use efficiency E_c was observed (Table 5) in treatment $T_3(000)$ but at the cost of 38 to 44% loss of grain yield. In all cases, E_c of the conventional flood irrigation treatments $T_2(1111)$ was lowest. Probably, the water was more effectively utilized in the vegetative growth as compared to that during grain filling, as observed from the low values of harvest index (not reported here). For LU-26S, the order was reversed with the E_c value of $T_6(1110)$ being higher than that of $T_4(1011)$. For Pasban-90, E_c was maximum $T_5(1101)$. Thus, under moisture deficit conditions the three varieties had different options for maximizing E_c . The yield response factor k_y was lowest for $T_4(1011)$ in Sarsabz, $T_6(1110)$ in LU-26S and $T_5(1101)$ in Pasban-90 showing least effect of moisture deficit at crop stages II. IV and III, respectively for the respective variety.

Genetic diversity of cotton to moisture deficit

For cotton variety NIAB-86, a maximum $E_{\rm C}$ value was

I		
Depth (m)	Horizon	Profile description
0-0.15	Ар	Loam massive structure
0.15-0.95	Bw	Loam week structure
0.95-1.20	Bwk	Loam with fine nodules (lime) weak structure
1.20-1.80	C1	Very fine sandy loam, massive
1.80-1.95	C2	Silt loam; close to sility clay loam
1.95-2.10	C3	Very fine sandy loam
2.10-2.40		Fine sandy loam
2.40-2.55		Loamy fine sand
2.55-3.10		Fine sand
> 3.10		Medium sand

Wahed et al.

experi	intental site a	, i ui ui sui	abad, i akistan				
Depth (cm)	α	n	λ (cm ⁻¹)	$K_s (cm hr^{-1})$	$\theta_{\rm I} ({\rm cm}^3{\rm cm}^{-3})$	$\theta_{\rm s} ({\rm cm}^3{\rm cm}^{-3})$	r^2
				SFIT Program	l		
25	0.022	1.853	1.37	2.623	0.133	0.344	0.993
50	0.020	1.429	0.44	1.426	0.109	0.354	0.999
75	0.013	1.462	0.504	0.903	0.069	0.360	0.998
100	0.007	2.030	2.075	0.768	0.076	0.367	0.999
				RETC program	n		
25	0.018	1.763	5.774	6.761	0.135	0.340	0.855
50	0.008	1.533	0.0001	0.851	0.000	0.349	0.915
75	0.011	1.716	0.732	0.404	0.158	0.358	0.966
100	0.009	1.949	0.0001	0.815	0.187	0.367	0.952

Table 2: Van Genuchten-Mualeum equation parameters (average) determined by SFIT and RETC computer programs for the experimental site at NIAB, Faisalabad, Pakistan

Table 3: Irrigation schedule of treatments

	Code	Description
Wheat	1111	Conventional 4 irrigations at tillering booting, flowering and grain filling
	0000	No irrigation up to 30% AW; rain fed
	CSM	Maintaining maximum soil matric potential to -50 kPa
	1100	Moisture deficit after booting
	0011	Moisture deficit up to booting
	1001	Moisture deficit at booting to flowering
	1011	Moisture deficit at booting only
	0111	Moisture deficit at tillering only
	1101	Moisture deficit at flowering only
	1110	Moisture deficit at grain filling only
Cotton	CSM	Maintaining maximum soil matric potential to -50 kPa
	111	Conventional irrigations at vegetative, generative and maturity stages
	000	No irrigation up to 30% AW; ran fed
	101	Moisture deficit at generative stage
	110	Moisture deficit at maturity stage
	011	Moisture deficit at vegetative stage
	100	Moisture deficit at generative to maturity stages
	010	Moisture deficit at vegetative and maturity stages

¹0 designates moisture deficit and 1 designates irrigated

Table 4: Fertilizer application to wheat and cotton crops

	Fertilizer input	Medium dose NPK (kg ha^{-1})	Low dose NPK (kg ha^{-1})
Wheat	Basal dose	50:100:60	25:50:30
	With irrigation	50:0:0	25:0:0
Cotton	Basal dose	23:60:60	-
	1st irrigation	60:0:0	-
	3rd irrigation	60:0:0	-

