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Abstract: Photosynthetic and respiration responses were measured in situ at different depths and under a variety of light
regime for seagrass Thalassia hemprichii from coastal area of Teluk Kemang, Port Dickson, Malaysia. The
photosynthesis and respiration rate was measured from evolution of oxygen from the seagrass enclosed in glass cuvet.
The photosynthetic rate at 0.5 m was higher (0.429 + 0.086 mg O,/hr/g fr wt.} than at 2.0 m depth (0.289 + 0.034
mg O hr/g fr wi.). Respiration rate was not significantly different at tvwo depths. In laboratory study, the light saturation
of T. hemprichii was reached at 400-800 ymoal/m*/sec, whereas, the compensation paint was around 20 ymol/m?/s.
The photosynthesis was relatively constant at light intensity up to 1600 gmol/m®/s. Comparing these results to in situ
light measurement from the seagrass bed (1095.430+5.803 ymol/m?/s at surface water and 116.00+1.612
pmol/m?/s. at 2.0 m depth), this species depth distribution should not be light limited to a depth of about 2.0 mi.e.
T. hemprichii could penetrate a depth of more than 2.0 m in this study area. However, the present field observation
indicated that this species could only be found at intertidal area {1.5 - 2.0 m High Water Level) and assumed that other
environmental factors i.e. current movement, vwater visibility and sediment status may affects the depth distribution of

this seagrass in this costal water.
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Introduction

Seagrasses are usually found in near shore coastal areas all
over the world. The ecological importance of seagrass as
primary producers, sediment stabilizers and as habitat and
nursery areas for many marine animals is wvell recognized
{Pollard, 1984; Fonseca and Fisher, 1986; Bell and Pollard,
1989). Besides current movement (Fonseca and Kenworthy,
1987), wvater turbidity (Cambridge and McComb, 1984],
nutrient availability {(Kenworth and Fonseca, 1992; Murray et
al.,, 1992 and Perez ef al., 1994) and water temperature
{Walker and McComb, 1990; Prerez and Romero, 1992 and
Bulthuis, 1987]), light regime is an important factor that
influences the photosynthesis, growth and depth distribution
of seagrass (Dennison and Alberte, 1982; Dennison, 1987 and
Duarte, 1991). However, availability of light in coastal areas
is a function of light attenuation, which is affected by
environmental factors such as sedimentation, current direction
and shading by epiphytic or unattached algae (Karenne, 1994;
Silberstein ef al., 1986 and Shepherd ef al., 1989].

The coastal water of Teluk Kemang (Port Dickson) seagrass
bed is characterized by high turbidity, resulting in a rapid
decline in light with increasing depth. In this area, seagrass T.
hemprichii only growing in intertidal zone wvith the coexistence
of macro algae and other seagrasses such as Cymodocea
serrulata and Halophila ovalis and never found with seagrass
Halophila decipiens and big leaves variant Halophila ovalis at
deeper (z 4 m HWL) area (Japar et al., 1995; AbuHena et al,
1999 and Lee, 1999). Therefore, it is assumed that light
availability is a contributing factor that controls the penetration
of T. hemprichii in deeper area in this seagrass bed. Hence,
determination of photosynthesis in different light regimes is of
ecological importance. In present study, the photosynthetic
and respiration responses of this seagrass species wvere
investigated at different depths and lights in order to evaluate
the possible contribution of light in this seagrass bed. Through
this experiment the depth distribution of T. hemprichii in
seagrass bed can also be predicted.

Materials and Methods

Study Area: The study was conducted at Teluk Kemang, Port
Dickson coastal area (2°27' N latitude and 101° B1’
lengitudes) on July 1999. This is an inshore tidal area along

the straits of Malacca, in which shallow surrounding platform
[z 0.2 m HSLW) are covered by mixed and monospecific
seagrass patches in sandy muddy bottom substrate with
rubble.

Photosynthesis and respiration study in the field: T. hemprichii
photosynthesis and respiration vwere conducted in sifu with the
natural light and dark conditions at different depths in the
study area. Seagrass shoots were collected and placed in a
glass cylinder of 30 cm long x 2.6 cm diameter and filled with
seawvvater. The cylinder mouths were closed with a rubber
stopper ensuring that no air bubbles were present. Some of
the cylinders wwere wrapped with aluminum foil to generate the
dark condition for dark respiration. Seawater from the study
area wvas used for both light and dark cylinders. Three
replicates vwere used at each depth for both photosynthesis
and respiration measurements. Other glass cylinders vvere
used as blanks including seawater without plants to detect the
wvater photosynthesis and respiration by phytoplankton and
bacterial activity. All cylinders were incubated at 0.5 m and
2.0 m depth. After incubation for 3 hours, the oxygen
produced or consumed was detected by oxygen electrode
methods {(Rank Brothers, UK]. The net photosynthesis and
respiration wvere calculated as in gm fresh weight and cm?” of
leaf surface area after deduction from control values. Light
intensity vas measured at mid-day with a light sensor (LICOR
Model 189, USA} at 0.5 m interval to a depth of 2.0 m.

