http://www.pjbs.org



ISSN 1028-8880

# Pakistan Journal of Biological Sciences



# Production of Cellulases and Hemicellulases from Wheat Bran by *Arachniotus* sp. and Their Bioassay

Fathia Mubeen, M. Asghar, S.T.A.K Sindhu\*, Nusrat Yasmeen and M. Shazia Department of Biochemistry, \*Department of Veterinary Microbiology, University of Agriculture, Faisalabad-38040, Pakistan

### Abstract

The study was carried out for the maximum production of cellulases and hemicellulases at different substrate water ratio and ionic concentration. it was observed that maximum activities of above mentioned enzymes in IU/mI/min were monitored on 30 percent substrate: water ratio with 0.2 percent  $KH_2PO_4$  and 0.01 percent  $MgSO_4.7H_2O$ . Maximum FPase and  $\beta$ -glucosidase activities were noted at 0.005 percent  $CaCl_2$  whereas CMCase and xylanase showed maximum activities in he presence of 0.01 and 0.1 percent  $CaCl_2$ .

#### Introduction

The utilization of wastes from agricultural production for the production of useful products, can assest in reducing some waste management problems. In the biological systems, microorganisms are used to utilize wastes as potential energy source for the synthesis of very useful fermented products such as enzymes and biomass protein.

The enzymes like lignocellulosic in these fermented products hydrolyze lignocellulosic (LC) materials which are the most important components of renewable biomass and are currently over produced, but under utilized (Rajoka and Malik, 1997). The complete breakdown of cellulose is carried out by the cellulase complex which is found to consist of three basic components (CMCase, Avicelase and  $\beta$ -glucosidase) (Stutzenberger, 1990). The three enzymes act synergistically to convert cellulose into glucose.

The cellulases and hemicellulases cover a complex group of enzymes (Moo-Young, 1985). Production of these enzymes by culturing *Arachniotus* sp, on a fibrous substrate like wheat bran, would not only reduce the pollutants, but will also serve as potential source of energy and biomass protein.

The study was planned to achive the following objectives:

- 1. Production of cellulases and hemicellulose by *Arachniotus* sp. cultured on wheat bran substrate.
- Optimization of substrate: water ratio as well as ionic concentrations for the maximum production of cellulase and hemicellulases in fermented biomass.
- 3. Bioassay of cellulases and hemicellulases thus produced.

# **Materials and Methods**

Meat bran was dried ground and fermented by *Arachniotus* sp. as described by Mubeen (1993).

**Preparation of inoculum and culture cultivation:** Spores of *Arachniotus* sp. were transferred from sporulation medium agar slants to the inoculum medium (Mubeen, 1993) and incubated at  $32^{\circ}$ C in shaker for 72 hours.

Five percent inoculum was transferred to the growth media (pH14) containing wheat bran in different substrate; water itios and varying concentrations of  $KH_2PO_4$ ,  $MgSO_4$ .7 $H_2O_4$ 

and  $CaCl_2$  after sterilization by autoclaving. The inoculated growth media were incubated at 32 for 72 hours.

**Optimization of conditions: Substrate: water ratio:** Different concentrations of wheat bran (i.e. 10, 20. 30 and 40%) were tested to select out the best one for the production of enzymes.

**lonic concentrations:** Fermentation was also carried out with varying concentrations of  $KH_2PO_2$ , (0.2, 0.4, 0.6 and 0.8%), MgSO<sub>4</sub>. 7H<sub>2</sub>O (0.005, 0.01, 0.05 and 0.1%) and CaCl<sub>2</sub> (0.005, 0.01, 0.05 and 0.1%) to select out the most suitable concentrations of each nutrient for the production of enzymes.

Sample harvesting: After completion of fermentation period samples were harvested by simple and millipore filtration assembly simultaneously. Extract was used as crud enzyme solution and analyzed for activity of filter paper are carboxymethyl cellulose (FPase), (CMCase)  $\beta$ -glucosidase, and xylanase.