Table 5: Grain yield Y_a , irrigation I, evapotranspiration Et _a , water use efficiencies E ₁ and E _c an	and yield response factor k _v
---	--

	J	, 8,		a		1		y
Treatment	Irrigation	Fertilizer	Y _a	Ι	EI	Et _a	E _c	K _y
	treatment	level	$(kg ha^{-1})$	(mm)	$(kg (ha m^3)^{-1})$	(mm)	$(kg. (ha m^3))$	$)^{-1})$
				Wheat 199	91-92			
T ₁	1111	1	5131	387	13.2	360	14.2	-
		2	4023	387	10.4	349	11.5	-

Wahed	et	al.
-------	----	-----

T ₂	1100	1	4942	237	20.8	305	16.2	0.27
- 2	1100	2	3945	237	16.8	290	13.6	0.23
т	11	2	2633	237	11.1	276	0.5	2.13
1 ₃	11	1	2033	237	0.1	270	9.5	2.13
т	1001	2	2134 4501	237	9.1	237	0.4	1.01
14	1001	1	4501	237	19	290	15.5	0.65
Ŧ	1011	2	3692	237	15.6	280	13.2	0.5
Γ_5	1011	1	43//	312	14	333	13.2	1.8/
		2	3702	312	11.8	315	11.7	1
T_6	111	1	3533	312	11.8	325	10.9	3.1
		2	2904	312	9.3	320	9.1	3.62
T_7	1101	1	4738	312	15.2	327	14.5	0.89
		2	4102	312	13.1	325	12.6	0
T	1110	1	4773	312	15.3	331	14.4	0.87
0		2	3869	312	12.2	309	12.4	0.64
T.	0	1	2603	81	32.1	218	11.9	1.26
-9	-	2	1884	81	23.1	170	11	1.06
		2	1001	Wheat 1992	-93	170	11	1.00
т	1111	1	3011	3/1	11.5	30/	0.0	
1 ₁	1111	1	2150	241	0.2	270	7.7 0.2	-
T	1100	2	3139	341	9.5	379	8.5	-
Γ_2	1100	1	3397	191	17.8	263	12.9	0.54
		2	3032	191	15.9	253	12	0.24
T_3	11	1	2633	191	13.8	264	10	1.12
		2	1649	191	8.6	235	7	1.31
T_4	1001	1	3404	191	17.8	284	12	0.64
		2	2611	191	13.7	258	10.1	0.62
T₅	1011	1	3496	266	13.1	316	11.1	0.8
5		2	2952	266	9.7	303	9.7	0.5
Т	111	-	2688	266	10.1	314	86	1 75
1 ₆	111	2	2000	266	86	314	7.4	1.75
т	1101	2- 1	4170	200	0.0 15 7	220	126	0
1 ₇	1101	1	4170	200	13.7	330	12.0	0
T.	1110	2	3279	266	12.3	326	10.1	0
18	1110	1	3667	266	13.9	324	11.4	0.61
		2	3120	266	12.1	316	9.9	0.29
T_9	0	1	2087	41	51	143	14.6	0.78
		2	1509	41	36.8	137	11	0.84
				Wheat 1993	-94			
T ₁	CSM	1	6321	414	15.3	394	16	-
		2	5860	414	14.2	371	5.8	-
T ₂	1111	1	5662	341	16.6	382	14.8	3.33
- 2		2	5014	341	14 7	360	13.8	4 67
Т	0	-	4132	41	101.1	189	21.8	0.67
13	0	2	3103	41 //1	75 7	174	17.8	0.07
т	1000	2	1921	41	13.7	1/4	17.0	0.69
1 ₄	1000	1	4031 4425	110	41.0 20.1	242	17.7	0.0
m	1001	2	4425	116	38.1	229	19.3	0.63
Γ_5	1001	1	4990	191	26.1	248	20.1	0.57
		2	4547	191	23.9	236	19.3	0.61
T_6	101	1	4412	191	23.2	252	17.5	0.83
		2	4143	191	21.7	241	17.52	0.83
T_7	1100	1	5605	191	29.3	272	20.6	0.35
		2	4561	191	23.9	270	16.9	0.81
T.	1101	1	5619	266	21.1	318	17.7	0.58
0		2	4778	266	18	313	15.3	1.06
		-		Wheat geno	vne Sarsahz			
Т	CSM		5561	306	18.2	355	157	_
т Т	1111		5113	3/1	10.2	335	15.7	1/2
1 ₂	1111		2120	341 41	13	167	19.5	1.43
1 ₃	U 1011		5150	41	/0.3	10/	10./	0.85
1 ₄	1011		5272	266	19.8	310	1/	0.41
T_5	1101		5011	266	18.8	307	16.3	0.73
T_6	1110		5107	266	19.2	316	16.2	0.74

