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Abstract: The bacterium Bacillus thuringiensis is the main source of insecticidal proteins in insect resistant plants. However,
biochemical and genetic studies have shown that insect resistance to B. thuringiensis { Bt) toxins can occur and with the advent
of Bf transgenic crops this is a major concern. Several insect spacies have shown resistance to thess toxins in the laboratory
but the diamondback moth, Plutella xylostelia is the only species which has evolved resistance under Tield conditions to date.
Many studies have been done to elucidate the mode of action of the toxins and the mechanisms and genetics of resistance.
In this article Bt toxins, their mode of action, mechanisms and genetics of resistance and management strategies for delaying
resistance are reviewed. The emphasis is placed on examining the presently recommended high dose/refuge strategy.
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Introduction

Since the widsspread introduction of synthetic insecticidss in the
late 1940s, a steady stream of new compounds has besn
devslopad. Due to their efficacy and specificity these insecticides
are much more effective than the control methods that preceded
them. Howaever, due to the specific mode of action and ease of
metabolism of many of these pesticides, pest populations can
negate them by utilizing alleles which provide rsesistance and
pesticide resistance has doggedly Tollowed the introduction of
new pesticides (Roush and Tabashnik, 1990).

Since the first commercial Bacilfus thuringiensis (Bt) formulations
appeared in the late 1930’s, they have been used widely as niche
products for pest control. It had been presumed that resistance
to Bt toxins was unlikely because of its unique mods of action
(Bauer, 1995). Howevar, this was subsequently shown not to be
the case and the Indian mealmoth, Plodia interpunctelfa Hib.
(Lepidoptera: Pyralidae) was the first insect reported to have
developed resistance to Bt toxins, albeit under laboratory
conditions. While wvarious other insect species have been
subssquently shown fo develop rmesistance under laboratory
conditions {Table 1), the diamondback moth, Piufella xylostella L.
(Lepidoptera: Plutellidas) remains the only insect species which has
developed resistance in the field. The development of resistance to
Bt toxins is seriously threatening their life expectancy as pest
control agents, particularly with the introduction of commercially
grown Transgenic crops expressing insecticidal B proteins which
increase the risk of resistance by providing a constant selection
pressure (Wright et al, 1997; Tabashnik et af, 1998). As many
major pests have already developed resistance to chemicals, the
fact that Bt makes up to 98% of all biopesticides and that the
demand for Bt crops is increasing makes the impact of resistance
potentially dramatic.

100 years of Bacillus thuringiensis discovery: Bacillus thuringiensis
reprasents a major group of microbes used for insect biocontrol
(Macintosh et al, 1991). It is a gram-positive soil bacterium
distinguished from other bacilli by its production of parasporal
crystal proteins {(Yamamoto and Powell, 1993). Bacillus
thuringiensis is quite closely related to B. cereus (Carlson et al.,
1994) and classical biochemical and morphological methods of
classifying bacteria have consistently failed in distinguish B.
thuringiensis from B. cereus. Chromosomal DNA hybridization,
phospholipids and fatty acid analysis and genomic restriction
digest analysis support a single-species hypothesis (Schnepf
af al, 1998). Cry toxin synthesis is also transmissible from 5.
thuringiensis to B. cereus via conjugation {Gonzalez ef al., 1982).
Bacillus thuringiensis was first discovered as a potential microbial
agent for insect control in 1901 when the Japanese bacteriologist
Ishiwata {1901) isolated this bacterium from diseased larvae of
Silkworm, Bombyx mori L. {Lepidoptera: Bombycidas) and named
it “Sottokin” mean “sudden death Bacillus”, A decade later, Ernst
Berliner isolated a similar organism from a diseased granary

population of the flour moth Anagasta kuehniella Zeller
{Lepidoptera: Pyralidae) from Thuringia, Germany. Aoki and
Chigasaki (1960) reported that its activity was due to a toxin
present in sporulated cultures and that the toxin was not an
exotoxin. In 1927, Matte re-isolated the organism from the same
host, as did Berliner {Heimpel and Angus, 1960) and both Berliner
and Matte observed, in addition to the spore, a second body
which they called a “Restkorper” in the developing sporangia
(Beegle and Yamamoto, 1992).

