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Abstract: Response variables having two possible categories are called binary variables. We often describe two possible
categories as the terms of disease and healthy. Binary response data are modelled using the binomial distribution while
binary data may be assumed to have the Bernoulli distribution which is a special case of the binomial distribution. This
paper investigates logistic regression model to improve the accuracy of predictions and decisions, in the specific context
of assessing erythrocyte sedimentation rate. The analysis is enhanced further by adopting a Bayesian approach.
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Introduction

Erythrocyte Sedimentation Rate (ESR] is a non-specific marker
of illness. ESR is the rate at which red blood cells settle out of
suspension in blood plasma, when measured under standard
conditions. The ESR is a non-specific test and so is difficult to
interpret. Recent trials of ESR have demonstrated no value in
screening asymptomatic individuals, because not only is the
number of abnormals lovy but also in most cases the abnormal
test returns to normal over several months wvithout any
significant diagnosis being made (Sox and Liang, 1986). ESR
increases if the levels of certain proteins in the blood plasma
rise, such as in rheumatic diseases, chronic infections and
malignant diseases. This makes the determination of ESR one
of the most commonly used screening tests performed on
samples of blood.

Such a research was made by the Institute of Medical
Research, Kuala Lumpur, Malaysia. They used ESR related to
twvo plasma proteins, fibrinogen and y-globulin, both measured
in gm/, for a sample of thitty-tvvo individuals. The criginal data
wwere presented by Collett and Jemain (1985) and wvere
reproduced by Collett {1996), who classified the ESR as binary
{0 or 1). Since the ESR for a healthy individual should be less
than 20 mm/h and the absoclute value of ESR is relatively
unimportant, a response of zero signifies a healthy individual
{ESR < 20) while a response of unity refers to an unhealthy
individual (ESR=20). Their aim of a statistical analysis of these
data wwas to determine the strength of any relationship
between the probability of an ESR reading greater than 20
mm/h and levels of two plasma proteins. In modelling the
dependence of the disease state on these two explanatory
variables, they use a number of possible linear logistic models
with Classical inference.

The aim of present study is to determine the probability of an
ESR using Bayesian inference, in place of Classical inference,
and to compare these two approaches and then to present
newvy approaches in assessing the probability of ESR. We use
logistic regression and the discriminant analysis. Logistic
regression is commonly used when the independent variables
include both numerical and nominal measures and the
outcome variable is binary, or dichotomous, having only two
values. It requires no assumptions about the distribution of the
independent wvariables. Another advantage is that the
regression coefficient can be interpreted in terms of relative
risks in cohort studies or odds ratios in case-control studies.
The discriminant analysis is similar to logistic regression in that
it is used to predict a neminal or categorical cutcomes.
Discriminant analysis differs from logistic regression in that the
independent variables follovw a multivariate normal distribution,
so it must be used with caution if some independent variables
are nominal. In many research situations, either logistic
regression or discriminant analysis can be used, depending on

how the problem is defined.

The last two decades have seen increased usage of another
principal inference to statistical analysis. This is Bayesian
inference, based on the famous published posthumously by
the Reverend Thomas Bayes in 1763 and reproduced in Press
{1989). In Bayesian inference the numerical values allotted to
probabilities do not relate to long-run frequencies and attempt
is made to account for prior knowledge by quantitative
measurement. Bayesian inference conditions on the data and
integrates over the parameters to evaluate the probabilities
rather than estimates, hypothesis tests and confidence. The
process of inference requires the evolution of further integrals
and the selection of appropriate prior.

In this paper we present suitable prior distributions. In some
practical applications there is very little prior information
available. In these circumstances a vague prior can be used.
The standard choice over recent years has been the invariant
prior proposed by Jeffreys (1939]. The other suitable priors
may be Uniform and Improper, which are described by
Bernardo and Smith {1994). The evaluation of integrals may
be difficult analytically but numerical methods can be used to
overcome this difficulty. Dunsmore (1976) considered an
asymptotic Bayesian approach to prediction analysis. We use
this approach and modify to binary data.

The linear logistic model to binomial data: Suppose that we
have n binomial cbservations of the form , vy, i=1,....n where
Ely) =p; and p; is the success probability corresponding to the
ith cbservation. The linear logistic model for the dependence
p, on the values of the k explanatory variables X, Xzy....... Xyis
associated with that cbservation, is

logit (pi} =log {pi/(1-pi} (1
= Bn+ B1x1l+ v Bt

After some rearrangement,

_ 1
Pi= 9 +exp (-Bo By - Pux} 12

If we write
3.=Py+P.x1,+Px5+... +Pyx,, then,

1
p= _ 3
1+e9 =
In order to fit a linear logistic model to a given set of data,
unknown parameters must first to be estimated. Several
approaches may be used to estimate the unknovwn parameters.
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In classical approach, these parameters are estimated using
the methods of maximum likelihood. The likelihoed function is
given by

n
L (Bl;y‘) =.H1 pfv“-l_plﬂ'\ﬁ (4)

The problem is to obtain estimations of parameters wwhich
maximise

| (Bsy) = ; Y loglp) +{1-y) log{1-p)

We do not work on obtaining Maximum likelihood estimations
in this paper. We use Bayesian inference to obtain parameter
estimations.