Laboratory photosynthesis experiment in different light
regimes: Plant material of T. hemprichii was collected from
intertidal seagrass bed of the study area and transported for
laboratory experiment. For light response of photosynthetic
study, experiment wvas carried out in the laboratory
immediately after collection of specimens. About 1.5 to 2.0
cm long leaf segments vvere placed in cuvet chamber. The
oxygen produced by photosynthesis was detected by oxygen
sensor through a recorder (Walker, 1988]. Five replicates were
used for this detection and the mean value vvas used.

Irradiances ranging from 20-1600 umal/m?*/s were provided by
250 wvatt halegen lamp by adjusting the distance of light
source to the chamber. Temperature was maintained at
28°C by circulating the water through outlet jacket of the
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chamber. The photosynthetic rate wwas calculated in g fresh
weight, om?® of leaf area and mg chlorophyll content. Total
chlorophyll content was detected by the procedure described
by Arnon (1843 Seagrass leaf veas placed in 10 ml of 85%
acetone under dark conditions until the colour become totally
faded. The wvolume of acetone is maintained at 10 ml if the
initial amount of acetone decreased by evaporation from the
preserved test tube. Absorbance wvas taken for 845 nm and
883 nm by spectrophotometer. Total chlerophyll content wwas
calculated by the following formula:

Total chlorophyll content = 20.2 x AB45 + B.02 x AG33 mg/l

Results and Discussion

Photosynthesis and respiration study in the field: The light
intensity at different depths during this experimental period is
shown in Table 1. The surface light vwas recorded 1085.43 +
E.80 yrmol/m?s and decreased to 115.00 £ 1.51 umol/m?is
at 2.0 meter depth. It is also important to note that the light
attenuation wwas found linearly correlated (Y= 487 57X +
1098, rP = 0.899, p < 0.05) with the depth to 2.0 m below
wwater surface during the study period. Generally, this kind of
symptom exists in the sea, open ocean or any water bodies.
The photosynthesis and respiration rates of seagrass T.
hemprichii are showwn in Table 2. The photosynthetic rate
based on fresh leaf tissue and leaf surface area wwas 0.429 +
0.088 mgO,fhrig frwet and 0.881 + 0.087 ugOyhricm? area
at 0.5 m depth, respectively. Photosynthetic rate measured
from the fresh leaf tissue of T. hemprichi showwed non-
significant difference (t-test, p > 0.08] at tvwo depths.

Table 1:  im sitw recorded light intensity during stdy period from
seaqrass bed water (during high tide)

Depth (meter] Light intensity (pmolim®is)

0.0 1085430 £ 5803

05 257.867 + 1.633

1.0 592833 + 4583

15 2308687 £ 2.840

2.0 115000 £ 1612

Table 2 P hotosynt be sis and respiration rate at different depths of

seagrass [T, hemprichif

Cepth (m) Photosynthesis rate Fespiration rate F /A

Based on fresh wweight of leaf tissue (ma O, /hrfg frow)
0.5 0.429 + 0.036 0116 £ 0.008 273
2.0 0.239 £+ 0.034 0164 £ 0.021 1.76

Eased on kaf surface area (pg O Jhricm ? area)
0.5 0.8671 + 0.057 0.237 £ 0.074
20 0540 + 0175 0.294 + 0.033

3633
1836

Howwever, it differed significanthy (t-test, p < 0.0B] betwween
twwo depths for the photosynthetic rate of leaf surface area.
Comparing betwween the two depths, the higher photosynthetic
rate for 7. hemprichii at 0.5 m could be attributed to the
relatively higher light intensity than at 2.0 m. Basically,
photosynthesis is the primary and most important step in the
ecological cycle of the sea upon which all other marine plants
ultimately depend for energy and carbon source. Thus, light is
a fundamentally important entity and essential source of
energy for photosynthesis and as well as productivity and
grovyth of all green plants like seagrass. From this experiment
it may be assumed that the rate of photosynthesis of T.
hemprichii at any depth could be expected to vary due to tidal
cycle. Howwever, T. hemprichil may produce higher oxygen
during loww tide compared with the high tide.