The first attempts to use Bt as a biopesticide using B. thuringiensis
var, kurstaki (Btk), were carried out in the late 1920s and early
1930s against the European corn bhorer, Ostrinia nubilaiis Hib.
{Lepidoptera: Pyralidae) in South East Europe {Van Frankenhuyzen,
1993). The first commercial product, Sporein® became available in
1938 in France, primarily for control of P. interpunctella {(Weiser,
1986). Work by Steinhaus {1951) restimulated interest in the
commercial exploitation of Bt for control of lepidopteran pests of
field crops and by 1957 the product Thuricide®{Btk) was available
(Beegle and Yamamoto, 1992). The availability of commercial
products initiated a period of “intermittent field testing”
throughout the 1960s with inconsistent results (Mott ef &f.,
1961). This resulted in two significant developments. First, the
discovery of HD-1 a Btk isolate, which proved to be more potent
than the isolates in existing commercial Bt products (Dulmage,
1970). The use of HD-1 population was also encouraged by its
broad spectrum of activity against more than 100 lepidoptaran
species (Navon, 1993). Second, the establishment of an
international system for standardizing the potency of commercial
products. The first generally accepted standard was prepared in
France from a fermentation of H-type Bt and called “E-61~
(Burgas, 1967). This was later replaced by HD-1 as the North
American standard based on larvae of the cabbage looper,
Trichopiusia ni HUb {Lepidoptera:Noctuidae) {Beegle et af., 1986).
The activity of Bt products is now routinely expressed as the
number of International Units {IU) per unit product. Bonnefoi and
Debarjac (1963) named as isolate as B. thuringiensis var. aizawai
(Bta), which was particularly active against larvae of the wax
moth, Galleria meflonelia L. {Lepidoptera: Pyralidae) and Spodoptera
spp. {Lepidoptera:Noctuidae). Since then several Bt vars. have
been found and used against different pests (Beegle and
Yamamoto, 1992).

Insecticidal toxins produced by the Bacillus thuringiensis: Baciilus
thuringiensis typically produces several types of toxin, four of
which are significant (Dulmage, 1970) a-exotoxins (heat-labile
exotoxing), B-exotoxins (fly-factor or heat-stable exotoxins), &-
endotoxins (Crystal toxing) (Heimpel, 1August 16, 2002967) and
“louse-factor” (Gingrich ef af., 1974).

a-exotoxins: Toumanoff (1954) was the first to report that Bt
produced a heat-labile insecticidal exotoxin which was toxic to G.
melfonalla larvae, While Smirnoff (1964) found a similar substance
in Thuricide®filtrates, which was toxic to Lepidoptera, Coleoptera,
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Diptera, Orthoptera and Hymenoptera. Heimpel (1967) coined the
term o-exotoxin for such Bt heat-labile toxins. Krieg (1986)
estimated the size of a-sxotoxins at 45-50 KDa by gel Tiliration.

B-exotoxins: These were first discovered by Connel and Richardds
(1959) and named “B-exctoxin” by Heimpel {1967) and since then
defined as an adenine-nuclectide and ATP analogue and given the
name “thuringiensin”. These low molecular weight toxins are
thermostable and have a broad spectrum of activity killing various
lepidopteran dipteran, hymenopterans isopteran nematodes and
mites. Gingrich ef al. (1992) reported the existence of more than
one type of heat tolerant exotoxin. Levinson ef al. {1990)
confirmed the existence of a second heat tolerant exotoxin and
named Il B-exotoxin, which is more specific than the type | pB-
exotoxin and wvery active against the Colorado potato beetle,
Leptinotarsa decemiineata Say. (Coleoptera:Chrysomelidae). The -
exotoxin preferentially inhibits biosynthesis of RNA. {Beegle and
Yamamoto, 1992). The products based on these (-exotoxins are
also used effectively against several species of red spider mites as
well as against larvae of houseflies and blowflies (Beegle and
Yamamoto, 1992). The p-exotoxin can cause teratogenic effects
and disrupt larval or pupal moulting. In mites, exotoxin has besn
reported as having a gonadotropic and morphogenstic action
similar to that of juvenoids (Petrova, 1987).