Bayesian inference: Suppose we have some training data,
D ={{Z.y}i=1, ... . n} which consist of cbserved response
vectors y, and matrices of explanatory variables Z,. Typically,
we will observe Z,,, for a new individual, and our aim is to
predict the response vector y, ... The conditional distribution
of y, given Z; is assumed known as a function of unknowwn
parameters contained in a vector . The posterior predictive
distribution of y,,,, given Z,_, and the data D is given by

f(yn+1|zn+1l D):jﬂf(yn+1|zn+1l B) f(BlD)dB (5)

This is the basic equation of Bayesian predictive inference in
regression analysis. VWWe may re-express equation {3) as

[f¥a.11Z,.1, B) L (B;D) (B} P
ﬂyn+| |Zn+1-D) =
(6) J,L(B: D} f(p) dB
or

f(y,.,/Z,,.,D) « Iﬁf(vmlzm.m L (B;:D} f{ B} dPp

where L(};D) is the likelihood function and fifi} is the prior
distribution. The crucial task is to evaluate at least the
numerator integral in equation (6}, as a function of y ., or
numerically for different values of y, . ,. Generally, the required
integrations are not feasible analytically and approximation
methods are needed.

Dunsmore (1976} considered an asymptotic Bayesian
approach to prediction analysis. If we expand fly, .1 |Z2.41.0) in
equation (6) about the maximum likelihood estimate p of by
Taylor™s theorem, vwe obtain

f(yn-ﬂ ‘ Zn+1lD} =
[ty 1Z,,.B)+ B-BIFty,,, Z,...B)

+%(B_B)2f“ (yn+1 |Zn+l'B)}f(B | D)dB

% fon [ ZoB)+ 5y T na | Zoe B + 17
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where |; is the unexpected analogue of Fisher™s measure of
information,

I, =-I"{B;D)

A first order approximation and second order approximation to
the predictive distribution are then obtained by truncating the
series in equation (7). In this paper we obtain a first order
approximation and use it to obtain posterior predictive
probabilities for ESR data.

Analysis and Results

As vwe mentioned earlier, the ESR for a healthy individual
should be less than 20 mm/h and since the absolute value of
ESR is relatively unimportant. A response of zero signifies a
healthy individual (ESR < 20}, while a response of unity refers
to an unhealthy individual (ESR=20]}. Explanatory variables are
the amounts of fibrinogen and y-globulin. Data are given in
Table 1.

The linear logistic model for the dependence on the values of
the two explanatory variables x; and x;

logit(pz.): log(pz. /(l—pl.)): ﬁo + ﬁlxﬁ + ﬁ2xg1'

(i=1.2,....32].

Where

Xy the amount of fibrinogen for individual i,
Xy - the amount of y-globulin for individual i,
y, : the response variable (ESR).

After some rearrangement,

1

Fi= 1+ exp[f Bo - ﬁlxﬁ — B2xg1']

Probability function is
. 1y,
fly)=P" t1-p) ', (i=1,2,...,32).
Maximum likelihood function is
32
I,y = 2 vileg(p)+(1-yllog(1-p).
i=

Suitable priors are given in Table 2.
Using Improper prior given in Table 2, we have posterior
function as follovvs:

f(B;y) =
[iy‘bgtp.) + t1 -yl}log(1 _p|)]

x [p" (1-p/|
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Table 1: The leves of two plasma proteins and the value of a binary response variable.

n Y X Xgi n ¥i X5 X
1 o] 2,62 38 17 1 3,63 48
2 o] 2,66 31 18 0 2,68 34
3 o] 2,19 33 19 0 2,80 38
2 o] 2,18 31 20 0 2,23 37
5 o] 3,41 37 21 0 2,88 30
3] o] 2,46 36 22 0 2,65 46
7 o] 3,22 38 23 1 2,09 44
8 o] 2,21 37 24 0 2,28 36
9 o] 3,15 39 25 0 2,87 39
10 o] 2,60 41 26 0 2,29 31
11 o] 2,29 36 27 0 2,15 31
12 o] 2,35 29 28 0 2,64 28
13 1 5,06 37 29 1 3,93 32
14 1 3,34 32 30 0 3,34 30
16 1 2,38 37 31 0 2,99 36
16 1 3,15 36 32 0 3,32 35
Table 2: Prior distributions
Distributions Priors Priors for Bernoulli distribution
Uniform 1/b-‘c‘|,‘. BE(ayb) 1to (ab] = (1,1}
f(Ba,b) - {
0; B # (a,b)
Jeffrey’s
2 172 :1/2
dp
d?logity |B) A, e
| fiB)= -E } [pl 1-pi) ]
mproper dB

