http://www.pjbs.org

ISSN 1028-8880

Pakistan Journal of Biological Sciences

Asian Network for Scientific Information 308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Genetic Regulation of Character Expression and its Interaction with Environments in *Lablab purpureus*

Sakina Khanam

Crop Physiology Division, Bangladesh Institute of nuclear Agriculture, P.O. Box No. 4, Mymensingh, Bangladesh

Abstract

Components of genetic variation for pod yield and other associated yield characters in lablab bean have been estimated through six-parent diallel cross in F_2 generation. Additive as well as dominance components were significant for all the characters in both environments. Diallel analysis after Hayman's approach suggested environmental interaction for flowering date, pods/inflorescence, inflorescence/plant and pod yield/plant. Complete dominance was observed for flowering date in environment 2, flowers/inflorescence and pod yield/plant in environment 1 and pods/inflorescence, pod width in both environments. Over dominance was displayed for flowering date in environment 1 and for pod yield/plant in environment 2. Partial dominance was found for flowers/inflorescence in environment 2 only but for inflorescence/plant, pod length and 10-pod weight in both environments.

Introduction

Lablab bean is a protein rich major winter. vegetable in different parts of Asia. Many types and varieties of lablab bean are found in Asia. Little research work has been done to improve its pod yield and other associated characters. Work on genetic improvement of this crop is mainly done in India (Baldev *et al.*, 1988), but not much studies on genetic architecture.

The improvement of yield depends on a better understanding of the type of gene action. Evaluation of genotype performance in different environments is important in plant breeding. Genetic studies on lablab bean have been reported by some investigators (Mia et al., 1989; Ushakumari and Chandrasekharan, 1992; Newaz et al., 1995; Arora and Loodhi, 1998). The differential response of genotypes when subjected to different environments possess a major problem relating phenotypic performance to genetic constitution and make it difficult to decide which genotype should be selected. It is important to understand more fully the nature of genotype x environment (GXE) interaction to make testing and selection of genotypes more efficient. The present investigation about the nature arid magnitude of the components of variation yield and its direct components would be helpful in deciding the most efficient breeding procedure in Lablab purpureus.

Materials and Methods

Six genotypes of lablab bean were crossed in all possible combinations excluding reciprocals in Bangladesh Agricultural University Farm at Mymensingh. Seeds of parents and 15 F, families were shown with five replications in RCB design. Two cultural environments lenv.1 was with fertilizer and early sowing and env. 2 was

without added fertilizer but had relatively latter sowing date were considered to investigate environmental interaction in the study. Sowing distance was 2 m x 2 m, between and within the rows. Diallel analysis was done following Hayman (1954 a,b) approach. The genetic components of variation in $\rm F_2$ population were calculated according to Jinks (1956) and heritability was estimated as outlined by Verhalen and Murray (1969) for population.

Results and Discussion

From the Hayman analysis of variance (Table 1) environmental heterogeneity was found for additive (a) genetic effect in inflorescence/plant and pod yield/plant for dominant (b) genetic effect in pods/dnflorescence and for both in flowering date. In both the environments, additive and dominant genetic eornponents were important in the regulation of almost all the characters except inflorescence/plant and 10-pod weight in environment 2 which showed good agreement with Table 2. Although additive genetic components preponderance in inflorescence/plant, pod length and pod yield/plant, environmental interaction was observed only pod yield/pant for additive component. Environment could not influence upon Flowers/inflorescence, pod length, pod width and 10-pod wt.

Table 2 suggested that in majority of the characters, excess dominant allele was present in their parents except inflorescence/plant, pod length and pod yield/plant because their F value was positively significant. For all the characters differences between parents and crosses were present, which is measured by h value. Degree of dominance was measured by $(H_1/D)/4$) parameter. Complete dominance was observed in pods/inflorescence

Sakina Khanam: Genetic components, environmental hetrogeneity, Lablab purpureus.