A now wvariant of P-exotoxin has been described from B,
thuringiensis var. israelensis by Weiser ef afl. (1992) and Horak
at al. {1996). They found activity of water-soluble metabolites of
B. thuringiensis var. israelensis toxic to aguatic molluscs and
Trematoda. The toxin was termed “M-sxotoxin® for molluscs-
active exotoxin.

Enterotoxins: Bacilius thuringiensis isolates have been found to
produce B cereus-diarrhoeal-type enterotoxins (Carlson et al.,
1994). Bacillus cereus enterotoxins are responsible for symptoms
of food poisoning following ingestion of B. cereus. Damgaard ef
al. (1996) isolated enterotoxin producing strains of B. thuringiensis
from various foods. Similarly Te Gazit et af. (1997) reported two
enterotoxing producing strains that has previously identified as B.
cereus and implicated in incidents of food poisoning.

Vegetative insecticidal proteins: A newv class of insecticidal toxins,
vegetative insecticidal proteins have been isolated from B.
thuringiensis. Vip3A is a noval protein with a wide spectrum of
activities against lepidopteran insects and was first reported by
Estruch et &l {1996). For example Donovan et al. (2001)
demonstrated that an important component of B. thuringiensis
insecticidal activity against Spodoptera exigua (Lepidoptera:
Noctuidae) is the synthesis of Vip3A protein by B. thuringiensis
cells after ingestion of spores and crystal proteins by insect larvae.
These proteins had no homology to known proteins and were
expressed in vegetative growth stage (Estruch et al, 1996). The
midgut epithelium cells of the susceptible insects ars the primary
target for the Vip3A insecticidal proteins and their subsequent
lysis appears to be the primary mechanism of lethality (Yu ef al.,
1997).

D-endotoxins (crystal proteins): During sporulation Bt produces
parasporal crystalline inclusions bodies of a wide range of
morphological types (Meadows ef al, 1992). The proteins
comprising these crystals account for 20-30% of the total
bacterial protein at sporulation (Boucias and Pendland, 1998).
These can be classified into six general types: bipyramidal,
rhomboid, spherical, rectangular, irregular pointed and irregular
spherical (Chilcott and Wigley, 1994). The bipyramidal crystals
show a greater Trequsancy of toxicity than all other typss and the
majority of isolates with lepidopteran activity contain such
inclusions {Attathom et &i., 1995). The crystal (Cry) proteins that
form bipyramidal crystals are typically 130 KDA in size and several
closely related proteins may be present in a single crystal
(Yamamoto and Powell, 1993). Bipyramidal crystals synthesized
in the host cells are typically about 1.1 pm long and 0.5 pm wide
(Oeda et al, 1989). Irregular spherical crystals can be
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mosquitocidal (Ohba et al., 1995), while rhomboid crystals are
active against some coleopteran species (Burtseva et al, 1995). In
addition to producing Cry toxins, several Bt strains also produce
cytolytic endotoxins. These include the Cyt1A toxins from Bt
israejensis and Bt morrisoni PG14 and Cyt2 A from Bt kyushuensis.
Unlike the Cry endotoxins, the Cyt sndotoxins display broad
unspecific activity in vitro and vivo. Crickmore et al. (1998) defined
Cry proteins as “a parasporal inclusion (Crystal) protein from Bt
that exhibit some experimentally verifiable toxic effect to a target
organism, or any protein that has obvious sequence similarity to
a known Cry protein”.