In ceontrast, respiration rates of this species for both fresh leaf
tissue and leaf surface area walues showeed little wvariation (t-
test, p = 0.05] betvween the two depths (Table 2. Respiration
remains approximately the same, provided that temperature
and other factors are essentially unchanged (Clarke, 1987),
wwhich support the present findings. The normal oxygen
requirernent for respiration of T. hemprichii was lowwer than the
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Fig. 1:  Photosynthesis rate of seagrass T. hemprichil at

different light intensities, based on fresh weeight [A),
based on leaf surface area (B) and based on
chlorophyll content ().

Halophila stipulaces [0.20 mg Oyhriy; Wahbeh, 1983) and C.
serleta (0188 £ 0017 -0214 £ 0.014 mg Ouhrig frwvt;
AbuHena er al., 2001). The respiration rates for other
seagrasses H. ovalis and Halodule uninervis veere recorded as
0.82 £ 013 and 0.34 £ 0.13 mg Oy/hrig (Wahbeh, 1883)
that required more oxygen than the seagrass T. hemprichil for
respiration. The photosynthesis and respiration ratio li.e.
productivity index] wwas found higher in seagrass T. hamprichil
[Pn/R = 1.78 - 3.73) than seagrass C. serrulata (Pn/R =
1.380 - Z.B18; AbuHena, er &, 20011  Therefore, the
production of the seagrass 7. hemprichl could probably be
higher than C. serrufata in the prevailing environment at the
studhy area seagrass bed.

Laboratory study of photosynthesis: Laboratory photosynthesis
study of T. hemprichii showed that the rate of oxygen
evolution increased sharply with the increase in light intensity
from 40 - 200 umol/im?is (Fig. 14, B and C). Thereafter, the
oxygen evolution increased gradually to relatively constant
oxygen production at an average of BO-70 ugO./minfg frwwt.
Oxygen gain was not detected at light intensity below 20
wrnolfm?fs.

The compensation light intensity of T. hemprichil (the light
intensities at which the respiration equals the photosynthesis)
was found around 20 gmolim¥s. Light intensities beloww this
walue, photosynthesis may still go on but the seagrass is
fighting a losing battle. In this condition the seagrass cannot
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survive because the loss of energy due to catabolic processes
represented by respiration exceed the gain in energy brought
by anabolic process of photosynthesis. The compensation light
intensity of the present study was comparable with the value
of other seagrass in other area (Dennison, 1987; Beer and
Waisel, 1982; Dennison and Alberte, 1985). On the other
hand, vwater temperature has been reported as a controlling
factor of seagrass respiration (Buesa, 1974; Bulthuis, 1987],
and consequently the compensation light intensity. Pellard and
Greenway (1993) stated that high compensation light
intensities vwere due to high respiration demand of the plants,
which resulted from the high vwater temperature. They found
that the light compensation points were 80 to 90 ymol/m?/s
for the seagrass Cymodocea serrulata, Thalassia hemprichii
and Zostera capricorni in Australian seagrass bed, which are
higher in comparison with present study at 28° C.

The light response of T. hemprichii showed an increased
photosynthesis, corresponding with increasing light intensity
at 40 - 400 pmecl/m®/s. Beyond this, the photosynthesis
showed light saturation trend {Fig. 1A, B and CJ. No significant
difference in photosynthesis vwas observed with increasing
light intensity from 400 to 1600 ymol/m“s. Photo inhibition
was not observed at light intensity up to 1600 gmal/m?/s.
The light intensity measured in field during the earlier
experiment at the surface was well within light saturation
range in this experiment. The photosynthesis probably
proceeds at light saturation rate at 0.5 m depth in the field
experiment. However, the seagrass T. hemprichii could be
over exposed to the light especially during clear shiny mid day
spring low tide period. Thus, photoinhibition could not be ruled
out. The depth gradient light intensity data from the seagrass
bed shovved that light intensity at 2.0 m depth wwas higher (<
115 + 1.512 umol/m*/s) than compensation light intensity in
the experimental photosynthesis study. Therefore, it may be
assumed that the seagrass T. hemprichii could penetrate or
grovy to the deep wvater with H. decipiens and big leaves
variant of H owvalis in this study area. But, at present study
area the limited intertidal distribution of T. hemprichii could be
due to environmental factors i.e. current movement, wvater
visibility and sediment status. Either, the photosynthesis
proceed at light intensity below 2.0 m depth probably could
not support the requirement during dark period, albeit lower
light compensation (+20 umol/m®/s) showed in this
experimental study.
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