Table 1: Hayman analysis of variance following Morley Jones modification for eight plant characters in a 6 x 6 dial experiment on Lablab bean conducted in two environments

Item	а	b	b ₁	b ₂	b ₃	Error
d.f	5	15	1	5	9	80
Environment 1						
Flowering date	277.63***	89.947***	210.40***	82.553***	80.671 * * *	10.565
Flowerslinflores	6.864***	2.140***	0.639	4.770 * * *	0.624	0.437
Pods/inflores	5.174***	1.728***	0.604	3.934 * * *	0.627*	0.303
Intlores/plant	747.967***	82.270	229.639	32.562	93.116	109.700
Pod length (cm)	10.729***	1.040*	2.112*	1.343*	0.752	0.499
Pod width (cm)		0.057**	0.099*	0.096**	0.031	0.021
10-Pod wt (g)	1630.78***	129.613**	53.909	220.237**	87.678	52.854
Pod yield/plant (kg)	4.075 * * *	0.167*	0.343	1.135 * *	0.360	0.275
Environment 2						
Flowering date	647.407***	84.324***	4.999	1842.49***	-883.62**	4.062
Flovversiinflores	7.913***	1.198***	0.056	2.559**	0.569	0.665
Pods/infiores	6.690***	1.445 * *	0.220	2.892***	0.777	0.604
Intlores/plant	296.945 * * *	67.427	420.043 * *	23.364	52.727	53.567
Pod length (cm)	11.841***	0.480*	1.909**	0.539	0.289	0.247
Pod width (cm)	0.116*	0.40**	0.174**	0.033	0.029	0.017
10-Pod wt (g)	1522.85***	68.158	2.835	98.923	58.324	48.322
Pod yield/plant (kg)	1.251 * * *	0.410*	1.165*	0.296	0.391	0.211
I x Eng. Interaction	a x Env	b x Env.	b₁ x Eriv	b ₂ x Env.	b ₃ x Eriv.	Pooled en
df	5	15	1	5	9	160
Flowering date	91.03***	21.666***	75.269**	1739.400***	938.600***	7.314
Flowers/inflores	0.677	0.560	0.537	0.845	0.404	0.551
Podslinflores	0.583	1.026**	0.717	2.539***	0.212	0.545
Inflores/plant	307.633**	37.586	14.264	25.798	46.725	81.388
Pod length (cm)	0.668	0.521	0.003	0.406	0.644	0.373
Pod Width (cm)	0.030	0.024	-0.262***	0.039	0.049	0.019
10-Pod wt (g)	92.271	50.648	16.009	31.911	64.907	50.588
Pod yield/plant (kg)	1.371 * * *	0.226	0.122	0.913***	-0.144	0.243

^{*}p<0.05; **p<0.01; ***p<0.001

and pod width for both environments, in flowering date for environment 2, in flowers/inflorescence and pod yield/plant for environment 1. In both environments, inflorescence/plant, pod length, 10-pod weight and in environment 1, flowers/inflorescence was controlled by partial dominance. Partial dominance was also reported by Jacob (1983) for flowers/inflorescence, inflorescence /plant and pod yield/plant whereas Khondker (1995) for pods/inflorescence, pod length and 10-pod weight in lablab bean. Over dominance was found only flowerings date in environment 1 and pod yield/plant in environment 2. Singh et al. (1986) reported over dominance in lablab bean for flowering date. All traits were governed by asymmetrical distribution, of positive and negative alleles. Positive and negative alleles were in equal proportion in the parents for

yield character as $H_2/4H_1$ values were 0.25 and 0.2 environment 1 respectively. Unequal distributions dominant and recessive genes were observed for all characters except pod yield/plant. Dominant and reces were equally distributed in yield character because $[v(4DH_1)/4 + F/2]/(4DH_1)/4-F/2]$ ratio was nearly equal unity. Gene group present in the parent of different treatment governed by h²/H₂. One or two genes or gene groups v involved in all traits. High narrow sense heritability observed in pods/inflorescence, pod length and 10-pod weight. High broad heritability was in flowering day flowers/inflorescence, pod length and 10-pod weight. Joshi (1971) and Reddy (1982) also reported high heritability pods/plants inflorescence and Nayer (1984) for 10-pod were Heritability was moderate in both sense for pod yield/plant Gangadharappa (1981) also found that in lablab bean.

