Pakistan
 Journal of Biological Sciences

ANSIreet

Resistance to Leaf Rust in Pakistani Wheat Lines

Javeed Iqbal Mirza, Ravi P. Singh* and Iftikhar Ahmad
Crop Diseases Research Institute, Pakistan Agricultural Research Council, Sunny Bank Murree, Pakistan
* International Maize and Wheat Improvement Center (CIMMYT), Lisboa 27, Apdo. Postal 6-641, 06600, Mexico, D.F

Abstract

About 57 Pakistani wheat lines including 49 NUWYT lines (National Uniform What Yield Trial) were analyzed for the identification of leaf rust resistant genes by using twelve Mexican Puccinia recondita tritici pathotypes. Postulation showed the presence of leaf rust resistant genes Lr3, Lr10, Lr16, Lr17, Lr21, Lr23, Lr26, $L r 27+31, L r 13$ and Lr1. One line Sarsabz was found resistant to all Mexican pathotypes used and had other unidentified genes in addition to Lr16. Most of the Veery derived lines had Lr26, which is associated with 1B1R translocation. Lr13, closely associated with Lr23, was also postulated in some lines. The lines were also evaluated for adult plant resistance and area under the disease progress curve (AUDPC) showed varying behavior. AUDPC ranged from 0%, for highly resistant to 100%, for the most susceptible one. Analysis indicated presence of good adult plant resistance in the lines.

Key words:

Introduction

Leaf rust caused by Puccinia recondita Roberge ex Desmaz. f. sp. tritici Eriks. and E. Henn., is one of the most important rust diseases of wheat through the world. The most important and environmentally safe method to reduce losses due to this devastating disease is throughout cultivation of resistant varieties. The ability to diversify genetic basis of resistance depends on the availability of resistant genes in the onhand germplasm. Known genes imparting resistance against disease can be postulated in a cultivar if pathogen possess diverse avirulence/virulence combination. This method which is based on gene-for-gene hypothesis has been described and used by several researchers (Modawi et al. 1985). The postulation can further be confirmed if necessary, by genetic analysis.
The objective of the current study were to postulate genes for leaf rust resistance in 57 Pakistani cultivars/advanced lines including 49 NUWYT (National Uniform Wheat Yield Trial) lines. These lines are the candidate lines developed by the wheat breeders, tested for yielding ability, adaptation and other agronomic characters. The wheat varietal evaluation committee places a great weightage on the disease resistance of these lines and the rust data for these lines form basis of recommendation.

Materials and Methods

About 57 Pakistani cultivars/advance lines were evaluated for the postulation of leaf rust resistant genes. Thacher near-isogenic lines, carrying specific genes, were used as a check (Table 1). Thirteen Mexican pathotypes of P. recondita tritici, named after Long and Kolmer (1989), were used to identify infection types produced on the check and cultivars/advance lines to be analyzed (Table 2 and 3).
The material to be analyzed and checks were cultivated in $30 \times 23 \times 7 \mathrm{~cm}$ plastic trays having pasteurized mixture of soil and compost. Thirteen sets, each consist of a subset of cultivars/advance lines and a subset of near-isogenic lines, as check, were sown in separate trays. Seedlings were grown in green house with temperature maintained at $18-22^{\circ} \mathrm{C}$. After ten days when the second seedling leaf was just emerging each of the thirteen sets were inoculated separately with each of the thirteen Mexican pathotypes of P. recondita. tritici. Inoculum in the form of uredial suspension in soltor-170 (lightweight non-phytotoxic mineral oil), was sprayed uniformly with a fine atomizer. The seedlings were left in open air for 1-2 hours to evaporate mineral oil and were shifted afterwards to a humidity chamber set at $18^{\circ} \mathrm{C}$
for overnight, after which they were transferred to greenhouse at $25^{\circ} \mathrm{C}$ day and 230 C night temperature. After ten days infection types were recorded at 0-4 scale following method described by Stakman et al. (1962). For the postulation of Lr13, infection types for the sets inoculated with Lr13 avirulent races were recorded on the 14th day of inoculation. The genes were postulated by comparing infection types produced on the lines to be tested with those on near-isogenic checks.
Field evaluations were carried out at El-Batan Mexico during 1998 crop cycle. Cultivars were planted in plots consist of 1.5 m rows seeded 20 cm apart with 70 cm between the plots. susceptible spreaders, consisting of cultivar $>$ Morocco was planted as clumps on one end of the plots. A leaf rust epidemic was initiated by injecting urediospore-water-tween 20 suspension in leaf sheath of spreader plants at growth stage 34-37 (Zadoks et al., 1974). Mexican pathotype MCJ/SP (avirulence/virulence formula 2a, 2c, 9, 16, 24, 3ka, 30, 18, 19/1, 3, 26, 11,17, 3bg, 1315 10, 23) was used to evaluate adult plants. Rust severity and response were recorded thrice on flag leaves with 7 day interval between $1^{\text {st }}$ and $2^{\text {nd }}$ reading and 9 day interval between 2 nd and 3rd reading, beginning with the appearance of first symptom (1 month from inoculation), when most cultivars were in late flowering stage. Severity estimations were based on modified Cobb scale (Peterson et al., 1948). The host response to infection was scored using: $\mathrm{R}=$ resistant, miniature uredia surrounded by necrotic tissues; $M=$ intermediate, variable sized uredia, some with chlorosis, necrosis or both; $\mathrm{MS}=$ moderately susceptible, moderate sized uredia without necrotic tissues and $\mathrm{S}=$ susceptible, large sized uredia without necrotic tissues. AUDPC was calculated by using AUDPC computer program developed by CIMMYT (AUDPC version 1) and it was taken as \%age of the susceptible check WL-711. Adult plants were also classified for gene Ltn conferring leaf tip necrosis, as Dyck (1991) indicated that Lr34 linked with Ltn and Singh (1992) failed to recover recombinants for $L t n$ and $L r 34$.