The inclusion bodies act as gut poisons to species belonging to six
orders of insect: Lepidoptera, Diptera, Coleoptera, Hymenoptera,
Homoptera and Mallophaga (HdSfte and  Whitelay, 1989;
Feitelson et al, 1992) as well as to Nematoda and Protozoa
(Feitelson et al., 1992). A total of 89 different crystal proteins have
been cloned (De Maagd et al., 2001). The full list of delta-endctoxin
is maintained by Dr N. Crickmore, University of Sussex UK and can
be found at http://wwwy.biols. susx. ac. uk/home/Neil_Crickmore/Bt/.

Mode of action of Cry proteins: Bacillus thuringiensis crystals
ingested by a susceptible insect larva liberate 130-140 KDa
protoxin molecules that are solubilized in the high pH (8.0-10.0)
anvironment of the lepidopteran and dipteran midgut (Koller et al.,
1992), or below pH 4 and above pH 10 in the case of the
coleopteran-active toxin, Cry3A (Koller et al, 1992). Insecticidal
activity decreases rapidly following exposure of protoxins to
conditions below pH 2 or above pH 11 (Tran et &, 2001). By the
action of midgut proteases these protoxins are processed into
active, toxic fragments (approximately 55-70 KDa) (Schnepf et al.,
1998), which either act at the midgut membrane or pass through
the gut into the haemocosl where it exerts its effect (Fast, 1981).
The major proteases in the lepidopteran midgut are trypsin-like
{Milne and Kaplan, 1993) or chymotrypsin-like {Novillo et af., 1997).
The conversion of Cry1A-type protoxin involves the removal of
approximately 600 amino acid residuss Trom the C-terminal end of
the molecule, producing an active 67 KDa toxin (Aronson ef af.,
1991; Visser ef al, 1993; Bravo ef al, 2002). The earliast
physiological symptom of protoxin is an increase in glucose uptake
by gut epithelial cells due to a stimulation of respiration (Faust
et al., 1974).

Differances in the extent of solubilization of protoxin can
sometimas explain differences in the degres of thse toxicity
batween Cry proteins (Du et al, 1994). A reduction in solubility is
also thought to be one potential mechanism for insect resistance
{McGaughey and Whalon, 1992). However, the host specificity of
Bt toxins depsnds largsly upon thsir ahility to bind to a specific
midgut receptors (Estada and Ferre, 1994; Feldmann et al, 1995).
Rie et al (1989) reported the occurrence of multiple receptors for
Cry1A toxins. For exampls, receptor 1 binds all Cry 1A toxins,
receptor 2 binds Cry1Ab and Cry1Ac, while receptor 3 hinds
Cry1Ac only (Yamamoto and Powell, 1993). Cry1Ab and CrylAc
share the same binding site in 7. ni and O. nubilalis, whereas the
Cry1Aa binds to a different site (Estada and Ferré, 1994).

In Lymantria dispar (Lepidoptera: Lymantriidas), Cry1Aa shares a
binding site with Cry1Ac and in Manduca sexta {Lepidoptera:
Sphingidae) it also share hinding site with Cry1Ab {(Hofmann et af.,
1988). However, Cry1Ab shares a common site with Cry1Aa,
Cry1Ac and Cry1F in P. xylostelia (Ballester ef al., 1994). Such
hetsrogensity, combined with differences in affinity and
concentration of binding sites, may to a large extent account Tor
the observed divarsity in toxicity spectra. Additional factors which
can play a role in determining specificity are protoxin stability
(Arvidson et al, 1989), differential solubilization of crystals
(Aronson et &., 1991) and subsequent proteolytic processing
{Milne ef al, 1995).