Wahed et al.

			Wheat g	enotype LU26S	5		
T_1	CSM	5540	308	18.2	343	16.1	-
T_2	1111	5106	341	15	327	15.6	1.67
T_{3}	0	3722	41	90.8	177	21	0.68
T_4	1011	4893	266	18.4	289	16.9	0.74
T_5	1101	4565	266	21.3	273	16.7	0.86
T ₆	1110	5174	266	19.4	304	17	0.58
0			Wheat g	enotype Pasban	-90		
T_1	CSM	5121	306	16.7	329	15.6	-
T_2	1111	469	341	15.2	308	15.2	1.32
T_3	0	3148	41	76.8	172	18.3	0.81
T_4	1011	4830	266	18.1	270	17.9	0.32
T_5	1101	4987	266	18.7	276	18.1	0.16
T ₆	1110	4740	266	17.8	290	16.3	0.63
0			Cotton g	enotype NIAB-	-86		
T_1	CSM	3112	687	4.5	762	4.08	-
T_2	111	2934	612	4.8	716	4.1	0.95
T ₃	0	2106	237	8.9	427	4.93	0.75
T_4	101	2408	462	5.2	557	4.32	0.85
T ₅	110	3144	462	6.8	562	5.59	0
T ₆	11	2544	462	5.5	561	4.53	0.73
T_7	100	2814	387	9	559	5.03	0.37
T ₈	10	3110	387	10	548	5.67	0.03
			Cotton g	enotype FH-68	2		
T_1	CSM	3102	687	4.5	787	3.94	-
T_2	111	2768	612	4.5	720	3.84	1.37
T ₃	0	2404	237	10.1	412	5.83	0.46
T_4	101	2776	462	6	559	4.97	0.34
T ₅	110	3024	462	6.5	550	5.5	0.1
T_6	11	2336	462	5	563	4.15	0.86
T_7	100	2916	387	9.3	562	5.19	0.21
T ₈	10	2798	387	9	545	5.13	0.32

Fig. 1: Wheat grain yield under moisture deficit irrigation during 1991-92 and 1992-93 for medium and low fertilizer regimes. Missing irrigation during tillering, booting, anthesis and grain filling stages are designated by A, B, C and D, respectively, with the least significant difference being designated as LSD

Fig. 2: Wheat grain yield under moisture deficit irrigation during 1993-94 for medium and low fertilizer regimes. Missing irrigation during tillering, booting, anthesis and grain filling stages are designated by A, B, C and D, respectively, with the least significant difference being designated as LSD

Fig. 3: Grain yield of three wheat genotypes under moisture deficit irrigation during 1993-94. Missing irrigation during tillering, booting, anthesis and grain filling stages are designated by A, B, C and D, respectively, with the least significant difference being designated as LSD