Results and Discussion

Host material analyzed is given along with their pedigrees in Table 1. Infection types displayed by 48 near-isogenic differential lines with 13 Mexican pathotypes at $25^{\circ} \mathrm{C}$ are given in Table 2 and those of 57 Pakistani lines/varieties are given in Table 3. Genes Lr12, Lr22a and Lr22b are known to confer low infection types only in adult plant stage, therefore these genes could not be postulated at seedling stage. Genes Lr25, Lr9, Lr29 and Lr34 could not be postulated because of their low reactions to all the

Table 1: List of Pakistani Cultivars/advance Lines Analyzed for Leaf Rust Resistance

Accession	Pedigree
DW-1	BOWS"S"/3/CAR853/COC//VEE"S"
NR-51	MILAN
PR-65	DOVE'S'/INIA/4/4777(2)//FN/GB/3/PVN'S'
NR-102	FCTT3/SNI/NKT
$93 \mathrm{CO65}$	COO/VEE//SERI/3/BJY/COC
V-94195	ALTAR84/AE/SQUAROSA(224)2*ESDA
BWP-949549	BOWS'S'/5/BR'S'/ANZA/3/KVZ
95R48	BJY/COC/PRL/BOW
95 CO 22	PSN/BOW'S'//SERI
95202	KASYON/GLENNSON81
V-4	URES/BOW'S'
V-7002	$\begin{aligned} & \text { BUC'S'/4/TZPP//IRN46/CNO67/3/PRIC } \\ & \text { M56744 } \end{aligned}$
V-7012	WL58 X LU26S
V-93BTO22	V-84133/V-83150
V-93032	RL6043/4*NAC/4/ZA75/3/LD35.7E/TC 3//GU"S"
V-93118	HAR"S"//BLS/KLT
V-94042	INQALAB 91//TTR 'S'/VEE 'S'
V-94091	BURGUS/SORT-12-13//KAL/BB/3/PAK-81
V-94105	CROW 'S'/NAC//BOW 'S'
V-94654	WULP 'S'//CHEN 'S'/ALTAR 84
V-95219	CBRD
93 B 2707	PB 85/NKT 'S'
93B2779	VEE 'S'/4/GOLDEN VALLEY/AZ 67// MUS /3 BWP 24
AUP9701	JUP/BJY 'S'//URES
DW-2	F12-71/COC/CNOCNO 79
WS94012	PLOUDAN/3/BB/7C*2//Y50E/KAL*3
WS94130	KEA/TOW///LIRA
S-190157	BUC"S"/FLK"S"/MYNA"S"/BUL"S"
BLUE SILVER	1153-388 /AN /3/YT54 /N10B// LR64/AN //YT54/N10B/3/LR864/4/B4946.A.4.18.2.1Y -Y53//3/Y50
WL-711	S308/CHRIS//KAL
ZARDANA	C[CNO67/8156*TOB66-CN067/NOR66/I 12300 *LR64-8156JPVN76'S;
SARSABZ	M20/79
PAK-81	KVZ//BUHO//KALBB
KOHINOOR-83	OREF1158/FDL/MFN/2*TIBA63/3/COC
FAISALABAD-83	FURY/KAL/BB
FAISALABAD-85	MAYA/MON//KVZ/TRM
CHAKWAL-86	F1N/ACS//ANA
RAWAL-87	MAYA/MON//KVZ/TRM
SOGHAT-90	PAVON MUTANT-3
INQALAB-91	WL711/CROW 'S'
PIRSABAK-91	KVZ//BUHO//KALBB
KAGHAN-93	TTR/JUN
BAKHTAWAR-93	JUP/BJY 'S'//URES
PARWAZ-94	V.5648/PRL
WATAN-94	LU26/HD2179
SHAHEEN-94	MLT"S"
SHAHKAR-95	WL711//F3.71/TRM
KIRAN-95	
PUNJAB-96	SA42*2/4CC/INIA//BB/3/INIA/HD832
V-92128	BOW/PRL/BUC
V93001	V1562//CHRC"S"/HORK/3/KUFRA-I/4/CARP "S" /BJY "S"
V95042	INO91/TTR'S'/VEE'S'
V-95069	WL-711/HD-2169//VRES/VEE"S"
V92145	BLS//F3.71/TRM
V92145	(SISTER LINE) SAME AS ABOVE
V-93108	OPATA/TRAP\#1
V-94091	BURGUS/SORT-12-13//KAL/BB/3/PAK. 81