Differant domains of the Cry protsin moleculs are responsible for
the steps of receptor recognition and pore formation (Van
Frankenhuyzen, 1993). Elucidation of the three dimensional
structure of Cry3A {coleopteran-specific), Cry1Aa (lepidopteran-
specific) and Cyt2A {mosquito specific) showed that the toxic
fragmsents of Cry protsins are composed of thres distinct
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structural domains. Domain | (a 7-o-helical bundle) has the ability
to Torm pores or channsels in the insect epithselial membrane

Thompson et al, 1995). Domain-|l {a triple-B-shest structure) may
e responsible for recaptor recognition, which has a fold similar to

that of the plant lsctin jacalin and jacalin is known to hbind

carbohydrates via exposed loops at the apex of its B-prism fold.
(Schnepf et al, 1998). Domain Ill {a B-sandwich) in which the C-
terminal end is buried, may protect the toxic fragment from
further degradation during proteolytic processing (Smith and Ellar,
1994). The “Jelly-roll” configuration of Domain Il is a relatively
common structural feature that has been observed in a number of
other proteins (Yamamoto and Powell, 1993). The p-sandwich
structurs of domain Il is thought to play a key rols in the
biochemistry of the protoxin moleculs, protecting the molecule
from proteolysis within the gut {Li ef a/., 1991). Also, the domain-
exchange studies have found that the toxicity of a toxin to the
insect host followed the mowvement of domain Ill, which is
prerequisite step in receptor binding {Li et af, 2001).

In contrast to Cry3A and Cry1Aa, Cyt2A consists of a single
domain in which two outar laysrs of o-helix wrap around a mixsd
B-sheat. Cyt1A is believed to have a similar structure (Schnepf
at al, 1998). The Pshest structure of Cyt2A suggests a pore
based on a B-barrel (Li ef &, 1996). Chow ot al. (1989) have
obssrved that Cyt 1A aggregates on the surface of the targst cell.
While Gazit et al (1997) found that Cyt1A self-assembles within
tha membrane and also identified two o-helices (A and C}, which
are involved in both membrane interaction and intermolecular
assembly.

The membrane bound Cry protein toxic fragment induces the
Tormation of a pore, sither aspecific or K' - specific, in the midgut
epithelial cell membrans. Porss in the plasma membrans disrupt the
actively maintained osmotic balance, causing the cslls to swsll and
burst by colloid-osmotic-lysis (Knowles and Ellar, 1987; Visser et
al, 1993) due to an alteration in ion flux and inhibition of amino
acid transport across the brush border membrane (BBM) {Giordana
at al., 1993). Direct permeability assays on cell lines (Knowles and
Ellar, 1987} and BBM vesicles (BBMV) (Carrol and Ellar, 1993)
showwed that a non-sslective Cry protein-induced pore was formed
of about 0.6 mm radius, permeable to cations, anions and
uncharged molecules up to the size of sucrose. A three-
dimensional model of the Cry3A protein supports the hypothesis
that the toxin causes the formation of pores or channels in the
lipid bilayer {Li ef af., 1991).

Binding of the toxin is a two stage process involving reversible
(Hofmann et af, 1988) and irreversible phases (Mohan et al.,
1995). Irreversible binding is thought to involve tight binding
between the Cry protein and receptor and insertion of the former
into the apical membrane or both. For example, a truncated
Cry1Ab molsculs containing only Domain 11 and Domain 1 can still
bind to midgut receptors but only reversibly, supporting the
notion that irreversible binding requires the insertion of Domain |
(Flores et al, 1997). The changes in the gut result in vegetative
propagation of normal gut microbial flora or of introduced
microorganisms, which cause the larvas to stop feading due to
“extreme digestive discomfort” within as little as 2 minutes. This
evantually results in a septicasmia which can contribuie to or
cause death of the larvae (Fast, 1981). Death caused by the
bacterial septicemia usually occurs 2-3 days post-ingestion (Bauer,
1995). A proposed mode of action of Bf toxins has been shown
(Fig. 1.

Baciflus thuringiensis and ftransgenic crops: Since the Tirst
transgenic plants appeared in the early 1980s {Horsch et al, 1984),
there has been wvery rapid progress directed at using this new
technology for the practical ends of crop improvement. Protection
of crops from inssect pests was quickly seized upon as a major goal
of plant genetic enginesring (Hilder and Boulter, 1999).