We apply five cases to our data:

Case 1: Discriminate analysis

Case 2: Linear Logistic regression with Classical inference
{using Maximum Likelihood Methaod)

Case 3: Linear Logistic Regression with Bayesian inference
{using Uniform prior and First Order approximation)

Case 4: Linear Logistic Regression with Bayesian inference
{using Jeffreys's prior and First Order approximation)

Case b: Linear Logistic Regression with Bayesian inference

{using Improper prior and First Order approximation)

For our model with different inferences and priors, vwe apply
the method using FORTRAN computer programs and
subroutines from the MNAG library to obtain approximate
posterior predictive distributions as given by equation (8). The
estimations of parameters are

A )

P =-10.710, P =1.620 and B= 0137.

The linear logistic model is

logit{p} =log(p/(1-p})
= -10.710+1.620x,+0.137x,

Approximate posterior predictive probabilities for the Case b
are given in Table 3. " * " denotes misclassified ESR. ESR’s for
three individuals (14,15 and 23} are misclassified.

Table 3: Posterior predictive probabilities for case 5.

n ESO posterior n ESO
prediction posterior
prediction

1 0.19 17 0.79
2 0.09 18 0.16
3 0,07 19 0.21
4 0,05 20 0,12
5 0.47 21 0.13
6 0.14 22 0.47
7 0.43 23 021 *
8 0.1 24 0.11
9 0.43 26 0.26
10 0.29 26 0.06
11 0.1 27 0.06
12 0,05 28 0.06
13 0,63 29 0.61
14 0,28* 30 0.23
15 0.14 * 31 0.28
16 0,34 32 0,37

We use a criteria to assess our predictive accuracy for each
medel. This is a binary loss function, corresponding to the
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percentage of correct classifications based on cross validation
of the training data set with a default classification threshold
of 0.6. Table 4 gives the percentages of correct classifications
for all cases.

Table 4: Predictive accuracy results for Cases 1-5

Cases The percentages Number of
of correct individuals
classification missclassified

1 76 6,7,9,16,16,22,23,32

2 87.b 14,15,23,29

3 87.b 14,156,23,29

4 87.b 14,15,23,29

b 90.6256 14.16,23

The coefficients of x; (fibronogen) and xg (y-globulin}
{(i=1....,32}) in {9) can be interpreted as log odds ratio.
Consider the ratio of the odds of disease for an individual for
whom the value x;+ 1 is recorded relative to one for whom
the value x; is obtained. This is given by

B exp(}fi’O + ﬁl(xfj +1))

— = exp{B)
: exp(ﬁo + ﬁlxjj) 1

and so ﬁ1is the estimated change in the logarithm of the odds
ratio when (fibrinogen) increased by one unit. Similarly,

¥, _exp(B,)

and so ﬁzis the estimated change in the logarithm of the odds
ratio when (y-globulin) increased by one unit. When x; and x;
are increased by r units, the estimated changes in the odds are
given in Table 5.

Table 5: The estimated changes in the legarithm of the odds

ratio
r W, W
1 5.05 1.15
2 26.63 1.31
3 129.02 1.51
4 651.97 1.73
5 3294.47 1.98

Conclusions: This paper described and discussed the
properties, and an application, of binary logistic regression
model, suggesting simplifications and suitable approximations.
It considers medifications to the basic model, through using
different inferences and prior distributions. The results clearly
demonstrate that these binary logistics model facilitates
reasonably good assessments of ESO.

It should be emphasized that Logistic models give better
percentages of correct classifications than discriminate
analysis. Logistic model with Classical inference gives the
same percentage as Bayesian inference with Uniform and
Jeffreys priors. We have about 91% of correct classifications
for Bayesian inference with Improper prior. This percentage is
much higher than others. This is a very good success rate.
We hope to improve the results further, by considering other
suitable priors, covariates and approximation techniques.
We obtained the estimated changes in log odds ratio.
Regarding the odds ratio as an approximation to the relative
risk, this can be interpreted as the approximate change in the
risk of the disease for every increase in the amounts of
fibrinogen and y-globulin.
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