races (Table 2). Lr14, Lr18, Lr20, Lr22a and LrB on the other hand gave high reaction with all the races and thus could not be
postulated (Table 2). Postulation could not be made in two badly mixed lines NR15 and 95CO22 and a durum line.
Ten leaf rust resistant genes, Lr1, Lr3, Lr1O, Lr13, Lr16, Lr27+31, Lr17, Lr21, Lr23 and Lr26, were postulated in the tested material among which Lr26 was the most frequent one while $L r 21$ was the least frequent. $L r 1$ which is gave low infection type (LIT) 0 ; to ; with pathotypes $B B B / B B, C B J / Q B, C B J / Q L$, $\mathrm{CBJ} / \mathrm{QQ}$ and $\mathrm{CCJ} / \mathrm{SP}$ (Table 2) was postulated in ten lines, including three commercial varieties Zardana, Faisalabad-83 and Soghat-90 (Table 3). Lr1 in V94195 is inherited from T. tauchii accession in its pedigree. This gene had a high virulence frequency in past and thus is of little or no use if diploid alone. 13 lines were postulated to have gene Lr3 with LIT ranging from ; to ;1 with pathotypes BBB/B, LCJBN and NCJBN (Table 2). This gene had also high frequency of virulent isolates in past and should not be deployed alone. Pathotype NCJ/BN gave ;1 reaction with Lr13 in Thacher background and X type of reaction with WL711 (having Lr13) at $25 \mathrm{C}^{\circ}$ on $14^{\text {th }}$ day of inoculation. Similarly Pathotype LCJBN gave X type of reaction with WL711 and 1^{+}3C type of reaction with Thacher near-isogenic line (having Lr13 in it=s background) (Table 2). Low infection type shown by Lr13 avirulent isolates, varying from; through X to 3 on seedling, depend on pathogen culture, environmental conditions and host genetic background (McIntosh et al., 1995). Lr13 is an important adult plant resistance gene and was postulated in V-4, V-93BT022, 94B2707, 94B2779, WS940102, Bluesilver, Zardana, Chakwal-86, Soghat-90, Parwaz-94, Wattan-94, Shahkar-95, V92128, V93001, V94042 and V95069. This gene had a low virulence frequency in past and in order to maintain low virulence against this gene it must be deployed very carefully in combination with other genes. Combined virulence against Lr13, Lr17 and Lr26 is missing in Pakistan (Hussain et al., 1999) and is postulated in four lines 94B2779, 93BTO22, Chakwal-86 and Kaghan-93. Lr17 (LIT ; to ;1 with pathotypes BBB/BB, TCB/TD and X with MFB/SP; table 2), in combination with Lr26 (LIT 0; to 1^{+}with $B B B / B B, C B J / Q B, C B J / Q L, C B J / Q Q$ and ; with TBB/JP and TBB/TM; Table 2), is postulated in V94042 and Kohinoor 83. Virulence against Lr17 though reported missing in Pakistan during past, but Innia 66 carrying Lr13 and Lr17 have shown high susceptibility (Singh personal communication). Lr26 is known to be associated with 1B1R translocation is one of the most common translocations in the recent spring wheat cultivars derived from CIMMYT germplasm (Rajaram et al., 1996). The translocation is of great interest as it carries stem rust resistance gene Sr31, stripe rust resistance gene Yr 9 and powdery mildew resistance gene Pm8 in addition to Lr26. Lr10, another gene with low virulence frequency in past, is postulated in 21 lines (Table 3). This gene usually gives LIT ; to ;1 with pathotype BBB/BB, CBJ/QB and TCB/TD. Genes Lr1O and Lr21 in V93032 are coming from RL6043 in its pedigree and reaction; 12^{+}with pathotype MCJ/SP (Table 3) provided base for $\operatorname{Lr1O=s}$ postulation. Lr21, sometimes ineffective at seedling stage (McIntosh et al. 1995), gave 23C reaction in this study (Table 2). Adult plants with Lr21 are reported to be resistant in Indian subcontinent (Huerta-Espino, 1992). Lr23 was identified by its LIT with pathotypes BBB/BB, CBJ/QB, CBJ/QL, CBJ/QQ, TBD/TM and MCJ/QM, TBD/TM (Table 3). This gene, which is very close to Lr13 (RA McIntosh and WM Hawthorn, unpublished 1981), was postulated in combination with Lr13 only in 3 out of 10 lines having Lr13. The lines having Lr23, either in combination with Lr13 or alone, can provide good resistance in the wormier areas of Pakistan, as it is more effective at temperatures above $20^{\circ} \mathrm{C}$ (Dyck and Johnson, 1983). Lr16 postulated in V7002, S190157 and DW-2, with LIT 1 to 3C with pathotype BBB/B, CCJ/SP and MFB/SP (Table 2), is coming from BUCK $>\mathrm{S}=$ in the former two and from CNO 79 in the latter. Gatcher gene complex $(L r 27+31)$ which usually gives