The dewslopment of transgsnic crop plants expressing Cry
proteins (toxins) from Bt has provided new options in the
integrated pest management of a wide range of insect pest
species, being compatible with biological methods of pest control
dus to the selective toxicity of the Bf toxins and their methods of

delivery to the target pest {(Wearing and Hokkanen, 1994). Cotton,
maize and potato varietiss enginesrad with Cry genes ars fully
approved for commercial use in various countries. The number of
countries growing transgenic crops commercially has increased
from 1 in 1992 to 13 in 1999 (Shelton et al., 2002).

The more obwvious advantages of enginesred insect resistance in
plants ars protection of target tissus, weather indepsndent
protaction, greater stability of Cry foxins, compared with
conventional spray application of Bt products and, thus, lack of
dependence on application timing for treatment success and
protection is possible for the entire season and only those insects
which feed on transgenic crops will be exposed (Ely, 1993).

The fast increase in the prevailing acreage of transgenic plants by
more than 25 fold from 1.7 million ha in 1996 to 44.2 million ha in
2000 is expected to increase and global market is projected to
move from less than US $ 500 million in 1996 to US $25 hillion in
2010 (James, 1997; Frutos et al, 1999; Shelton ef al., 2002).
However, a major concern is the potential vulnerability of Bt crops
to the svolution of resistance by insect pests (Tabashnik et af.,
1997a; Wolfenbarger and Phifer, 2000). Large-scale cultivation of
Bt transgenic crops will certainly impose selection pressure for pre-
existing Bt-resistant insects to increase their numbers. Transgenic
plant resistance with Bf genes may thus be a short-lived
phanomenon rapidly overcome by insects in much the same way
that insecticide toxicity has often been overcome (Van Emden,
1999).

Bacillus thuringiensis and non-target insects: Short term risks to
natural enemies is a function of the intrinsic susceptibility of the
organism and the level of exposure to the toxin (Jepson et al.,
1994). Laboratory tests against various invertebrates indicate that
Bt has limited impacts on non-targst organisms. However, given
the wide host range of many Bt strains, non-target impacts of Bt
application can occur. For example larvae of the monarch
butterfly, Danaus plexippus are susceptible to Cry1Ab (Losey
ef al, 1999; Jesse and Obrycki, 2000; Hsllmich et al, 2001).
Howwawvar, sxpsriments investigating the sffacts of conventional Bt
sprays on other non-targst lepidopterans have shown that it is
difficult to generalize about susceptibility to Bt and susceptibility
must be dealt with on a species by species basis (Peacock et al.,
1998).

Insect natural ensmiss are important control agents of inssct
pasts. They are often gensralists and will attack seweral inssct
pasts. Control measurs which reducs natural enemy populations
may, therefore, result in outbreaks in non-target pests. Bacillus
thuringiensis has rarely besn found to be toxic to natural snemiss
{Johnson and Gould, 1992, Hoy, 1998). However some laboratory
studies have reported negative effects of Bt toxins on natural
anemies. For example Cry1Ab increased mortality of the predatory
Lacewing, Chrysoperal carnea Stephens (Neuroptera: Chrysopidae)
when its larvae were provided with Cry 1Ab fed pray (Hilbeck et
al, 1998a) as well as Cry1Ac directly in an artificial diet {Hilbeck et
al, 1998b). However other studies with Chrysopa spp., including
use of exotoxin-containing products (Zuo ef afl., 1994), Bt kurstaki
(Salama and Zaki, 1984) and Bt fenehrionis {Langenbruch, 1992)
did not report significant effects. Some examples of sffects of Bt
on insect predators are given in Table 1.