Pod yield/plant (kg) 0.411 ± 1.80 -0.263 ± 1.2 1103.61 ± 77.06 $13.4 \pm 2.26^{***}$ $5.2 \pm 1.5^{***}$ 0.377 ± 0.2 5.4 ± 3.76 2.1 + 2.5 5.5 ± 3.36 Table 2: Components of variation and genetic parameters for eight plant characters from a 6 x 6 diallel experiment oh Lablab bean conducted in two environments 2.7 ± 2.2 0.2665 0.214 0.81 2.43 1.93 0.48 0.75 0.25 1.28 $114.6 \pm 470.5^{***}$ $12946.0 \pm 166.7^{***}$ 0.13 ± 0.018 1525.2 ± 782.5 -385.8 ± 277.2 953.6 \pm 699.0 269.1 \pm 247.6 $967.3 \pm 27.30^{\circ}$ 682.7 ± 132.7 1062.2 ± 374.7 10-Pod wt. (g) 0.58 52.83 49.00 0.15 10.03 33.49 11.98 48.10 0.95 0.82 0.68 ± 0.18 0.337 ± 0.078 0.196 ± 0.088 0.424 ± 0.263 0.281 ± 0.069 Pod width (cm) 0.11 ± 0.007 0.19 ± 0.037 $5.96\pm0.22^{*}$ $11.98 \pm 0.04^{*}$ 10.39 ± 0.11 0.02 1.14 0.46 0.72 0.15 389.02 24.51 42.65 0.21 4.91 -0.3952 ± 1.076 -6.643 ± 33.96 $177.2 \pm 22.86^{***}$ Pod length (cm) 2.16 ± 18.20 9.42 ± 38.02 1.079 ± 2.24 $196.4 \pm 1.35***$ $.51 \pm 3.74$ 5.96 ± 0.22 2.59 ± 2.00 0.65 0.49 0.18 1.85 26.67 25.72 0.63 0.17 1.44 0.77 -620.64 ± 217.8 5.18 ± 281.0 $2675.6 \pm 198.9^{***}$ $7127.0 \pm 130.9^{***}$ 80.54 ± 104.31 -49.57 ± 134.5 -299.62 ± 194.5 328.66 ± 21.45 117.96 ± 27.67 136.38 ± 251 Inflores/plant -0.68 0.105 1.43 108.03 53.79 0.21 19.61 0.51 0.33 $107.19 \pm 3.61^{***}$ $18.68 \pm 5.36***$ 6.91 ± 0.59 6.94 ± 0.93 26.8 ± 6.0 17.69 ± 9.44 9.83 ± 9.79 115.64 ± 5.66 15.0 ± 2.87 13.4 ± 4.52 Pods/inflores 0.98 20.188 0.29 10.29 5.73 0.95 0.17 0.84 Flowers/inflores $284.2 \pm 2.5^{***}$ $290.9 \pm 3.74^{***}$ $19.6 \pm 3.73^{***}$ $14.4 \pm 2.98**$ $34.8 \pm 4.17**$ $12.15 \pm 6.23^{\circ}$ $8.0 \pm 0.6^{***}$ $24.2 \pm 2.0^{***}$ $10.1 \pm 0.4^{***}$ 5.7 ± 5.55 0.429 0.926 0.613 -7.839 -5.374 14.453 50.95 0.141 0.80 1.2 $21848.7 \pm 180.8^{***}$ $15659.8 \pm 193.3^{***}$ $1072.1 \pm 287.2^{***}$ $1309.2 \pm 300.8^{***}$ $1497.2 \pm 321.5^{***}$ $1058.0 \pm 268.7^{***}$ 300.9 ± 144.0 686.2 ± 153.9 209.1 ± 752.4 518.9 ± 859.6 1/4D 1/16H₂ 1/8F.E 1/4D/1/16H₁ 1/8F.E Flowering date 0.180 8.026 14.606 0.849 0.202 3.707 20.649 1/4D 1/16H, 1/8F 1.251 0.48 0.92 0.89 11.83 0.97 $\frac{1}{4}(4DH1)^{12} + \frac{1}{2}$ $\frac{1}{2}$ (4DH1)¹²- $\frac{1}{2}$ E₁ E₂ [¼(H1/D)]^{1/2} E₁ E₂ п п 2 \mathbb{L}^2 щщ ш щ шщ шщ шщ ய் щ ய் மி щ H2/4H1 Items $h^2/H2$ h^2 n h^2b H2 h2 Ξ Δ ш