No.	Accession	BBB/BB	CBJ/QB	CBJ/QL	CBJ/OQ	CCJ/SP	TBB/JP	TBD/TM	TCB/TD	MFB/SP	MCJ/QM	MCJ/SP	NCJ/BN	NCJ/BN*	LCJ/BN*
1	Lr22B	3^{+}	3^{+}	3^{+}	3^{+}	3	3	3	3^{+}	3^{+}	3^{+}	3^{+}	3	3	3^{+}
2	Lr1	;	0;	0;	0;	0;	3^{+}	3	$3+$	3^{+}	$3+$	$3+$	3	3^{+}	3^{+}
3	Lr2a	;	;	0;	0;	0;	$3+$	$3+$	$3+$;	$0 ;$	0;	;1-	;	1
4	Lr2b	;	;1-	;	;	;	$3+$	$3+$	$3+$;1-	0 ;	$0 ;$;1	;1	$1+$
5	Lr2c	;		;	;1	;	$3+$	$3+$	3^{+}	11^{+}	;		3С3	; ${ }^{+3}$ C	зс3
6	Lr3	;	$3+$	$2+3 \mathrm{C}$	3 C	12	3	3	$3+$	$3+$	$3+$	23 C	;	;	;1-
7	Lr3ka	;2 =	12	;	;	;	;12	12	;12	12	;12	;	12	;1-	;12
8	Lr3bg	;	23 C	3	$3+$	3	12	$3+$	$3+$	3^{+}	$3+$	23	;	;	0 ;
9	Lr9	0;	0;	;	0 ;	;	0;	0;	0;	0;	0 ;	$0 ;$	0 ;	0 ;	0 ;
10	Lr10	;	;1-	3^{+}	3^{+}	3	3	3	;	3^{+}	3^{+}	$3+$	$3+$	$3+$	3^{+}
11	Lr11	зС	4	3^{+}	3^{+}	3^{+}	3^{+}	3	$1+$	3 C	$3 \mathrm{C3}{ }^{+}$	$3+$	$3+$	3^{+}	$3+$
12	Lr12		3^{+}	x	зсз	3^{+}	3^{+}	3	x^{+}	3^{+}	3^{+}	$3+$	$3+$	зС3	$3+$
13	Lr13	зсз	3^{+}	$3+$	3^{+}	3	3	3	3^{+}	3^{+}	$3+$	$3+$	3	;1	$1+3 \mathrm{C}$
14	Lr14a	3^{+}	3^{+}	3^{+}	3^{+}	3	3^{+}	3	3^{+}	3^{+}	$3+$	$3+$	$3+$	3	3^{+}
15	Lr14b	3^{+}	3^{+}	3^{+}	3^{+}	3	3^{+}	3	3^{+}	3^{+}	3^{+}	$3+$	$3+$	$3+$	$3+$
16	Lr15	;	;	;	0;	3	$3+$	3	$3+$	3^{+}	;	$3+$	1	;1-	1.
17	Lr16	$1+3 \mathrm{C}$	1	1^{+}	;1	12	1	1	1	1	1	$1+$	1	1	1
18	Lr17	;1	$3 \mathrm{C} 3^{+}$	x	зс3	3	;1-	3	;	x	$3+$	$3+$	3	3	$3+$
19	Lr18	3С3	3^{+}	3^{+}	2 C 3	3	3	3	$3+$	3^{+}	зС3	$3+$	$3+$	3	$3+$
20	Lr19	;	0;	;	3	0;	0;	0 ;	;	;	0;	0;	;	0;	0;
21	Lr20	3^{+}	3^{+}	3^{+}	3^{+}	3^{+}	3^{+}	3	3^{+}	$3+$	$3+$	4	$3+$	3	$3+$
22	Lr21	12	23 C	23 C	12	12	;12	$12-$;12	12	12	23 C	12	;1-	12
23	Lr22a		3^{+}	3^{+}	3^{+}	3	3^{+}	3	3^{+}	3^{+}	3^{+}	$3+$	3	3	3^{+}
24	Lr23	;1	;1	;1	;1	3	3^{+}	12	3^{+}	3^{+}	;1	$3+$	3	3	$3+$
25	Lr24	;1	0;	1	;1	;	;	,	;	33^{+}	;1	;1	;	;1	;
26	Lr25	;	;	0;	.	;	0;	0;	;	;	,	0;	;	;	
27	Lr26	${ }^{+}$	11^{+}	;1-	$0 ;$	3	;	;	$3+$	3	3	$3+$	$3+$	3	$3+$
28	Lr27+31	;1	;	;1	;1	$3+$	$3+$	$3+$;	$3+$	$3+$	3	X	;1-	;1
29	Lr28	0;	0;	0;	$0 ;$	0;	3^{+}	3	$3+$	4	0;	$0 ;$	3^{+}	3	$3+$
30	Lr29	;	;1	;1-	;	;1-	1	12	;1	;1	;1-	;1	11^{+}	;1	;1-
31	Lr30	;12	$3-$;12	23 C	$12-$	$2-$	$2=$	23 C	23	12	;12	зс3	;1	23 C
32	Lr32	;12	3	12	3 C	3	3	2	;12	12	22^{+}	22^{+}	3	3	12
33	Lr33	3С3	3-3	3	3	22^{+}	12	22^{+}	23 C	зс3	23 C	23 C	3	22^{+}	3 C 3
34	Lr34	3	3-3	2^{+3}	3	3	3^{+}	;23	$2^{+3} \mathrm{C}$	3	3	3	3	3	3
35	Lr35RL5711	3	3	3	3 C 3	3	3	3	$3+$	$3 \mathrm{C} 3^{+}$	3С3	3С3	3	$1+3 \mathrm{C}$	3C3
36	Lr36	;1	1	3С3	12	3	3	1	;1	;1	$1{ }^{+3 C}$	3 C 3	$1^{+3} \mathrm{C}$;	;
37	Lr37RL6081	$3+$	$3+$	3^{+}	23 C	3	$3+$	3	$3+$	$3+$	3^{+}	$3+$	$3+$	3	$3+$
38	LrB	3 C	$3+$	$3+$	3	$3+$	$3+$	3	3C3	$3+$	$3+$	$3+$	$3+$	$3+$	$3{ }^{+}$
39	WL711Lr13	x^{+}	$3+$	$3+$	$3+$	$3+$	$3+$	3	$3+$	$3+$	$3+$	$3+$	3	X-	X
40	GhazaW23, ${ }^{+}$;	;	;	;	3	3C3	;	$2+3 \mathrm{C}$	$2+3 \mathrm{C}$;	3С3	3	-	$3^{+} \mathrm{C}$
41	Altare	;	;	;	;	;1	;1	;	;2	;1	;	;12-	12	;1	12
42	Dnline	$1+3 \mathrm{C}$	23 C	12	12	;12	12	12	;12	12	;11+	;12	-	-	12
43	lumino	;1	;13C	3С3	3 C	3C3		12	;12	;12	;13C	X	-	-	23 C
44	Euroga	23 C	-	-	-	-	3^{+}	-	;	-	-	3	-	;	12
45	Cananea	-	-	-	-	-	-	-	3	-	-	3C3	-	-	12
46	Siikiyou	-	$3+$	$3+$	$3+$	-	-	-	4	$3+$	$3+$	$3+$	-	-	$3+$
47	Tapir/yogui/Mus	-	-	-	-	-	-	-	3	-	-	$3+$	-	-	$3+$
48	BAV92	-	x	x	x	-	-	-	X	3^{+}	3^{+}	4	-	-	X^{+}