As with predators a range of effects on parasitoids have been
recorded, with several studies finding no impact. For example
Schuler ef al. (1999, 2001} found no detrimental effects of a Bt
transgsenic cilseed rape line sxprassing Cry1Ac on the ability of the
parasitoid Cotesia pluteflae (Hymenoptera:Braconidae) to control
P. xylostella. However, treatment of hosts with Bf may adversely
affect larval parasitoids by increasing mortality of larval parasitoids
within hosts which survived the treatment and by reducing the
body size of adult parasitoids {Monnerat and Bordat, 1998). If Bt
kills the host too quickly the parasitoid does not hawve sufficient
rasources to dewslop. For sxampls, in a parasitoid of spruce
budworm, Apanteles fumiferanae (Hymenoptera:Braconidae)
populations were reduced by 50-60% because of lack of parasitoid
emergence before host death {Nealis and Frankenhuyzen, 1990).
Similarly, A. glomeratus, A. melanoscelus and A. litas showed
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reduced adult life-span after Bf kursiaki application against the
host (Salama ef al, 1996). The effects of Bf on parasitoids are
summarized in Table 2.

Effect of Bacilfus thuringiensis on humans: Bacilius thuringiensis
has besn used Tor over 60 years Tor insect pest control but there
have besn wvery few reports of clinical infection caused by the
organism {Siegel, 2001). Howaever, it has been suggested that the
low number of reported cases may be an underestimate due to
inadequate diagnostic laboratory facilities, failure to identify
Bacilius isolates to species, the mixed microbiological nature of
some clinical specimens and the rsjsction of clinically significant
isolates as contaminants. For example, Jackson ef al. (1995)
reported that Bt isolates recovered from patients with burn
wounds wera initially incorrectly identified as B. cereus. There are
two incidence of reported allergic reaction have been found
{McClintock ef al, 1995). In the first case it was concluded the
individual was most likely, suffering from a previously diagnosed
disease while the second case involved an individual with a
pravious history of life threatening Tood allergies.

Proven cases that Bt causes clinical disease in mammals remain
extremely rare and the risk to public health from Bt is considered
to be extremely small {Drobnievwski, 1993). Similarly, all mammalian
toxicity testing of individual Cry toxins expressed in Bt plants has
proved negative. Since Bt affects insects through unique receptor
sites in the cell membranes of the inssct gut, thers ars no known
receptor sites in mammalian species which could be affected.
Thus, there is a reasonable certainty that no harm wvill result to
mammals from dietary exposure to residues of Bt {Anonymous,
1997). It has also been shown that Cry proteins rapidly degrade
in vitro, usually within 30 s. Cry proteins rangs in size from
approximately 60 to 120 KDa (Schnepf et al, 1998). These
proteins degrade in simulated digestion models to polypeptides of
less than 2 KDa (less than 10 amino acids in length). These in vitro
models are significantly less robust than the gastrointestinal
systems of humans or other animals, which suggests that the Cry
proteins  will be rapidly and extensively degraded upon
consumption (Betz ef af., 2000).

Resistance to Bacillus thuringiensis: Resistance is a complex
genetic, evolutionary and ecological phenomenon (Metcalfe, 1989)
and generally occurs by selsction of rare individuals in a population
that can survive the insecticide. It is a function of survival of the
Tittest. Homozygous resistant genes are rare in untreated
populations compared with heterozygotes and homozygous
susceptible {Dent, 2000). Widespread application of pesticides
propagates resistant alleles through preferential survival either by
selection or random mutation. Continued selection pressure in the
same direction will lead to thaese allslss bsing sessential in the
population for offspring production {Sutherst and Comins, 1979).
Commercial Bt formulations had been used in the field for more
than three decades before resistance appeared (Tabashnik, 1994).
The eventual development of Bt resistance in populations of P,
xylostalla was perhaps inevitable, howsver, given its biology, its
history of insecticide resistance and the very high frequency of Bf
applications applisd to high valus crucifer crops to control this
pest in the late 1980s. In the laboratory, a total of 14 species have
developed resistance to Bt Cry toxins (Table 3) (Ferré and V an-Rie,
2002).