**Enzyme Assay:** The resulting biomass was filtered and analyzed for the activities of cellulases (FPase, CMCase and  $\beta$ -glucosidase) (Gadgil *et al.*, 1995) and Xylanase (Rajoka and Malik, 1984).

# **Results and Discussion**

#### **Optimization of conditions**

Substrate : water ratio: It was observed that maximum activity IU/ml/min of FPase, CMCase,  $\beta$ -glucosidase and xylanase was obtained at 30 percent substrate to water ratio (Table 1).

The results of this experiment were supported by Chahal (1986) and Mubeen (1993). Szczodrak (1988) reported that the optimum cellulose activity was observed in the medium containing 20 percent wheat straw and higher concentrations caused a decrease in enzymes.

Mubeen et al.: Cellulases, hemicellulases, FPase, CMCase,  $\beta$ , 1-4-glucosidase, xylanase, wheat bran, Arachniotus sp.

| Experiment No. | Percent<br>Substrate |                                 | MgS0 <sub>4</sub> | CaCl <sub>2</sub> | Cellulose |        |               |          |  |
|----------------|----------------------|---------------------------------|-------------------|-------------------|-----------|--------|---------------|----------|--|
|                |                      | KH <sub>2</sub> PO <sub>4</sub> |                   |                   |           |        |               |          |  |
|                |                      |                                 |                   |                   | FPase     | CMCase | β-glucosidase | Xylanase |  |
| 1              | 10                   | -                               | -                 | -                 | 1.119     | 0.069  | 0.076         | 0.0027   |  |
|                | 20                   | -                               | -                 | -                 | 2.004     | 0.070  | 0.077         | 0.0041   |  |
|                | 30                   | -                               | -                 | -                 | 2.558     | 0.093  | 0.089         | 0.0051   |  |
|                | 40                   | -                               | -                 | -                 | 2.130     | 0.089  | 0.081         | 0.0044   |  |
| 2              | 30                   | 0.2                             | -                 | -                 | 3.910     | 0.420  | 0.398         | 0.0048   |  |
|                | 30                   | 0.4                             | -                 | -                 | 3.019     | 0.365  | 0.347         | 0.0045   |  |
|                | 30                   | 0.6                             | -                 | -                 | 2.583     | 0.340  | 0.316         | 0.0043   |  |
|                | 30                   | 0.8                             | -                 | -                 | 2.016     | 0.301  | 0.284         | 0.0043   |  |
| 3              | 30                   | 0.2                             | 0.005             | -                 | 5.259     | 0.773  | 0.894         | 0.0084   |  |
|                | 30                   | 0.2                             | 0.01              | -                 | 6.597     | 1.197  | 1.197         | 0.0106   |  |
|                | 30                   | 0.2                             | 0.05              | -                 | 5.925     | 1.015  | 1.015         | 0.0097   |  |
|                | 30                   | 0.2                             | 0.10              | -                 | 5.067     | 0.974  | 0.974         | 0.0016   |  |
| 4              | 30                   | 0.2                             | 0.01              | 0.005             | 9.374     | 1.380  | 4.541         | 0.100    |  |
|                | 30                   | 0.2                             | 0.01              | -                 | 6.427     | 1.987  | 4.007         | 0.0109   |  |
|                | 30                   | 0.2                             | 0.01              | -                 | 6.231     | 1.900  | 3.774         | 0.0108   |  |
|                | 30                   | 0.2                             | 0.01              | 0.10              | 6.159     | 1.807  | 3.474         | 0.0129   |  |

|       |                  | jiiig cabetiator | trator ratio al | u 101110 0 |              |          |              |               | and Agranado | -  |
|-------|------------------|------------------|-----------------|------------|--------------|----------|--------------|---------------|--------------|----|
| lable | 1: Effect of var | ving substrate:  | water ratio an  | d ionic c  | oncentratior | i on the | e production | of cellulases | and xylanase | э. |

Experiment were conducted in such a way that condition optimized in one experiment was maintained in the next experiment.

Effect of  $KH_2PO_4$ : It was observed that 0.2 percent  $KH_2PO_4$  gave the best enzyme yields (Table 1) under optimum culture conditions.