[^0]| Varietiesllines | Pathotypes | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | BBB/BB | CBJ/OB | CBJ/OL | CBJ/QO | CCJ/SP | TBB/JP | TBD/TM | ICB/TD | MFB/SP | MCJ/OM | MCJ/SP | NCJ/BN* | LCJJBN* L | Lr Genes postulated |
| DW-1 | ; | ;1- | 22^{+} | 1 | 3 C 3 | 1 | ; | | ;1 | | 3^{+} | ;1 | | 3,17,23,26 |
| NR-15 | 0; | 0; | $0 ;$ | $0 ;$ | 0 | 3^{+} | ;1 | 3 | ;12 | зС3 | 3^{+} | x | $2 \mathrm{p} 3 \mathrm{C}^{\prime} 3 \mathrm{P} 3^{+}$ | + Mixed |
| PR-65 | ; | 0 ; | 0 ; | $0 ;$ | ;12 | 0; | 0 | 3 | 3 | ;1- | 3^{+} | 4 | | 23,26 |
| NR-102 | ; | 3-3 | 3 | ${ }^{2+3}$ | | | ;12 | | 23 | 3 | 2^{+3} | ;1 | 3 | $3,(+)$ |
| $93 \mathrm{CO65}$ | | | x | X | $3+$ | 3 | 3 | ;1 | 3 | 3^{+} | 3^{+} | ; | | 3,10, 27+31 |
| V-94195 | 0 ; | 0 ; | 0 ; | ; | 0 ; | 3 | ;1 | | 3 | | ${ }^{3+}$ | \times | 3^{+} | 1,10,23, ${ }^{+}$) |
| BWP-949549 | 0 ; | $0 ;$ | | | 3 | 3 | 1PO;'2P;12 | 2 0; | 3 | ; 1 - | 3^{+} | $0 ;$ | 0 ; | 3,10,23 |
| 95 R 48 | x | ;12 | ;1- | x- | 3^{+} | 3 | 3 | | 3 | $3+$ | 3^{+} | ; | x- | 10,27+31 |
| 95 CO 22 | | 3^{+} | 3 | 3 | 3^{+} | | ;12 | 1L3-,2L3+ | \times | $3+$ | 3^{+} | O; | \times | Mixed |
| 95202 | 0 ; | ;11+ | | 0; | 4PO;'2P;12 | 0 ; | 0 ; | 3 C 3 | 23 | $3{ }^{+}$ | 3 | $0 ;$ | 0 ; | 3,26 |
| V-4 | ; | 12^{+} | ; | 0 ; | 3 | 0 ; | 0 ; | 3С3 | 3 C 3 | $3+$ | $3{ }^{+}$ | ;1 | x | 13,26 |
| V-7002 | ; | ;1- | | 0; | 1^{+} | 0; | | ; | ;1 | ;1- | ${ }^{+}+3 \mathrm{C}$ | ; | | 3,16,26 |
| V -7012 | ; | $0 ;$ | 0; | 0 ; | 3^{+} | | 12 | 3 | 3 | 3 C 3 | | 3^{+} | 3 | |
| V-93BT022 | ; | ;1 | | $0 ;$ | ;23 | $0 ;$ | ; | ;12 | 12 | 3 C 3 | $1 \mathrm{L3C3}{ }^{\prime} 2 \mathrm{~L} 3^{+}$ | ;1- | x- | 13,17,26 |
| V -93032 | | | ;1 | ;1- | ;1- | | ; | 0; | ;1- | 3P;1-'2P3+ | ;12+ | | | 10,21,(${ }^{+}$) |
| V -93118 | O; | O; | O; | O; | O; | O; | ; | , | | $3{ }^{+}$ | ;12+ | ;1- | ;1 $=$ | 1,3,10,26 |
| V-94042 | | | 0; | 0 ; | 0 ; | $0 ;$ | | | 1 | 3^{+} | | ; | ;1 | 1,3,17,26 |
| V-94091 | 0 ; | ;1 | ; | 0; | 12 | 0 ; | 0; | 3C3 | 3 | 3 C 3 | ;11+ | | | 3,26 |
| V-94105 | | | | | $3{ }^{+}$ | $3+$ | | | 2+3 | ;1- | 3^{+} | $3+$ | 3^{+} | 10,23 |
| V-94654 | \times | ;1- ${ }^{1+}$ | 3 | O. | ${ }_{3}^{1+}$ | ;1 | ; | ; | | ; 1 - | | ;1 | 12 $3+$ \times | Durum |
| V-95219 | | ;11+ | | 0 ; | 3 | 0; | ; | | $3 \mathrm{3C3}$ | 4 | $3{ }^{+}$ | 23 C | ${ }^{3+}$ | 10,26 |
| 9382707 | ; | 11^{+} | ;1- | | 3^{+} | 0; | ; | 3 C 3 | 23 C | 2P;'4P3 | 3 | \times | X- | 13,26 |
| 9382779 | ; | 11^{+} | ; | O; | 23 C | | | ;12 | ;2- | 3 | 3 C 3 | | \times - | 13,17,26 |
| AUP9701 | ; | ;12 | | $0 ;$ | 3 | 0; | $0 ;$ | ${ }^{23 C}$ | $23-$ | 3^{+} | 1L; $12{ }^{\prime} 2 \mathrm{~L} 3^{+}$ | ${ }^{2+3}$ | 3 | 26, ${ }^{+}$) |
| DW-2 | ; | $1+2$ | ${ }^{2+3 C}$ | ; ${ }^{1}$ | $3 \mathrm{3C}$ | | ${ }^{+}$ | ; | ;12 | Pr | 3 3 3 | $1{ }^{1+}$ | 11^{+} | 16,17 |
| WS94012 | | | 2P;1-'2P3 | + 2P;'2P3 | $3{ }^{+}$ | 3 | | ; | 3 C 3 | 2P;1-'2P3+ | 3^{+} | \times | x- | 10,13,23 |
| WS94130 | 0; | 0; | - ${ }_{1}+$ | Oi, | | ; | 1 | | | ${ }^{3+}$ | ${ }_{1+\text { 3+ }}^{\text {+ }}$ | 0; | 0; | 1,3,17 |