Sakina Khanam: Genetic components, environmental hetrogeneity, Lablab purpureus.

Acknowledgments

Author gratefully acknowledge the award of an NST fellowship by the Ministry of Science and Technology, Govt. of Bangladesh, and the provision of field research facilities extended by Bangladesh Agricultural University authority.

References

- Arora, R.N. and G.P. Loodhi, 1998. Combining ability studies for yield and its components in clusterbean. Indian J. Genet. Plant Breed., 58: 525-527.
- Baldev, B., S. Ramanujam and and H.K. Jain, 1988. Pulse Crops. Oxford and IBH Publishing Pvt. Ltd., New Delhi, India
- Gangadharappa, K.R., 1981. Genetic studies in *Dolichos lablab* var. typicus. F2 breeding behaviour for green pod yield. Mysore J. Agric. Sci., 15: 214-216.
- Hayman, B.I., 1954a. The analysis of variance of diallel tables. Biometrics, 10: 235-244.
- Hayman, B.I., 1954b. The theory and analysis of diallel crosses. Genetics, 39: 789-809.
- Jacob, K.V., 1983. Genetic architecture of yield and its components in field bean (*Lablab purpureus* Linn.) Sweet. Univ. Agric. Sci. Bengalore, 9: 360-361.
- Jinks, J.L., 1956. The F_2 and Backcross generations from a set of diallel crosses. Heredity, 10: 1-30.
- Joshi, S.N., 1971. Studies on genetic variability for yield and its components in Indian beans *Dolichos lablab* var. lignosus. Madras Agric. J., 58: 367-371.

- Khondker, S., 1995. Diallel analysis in lablab bean (*Lablab purpureus*) following added nutrients. M.Sc. Thesis, Bangladesh Agriculture University, Mymensingh.
- Mia, W.W., M.A.K. Mien, T. Hussain and K. Safiuddin, 1989. Gene effects and heterosis in country be (*Lablab purpureus* L. sweet). Bangladesh J. Plant Br. Gen., 2: 45-48.
- Nayer, K.M., 1984. Studies of genetic divergence and breeding behaviour of few intervarietal crosses in tie bean (*Lablab purpureus* (Linn.) sweet.). Mysore J. Agric. Sci., 16: 486 Mysore J. Agric. Sci., 16: 486-486.
- Newaz, M.A., M.S. Uddin, N. Newaz and M.A. Hossain, 1995. Genetic architecture of flowering time, pod yield and seed protein in lablab bean. Bangladesh J. Crop Sci., 6: 47-50.
- Reddy, S.M., 1982. Genetic variability and formulation selection indices in field bean (*Lablab purpureus* Sweet.). Univ. Agric. Sci. Bengalore, 8: 69-70.
- Singh, S.P., H.N. Singh and J.P. Srivastava, 1986. Genetic studies of flowers and pods/raceme in hyacinth bean (*Dolichos lablab*). Farm Sci. J., 1: 85-88.
- Ushakumari, R. and P. Chandrasekharan, 1992. Genetic analysis in fodder lablab (*Lablab purpureus* L.). Indian J. Genet. Plant Breed., 52: 169-173.
- Verhalen, L.M. and J.C. Muuray, 1969. A diallel analysis of several fiber property traits in upland cotton (*Gossypium birsutum* L.) II. Crop Sci., 9: 311-315.