Fig. 4: Seed cotton yield of two genotypes under moisture deficit irrigation during 1994. Missing irrigation during tillering, booting, anthesis and grain filling stages are designated by A, B, C and D, respectively, with the least significant difference being designated as LSD

observed (Table 5) for treatment $T_8(010)$ followed by $T_5(110)$. Both treatments included an irrigation at the generative crop stage. The lowest E_c was observed in $T_1(CSM)$ and $T_2(111)$ where the conventional flood irrigation system was used. For NIAB-86, among moisture deficit at two crop stages, treatment $T_5(110)$ was most efficient as compared to the other treatments. $T_8(010)$ had a higher E_c than did $T_6(011)$ leading to 22% more seed cotton yield and saving 19 mm water. The lowest k_v value was observed at $T_1(CSM)$ and $T_4(010)$ followed by $T_8(010)$ – all involving an essential irrigation at the crop stage II. For variety FH-682 the rainfed treatment $T_3(000)$ scored the highest $E_{\rm C}$ followed by $T_5(110)$ and $T_8(010)$. The lowest $E_{\rm C}$ was observed in $T_2(111)$ followed by $T_1(CSM)$. Among moisture deficit irrigation $T_6(011)$ was the lowest and $T_5(110)$ the maximum showing that moisture deficit at vegetative stage reduced the E_{c} . After $T_{1}(CSM)$ the lowest k_v was observed in T₅(110) under moisture deficit at maturity stage. k_v was maximum in T₆(011) showing that moisture deficit at vegetative stage reduced the yield in this variety. The two varieties showed different behaviour for k_v in moisture deficit irrigations. The seed cotton yield of NIAB-86 and FH-682 was enhanced by irrigation at generative and vegetative stages, respectively.

Conclusion

The moisture deficit irrigation approach helped in the preplanned irrigation scheduling of wheat and cotton crops with multiple options to utilize water and fertilizer more efficiently. In wheat, irrigation at tillering was most sensitive to moisture deficit. At other crop stages, the varieties responded differently to moisture deficit. In cotton, FH-682 and NIAB-86 showed maximum sensitivity to moisture deficit at vegetative and generative stages, respectively. The soil moisture neutron probe proved to be a very useful tool for assessing root zone soil moisture in irrigation experiments.

Acknowledgments

The authors are thankful to FAO/IAEA for partly financing and providing valuable guidance for the research activities under Research Contract No:6411/PK.

References

- Aggarwal, P.K. and N. Kalra, 1994. Analyzing the limitations set by climatic factors, genotype and water and nitrogen availability on productivity of wheat II. Climatically potential yields and management strategies. Field Crop Res., 58: 93-103.
- Gajri, P.R., S.S. Prihar and W.K. Arora, 1993. Interdependence of nitrogen and irrigation effects on growth and input-use efficiencies in wheat. Field Crop Res., 31: 71-86.

- Hassan, U.A., V.B. Ogunlela and T.D. Sinha, 1987. Agronomic performance of wheat (*Triticum aestivum* L.) as influenced by moisture stress at various growth stages and seeding rate. J. Agron. Crop Sci., 58: 172-179.
- Kniep, K.R. and S.C. Mason, 1991. Lysine and protein content of normal and opaque-2 maize grain as influenced by irrigation and nitrogen. Crop Sci., 31: 177-181.
- Mian, M.A.R., E.D. Nafziger, F.L. Kolb and R.H. Teyker, 1993. Root growth of wheat genotypes in hydroponic culture and in the greenhouse under different soil moisture regimes. Crop Sci., 33: 283-286.
- Musick, J.T. and D.A. Dusek, 1980. Planting date and mater deficit effects on development and yield of irrigated winter wheat. Agron. J., 72: 45-52.
- Norris, R.F. and D. Ayres, 1991. cutting interval and irrigation timing in alfalfa: Yellow foxtail invasion and economic analysis. Agron. J., 83: 552-558.
- Radin, J.W., J.R. Mauney and P.C. Kerridge, 1989. Water uptake by cotton roots during fruit filling in relation to irrigation frequency. Crop Sci., 29: 1000-1005.
- Schmidhalter, U. and J.J. Oertli, 1991. Germination and seedling growth of carrots under salinity and moisture stress. Plant Soil, 132: 243-251.
- Steel, R.G.D. and J.H. Torrie, 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2nd Edn., McGraw-Hill Book Co., New York, USA., ISBN-13: 9780070609266, Pages: 633.
- Storrier, R.R., 1965. The influence of water on wheat yield, plant nitrogen uptake and soil mineral nitrogen concentration. Anim. Prod. Sci., 5: 310-316.