| S-190157 BLUESILVER | ; ${ }^{1-}$ | ${ }^{1+}$ | ${ }^{1+}$ | $\stackrel{\text {; }}{3}{ }^{+}$ | 3_{3+}^{+} | 3 | ${ }^{1+}$ | $\dot{3}^{+}$ | ${ }_{3}^{1}$ | ${ }^{1+}$ | ${ }_{3^{+}}{ }^{+\prime}$ Lr16 | ; ${ }^{1}$ | - | 3,16 13 |
| WL-711 | x | 3^{+} | 3^{+} | 3 | 3^{+} | 3^{+} | 3^{+} | | 3^{+} | 3^{+} | 3^{+} | x | X | 13 |
| ZARDANA | | 0; | 0; | | 0; | 3^{+} | 3^{+} | ; | 3^{+} | 3 | 3^{+} | x | \times | 1,10,13 |
| SARSABZ | O; | ; | 1 | ;1- | 1 | ; | ; | ; | ; | 1 | ${ }^{+}$ | ; | ;1 | Resis.toallia |
| PAK-81 | , | ;1 | ; | | 3 | | , | 3 | 3 | ${ }^{2 P} ; 1$-, 1P3 | 3 | 4 | 3 | 23,26 |
| KOHINOOR-83 | ${ }^{0}$ | ;1-1 | | 0 ; | ${ }^{1+3 C}$ | ${ }_{3}{ }^{\text {; }}$ | ${ }_{3}{ }^{\text {\% }}$ | ; | ; 1 - | $3{ }^{+}$ | ; 23 | | | 3,17,26 |
| FAISALABAD-83 | | $0 ;$ | 0; | 0 ; | $0 ;$ | 3 | 3 | | | 3^{+} | ${ }^{+}$ | x- | $3{ }^{+}$ | 1,10 |
| FAISALABAD-85 | ; | ;1 | ; | 0; | 2^{+3} | 0; | | ;12 | 3 | 3 C | 3^{+} | x- | 3^{+} | 10,26 |
| CHAKWAL-86 | ; | ;1 | ; | 0; | 3^{+} | | 3 | ;12 | ;12 | 23 C | 3 C 3 | ;1 | | 13,17,26 |
| RAWAL-87 SOGHAT-90 | | ;1 | | 0 ; | 3 | ${ }^{0}$ | | ;12 | ;23C | 3 | $3 \mathrm{3C3}$ | X- | 3 | 10,26 |
| SoGHAT-90 INQALAB91 | 0; | ; | 0; | $0 ;$ | 0 ; | 3 | 3^{+} | | 3^{+} | 3^{+} | 3^{+} | ;1 | ; 1 | 1,10,13 |
| INOALAB91 | ; | ; | x | \times | 3^{+} | 3^{+} | 3^{+} | | 3^{+} | 3^{+} | 4 | \times | \times | 10,27 31 |
| PIRSABAK-91 | ; | ; | ; | O; | 3 | ; | 0; | 3 C 3 | $3 \mathrm{3C3}$ | ;1 | 3 | ${ }^{3+}$ | ${ }^{3+}$ | 26,23 ${ }^{17}$, 13 |
| KAGHAN-93 | ; | ; | ; | 0; | 3 | ; | ; | ;12 | ;12 | ;1 | 3 | 0; | x | $\begin{aligned} & 17,23,26,13 \\ & \text { or } 27+31 \end{aligned}$ |
| BAKHTAWAR-93 | | ;1 | | $0 ;$ | 3 | $0 ;$ | | $3 \mathrm{3C} 3$ | 23 C | 3 | 3 | 3 | 3^{+} | $26,{ }^{+1}$ |
| PARWAZ-94 | x | $3+$ | $3{ }^{+}$ | 3 | 3^{+} | 3 | ;12 | 3^{+} | \times | $3+$ | 3^{+} | X- | \times X- | |
| WATAN-94 | ; | | ; | | 3 | 3 | ;12 | | $3 \mathrm{3C3}$ | ;1- | 3^{+} | ; ${ }^{+}$ | ${ }^{+}$ | 10,13,23 |
| SHAHEEN-94 | ; | ;1 | ; | O; | 3 | 0; | | 3 | 23 | 3 | 3 | 3^{+} | 3^{+} | 26 |
| SHAHKAR-95 | ; | ;1 | | ${ }^{0}{ }^{\text {i }}$ | | ${ }_{3}{ }_{3}$ | | 3 | | | | | | 13,26 |
| KIRAN-95 | ; | ;1 | 3^{3+} | ${ }_{3}{ }^{+}$ | $3+$
 3^{+} | 3 | 3^{+} | ; | 3 | 3^{3+} | $3_{3+}{ }^{+}$ | ${ }^{\text {; }}{ }^{12}$ | 4 | 10 10 |
| V92128 | ; | , | | 0; | 3 | | | ; | 3С3 | | 3^{+} | ;1 | \times | 10,13,26 |
| V93001 | , | | ;1- | | 3^{+} | | ${ }^{12}$ | 3^{+} | | | 3_{4+}^{+} | | | 13, $26,{ }^{++}$ |
| V95042 | '; | ;1 | ; ${ }^{1-}$ | ;1 | $3+$ 0 0 0 | 3+ 0 0 | $3+$ 0 0 | ${ }^{3}+$ | ${ }_{23 \mathrm{C}}$ | $3+$ | ${ }_{3}^{4}$ | X | \times | $10,27+31$ $1,13,23,26$ |
| V92145 | 0; | ;' | 0 \% | 0; | 3 | 0; | 0; | 3^{+} | ;23C | 3^{+} | 3 | x^{+} | 3 | 1,26 |
| V92145 | ; | | $3+$ | ;23 | 3 | . | | 3^{+} | 3 | 3^{3+} | 3 | 3 | 3^{+} | 26 |
| V93108 v94091 | ; | ;1 | ; | 0 ; | 3 | \vdots | 0; | | ;23C | 3_{3+}^{+} | | ;1 | X | 10,13,26 |
| $\underline{\text { V94091 }}$ | | 1 | | 0. | -12 | | | 1L3C3'2L3 | $3^{+} 3^{+}$ | 3^{+} | 3 C 3 | | 0. | |