Effect of MgSO<sub>4</sub>.7H<sub>2</sub>0: The maximum activity of FPase, CMCase, R-glucosidase and xylanase was found in the medium containing 0.01 percent MgSO<sub>4</sub>.7H<sub>2</sub>0 (Table 1). The results are in agreement with those of Illanes *et al.* (1992), Macris (1984) and Watson *et al.* (1984) who referred almost matching concentrations of MgSO<sub>4</sub>. 7H<sub>2</sub>0 for the optimal yield of enzymes, through microbial fermentation.

Effect of CaCl<sub>2</sub>: Maximum FPase and  $\beta$ -glucosidase activities were observed at 0.005 percent CaCl<sub>2</sub> concentration. While maximum CMCase and xylanase activities were noted with 0.01 and 0.1 percent CaCl<sub>2</sub>, in the medium respectively (Table 1). Similar results have been reported by Okeke and Paterson (1992) and Kuhad and Singh (1993) for the production of cellulases and xylanase. It was therefore, concluded that the maximum activities of cellulases and hemicellulases were produced by *Arachniotus* sp. after 72 hours were obtained with 30 percent substrate water ratio in the presence of 0.2 percent, KH<sub>2</sub>PO<sub>4</sub>, 0.015 percent MgSO<sub>4</sub>.7H<sub>7</sub>O and 0.005 percent CaCl<sub>2</sub> at 32°C, pH 4.

#### References

- Chahal, S., 1986. A New Approach in Solid State Fermentation for Cellulase Production. In: Biotechnology and Renewable Energy, Moo-Young, M., S. Hasnain and J. Lamptey (Eds.). Springer, London, pp: 57-69.
- Gadgil, N.J., H.F. Oaginawala, T. Chakarbartu and P. Khanna, 1995. Enhanced cellulase production by a mutant of *Trichoderma reesei*. Enzyme Microb. Technol., 17: 942-946.

- Illanes, A., G.L. Aroca, Cabello and F. Acevedo, 1992. Solid substrate fermentation of leached beet pulp with *Trichoderma aureoviride*. World J. Microbiol. Biotechnol., 8: 488-493.
- Kuhad, R.C. and A. Singh, 1993. Enhanced production of cellulases by *Penicillium citrinum* in solid state fermentation of cellulosic residue. World J. Microbiol. Biotechnol., 9: 100-101.
- Macris, B.J., 1984. Enhanced cellulase and  $\beta$ -glucosidase production by a mutant of *Alternaria alternata*. Biotechnol. Bioeng., 26: 194-196.
- Moo-Young, M., 1985. Comprehensive Biotechnology. Vol. 3, Per-gamon Press, Oxford, New York.
- Mubeen, F., 1993. Bioconversion of wheat bran, gram bran and Munghran to protein by fermentation technology. M.Sc. Thesis, University of Agriculture, Faisalabad.
- Okeke, B.C. and A. Paterson, 1992. Simultaneous production and induction of cellulolytic and xylanolytic enzymes in a *Streptomyces* sp. World J. Microbiol. Biotechnol., 8: 483-487.
- Rajoka, M.I. and K.A. Malik, 1984. Cellulase and hemicellulase production by Cellulomonas flavigena NIAB 441. Biotechnol. Lett., 6: 597-600.
- Rajoka, M.I. and K.A. Malik, 1997. Production of cellulases by four native species of cellulomonas grown on different cellulosic and agricultural substrates. Folia Microbiol., 42: 59-64.
- Stutzenberger, F., 1990. Thermostable fungal β-glucosidase. A review. Lett. Applied Microbiol., 11: 173-178.
- Szczodrak, J., 1988. Production of cellulases and xylanase by *Trichoderma Reesei* F-522 on pretreated wheat straw. Acta Biotechnol., 816: 509-515.
- Watson, T.G., I. Nelligan and L. Lessing, 1984. Cellulase production by *Trichoderma reesei* (RUT-C30) in fed-batch culture. Biotechnol. Lett., 6: 667-672.