Mirza et al.: Resistance to Leaf Rust in 59 Pakistani wheat lines

Table 4: Final disease rating (FDR) and the area under disease progress curve (AUDPC) of Pakistani cultivars/advance lines when inoculated with pathotype MCJ/SP of Puccinia recondita at El-Batan.

Cultivar	\%AUDPC**	FDR*	Ltn	Cultivar	\%AUDPC**	FDR*	Ltn
DW-1	2.22	5S	P/A	ZARDANA	45.63	70S	A
NR-51	2.04	5MS-S	A	PAK-81	25.28	40MS	A
PR-65	73.91	100S	A	KOHINOOR-83	50.09	15-100MS-S	A
NR-102	9.13	20M	P	FAISALABAD-83	63.21	100S	A
$93 \mathrm{CO65}$	4.28	5MS	P	FAISALABAD-85	19.86	30MS-S	P
V-94195	3.73	10S	A	RAWAL-87	29.49	40MS-S	P
BWL-949549	3.02	10MS	A	SOGHAT-90	37.62	60MS-S	P
95R48	8.08	15MS	A	INQALAB-91	35.51	70MS-S	A
95 CO 22	1.81	5MS	P	PIRSABAK-91	35.75	70MS-S	A
95202	29.56	30MS	P/A	KAGHAN-93	18.19	50MS	A
V-4	16.72	30MS	A	BAKHTAWAR-93	5.3	TS	P
V-7012	7.89	20MS	A	PARWAZ-94	39.16	70MS-S	A
V-93BT022	24.28	30MS	P	WATAN-94	44.91	70MS-S	A
V-93032	0.61	0	A	SHAHEEN-94	13.13	30MS-S	P
V-93118	3.73	5MS	A	SHAHKAR-95	13.87	30MS-S	P
V-94042	25.57	40MS	A	KIRAN-95	5.93	15MS	P
V-94091	8.08	15MS	P	PUNJAB-96	4.73	10MS	P
V-94105	18.38	40MS	A	V92128	22.57	40MS-S	A
V -94654	0	0	A	V93001	26.34	40MS-S	A
V-95219	70.9	80S	A	V95042	38.68	60MS-S	A
94 B 2707	33.84	40MS	A	V94105	22.57	40MS-S	A
$94 \mathrm{B2779}$	1.41	5M	A	V94042	69.53	100S	A
AUP9701	1.63	5MS	P	V95069	74.11	100S	A
WS94012	86.95	100S	A	V92145	9.81	15MS-S	A
WS94130	3.07	0	P	V92145(Sister line)	9.81	15MS-S	A
BLUE SILVER	82.27	100S	A	V93108	26.78	30MS-S	A
WL-711	100	100S	A	V94091	16.6	30MS-S	A

${ }^{*}$ Final diseae rating includes two components: Disease severity based on modified Cobb scale (Peterson et al., 1948) and host response, e.g., $10=10 \%$ severity; MS-moderately susceptible IT, MS-S = moderately susceptible to susceptible IT, TS = trace susceptible IT, $S=$ susceptible IT, $M=$ moderate IT, **Area under disease progress curve as a percentage of (AUDPC) of WL-711, Ln (Leaf tip necrosis), ' P ' indicate Itn present and ' P ' indicate Ltn absent

X = to X^{+}LIT showed up in BAV92 (Table 2) and was postulated in 93CO65, 95R48 (coming from Cocoraque 75). Kaghan-93, which gave X with LCJ/BN, probably has Gatcher complex inherited from Teeter in its pedigree (coming from Cocoraque in Teeter's pedigree). Gatcher gene may be of little use when deployed alone because Jupatico 73 carrying this gene had been highly susceptibility in past. Varieties/lines possessing Gatcher gene complex in combination with Lr17 and Lr16 can serve as source of resistance in areas lacking virulence for these genes. Lines V94195, AUP7091, Sarsabz and V93001 are postulated to have some additional unidentified genes.
Inqilab-91, leading variety of Pakistan, possess Lr27+31 in addition to Lr10. Resistance of Inquilab and other varieties possessing Lr27+31, Lr16 and Lr17 can be combined with slow rusting type of durable resistance to increase the life of these genes.

Field studies: Table 4 gives the final disease reaction (FDR) and AUDPC (area under disease progressive curve) of the cultivars/advance lines evaluated with Mexican pathotype MCJ/SP. Lr34 which showed low infection types with all the pathotypes used, was also low (LIT 3) with pathotype MCJ/SP (Table 2). Lines S190157, DW-2, V-7002 and Sarsabz are omitted due to effectiveness of Lr16. V-94654, resistant to all the Mexican pathotypes used at seedling stage, was also omitted. Sixteen cultivars/advance lines showed leaf tip necrosis with varying AUDPC values, while two did not expressed Ltn clearly (table 4). Lines 95CO22, 93CO65, V-93BTO22, AUP9701, Kiran-95 and Punjab-96, with MS type of final disease reaction specific to Lr34 (Roelfs et al., 1992), expressed to have Ltn gene and low AUDPC (Table 4). It is quite probable that the lines having

Ltn may have gene Lr34 in combination with Ltn, as Dyck (1991) indicated that these two genes are linked. This leaf rust resistance gene, if present in AUP9701, expressing Ltn, must be inherited from Jupatico-73 in its pedigree. Singh (1992) failed to recover recombinants for Lr34 and Ltn. It is thus possible that lines expressing $L t n$ with higher final disease reaction may not have Lr34. Similarly lines having lower AUDPC with MS type of reaction may have Lr34. V-93CO32 and WS94130 appeared to have additional unidentified adult plant resistance genes, as thy gave 0 FDR (Table 4). Although line V-94195 has expressed 10 S type of FDR but a 3.7\% AUDPC value and seedling data indicate the presence of additional unidentified adult plant leaf rust resistance genes in it (Table 3 and 4). Bakhtawar-93, having Jupatico- 73 in its pedigree, had low AUDPC (5.7\%) but a TS type of FDR. This line probably lack Lr34 but do have additional adult plant resistant genes, as indicated by its seedling analysis (Table 3). Lines lacking Ltn but showing lower AUDPC could be crossed with cultivars carrying Lr34. If adult plant genes are additive, such crosses should result in transgressive segregants with increased resistance (Singh 1993).

Acknowledgement

First author highly acknowledge International Maize and wheat research Center (CIMMYT) for supporting this study.

References

Dyck, P.L. and R. Johnson, 1983. Temperature sensitivity of genes for resistance in wheat to Puccinia recondita. Can. J. Plant Pathol., 5: 229-234.
Dyck, P.L., 1991. Genetics of adult-plant leaf rust resistance in Chinese spring and sturdy wheats. Crop Sci., 31: 309-311.

Huerta-Espino, J., 1992. Analysis of wheat leaf and stem rust virulence on a worldwide basis. Ph.D. Thesis, University of Minnesota, USA.
Hussain, M., I. Ahmad, M.I. Haque, M.A.S. Kirmani and J.S. Hamid et al., 1999. Evaluation of candidate lines against stripe and yellow rusts under uniform wheat and barley yield trial 1997-98. Proceedings of 2nd National Conference of Plant Pathology, September 27-29, 1999, University of Agriculture, Faisalabad, pp: 112-119.
Long, D.L. and J.A. Kolmer, 1989. A North American system of nomenclature for Puccinia recondita f. sp. tritici. Phytopathology, 79: 525-529.
McIntosh, R.A., C.R. Willings and R.F. Park, 1995. Wheat Rust: An Atlas of Resistance Genes. CSIRO Publications, Melbourne, Victoria, Australia, pp: 42-43.
Modawi, R.S., L.E. Browder and E.G. Heyne, 1985. Use of infection-type data to identify genes for low reaction to Puccinia recondita in several winter wheat cultivars. Crop Sci., 25: 9-13.
Peterson, R.F., A.B. Campbell and A.E. Hannah, 1948. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can. J. Res., C26: 496-500.

Rajaram, S., R.P. Singh and M. van Ginkel, 1996. Approaches to breed wheat for wild adaptation, rust resistance and drought tolerance. Proceedings of the 8th Assembly of Wheat Breeding Society of Australia, September 29-October 4, 1996, Canberra, Australia, pp: 2-30.
Roelfs, A.P., R.P. Singh and E.E. Sari, 1992. Rust Diseases of Wheat: Concepts and Methods of Disease Management. CIMMIYT, Mexico, DF., USA., ISBN: 9686127704, pp: 81.
Singh, R.P., 1992. Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Sci., 32: 874-878.
Singh, R.P., 1993. Resistance to leaf rust in 26 Mexican wheat cultivars. Crop Sci., 33: 633-637.
Stakman, E.C., D.M. Stewart and W. Loegering, 1962. Identification of Physiologic Races of Puccinia graminis var tritici. U.S. Department of Agricultural Research Service, USA., Pages: 53.
Zadoks, J.C., T.T. Chang and C.F. Konzak, 1974. A decimal code for the growth stages of cereals. Weed Res., 14: 415-421.

[^0]: * Infection types re-recorded on 14th day for Lr13