Insects with a large number of genserations per annum will tend to
show a more rapid development of resistance than insscts with
only one generation in a growing season (Georghiou and Taylor,
1986). In a population with a low influx of genes resistance may
become rapidly fixed while in populations with a continuous influx
of novel genes resistance may be continuously diluted (Peferoen,
1997). The way insecticides are applied also has a dramatic sffect
on the rats of resistance devslopment. Topical application of Bf
compared with exprassion of a Bf Cry protein in a plant imposes
different selection pressure on an insect population.

Baciflus thuringiensis resistance mechanisms: The mechanism by
which an insect evolves resistance to a particular toxin is

unavoidably related to the toxin's mode of action (Gill et al., 1992;
Marrone and Macintosh, 1993). Although several different
resistance mechanisms have been proposed (Gill et al., 1992), the
most likely ones to dats involve changes in Bf receptors or
solubilization-activation of the crystal proteins (Ferré and V an-Rie,
2002). Reaceptor mediated mechanism may include loss of Cry
toxin binding sitss, increass in non-specific binding not related to
toxicity. While solubilization and proteinase mediated resistance
mechanism could involve changes in gut pH or in proteinases
involved in protoxin activation.

Receptor-mediated mechanisms: Studies on various lepidopteran
species have suggested that toxin binding to midgut receptors is
responsible for toxin sensitivity or specificity among several
different species (Ballester et al, 1994). In this type of resistance,
the protoxin is solubilized and activated in the resistant population
as it is in susceptible insects. However, the activated toxin can no
longer recognize a suitabls hinding site or spitope on the recsptor
{Rie ef al., 1990; Farré et al, 1991). The first case of resistance
associated with altered midgut binding of a toxin was reported in
P. interpuncteila (Rie et al, 1990). The resistant strain of P.
intarpunctalia showsd reduction in binding affinity but no changs
in the number of binding sites of Cry1Ab. This indicated that
alteration in the binding site for Cry 1A b was preventing effective
hinding of ths toxin.

The examination of Cry toxin binding in P. xylostelia revealed loss
in specific binding to Cry1Ab, suggesting that resistance was also
due to a change in the Cry1Ab binding site (Ferré et al, 1991). A
Hawvaiian colony of P. xylostella that was resistant to all three
Cry1A toxins was found to exhibit reduced binding of Cry1Ac in
BBMV assays (Tabashnik ef al., 1994a) and rapid reversal of
resistance was associated with the restoration of the bhinding
properties of CrylAc (Tabashnik et al, 1994b). Similarly, a
population of P. xylostella from Malaysia highly resistant to
Cry1Ac and moderately to Cry1Ab exhibited reduced binding to
both toxins in BBMV assays and reversal of resistance was
associated with the restoration of binding properties of the toxins
(Sayyed et al., 2000a).

Solubilization/proteinase-mediated mechanisms: Proteolytic
activation of Cry1 toxins involves the removal of peptide
sequences from both the N- and C- termini of the protoxin (Bravo
et al., 2002). Resistance could thus involve a decrease in
proteolytic properties of the insect midgut {(Marrone and
Maclntosh, 1993).

Since proteolytic enzymes are involved in the dissolution and
activation of Bt protoxins {(Dai and Gill, 1993; Milne and Kaplan,
1993), the first evidence for protease involvement in Bt resistance
was found in a Bf resistant strain of P. inferpunciella that
displayed a slower processing of protoxins than in the susceptible
strain and activation of Cry1 protoxins with midgut enzymes
resulied in proteins of intermediate size of 60 KDa protsins
(Oppert et al., 1994). In this strain of P. interpunctella, the major
serine proteinase was absent. Since these proteinases are involved
in the activation of Bf protoxin (Oppert et al, 1996), lack of critical
Bt activating enzymes could contribute to toxin resistance.
Similarly, two other resistant strains of P. interpunctelia were
found to hawe a genstically-linked reduced protoxin activation
compared with a susceptible strain due to the absence of major
trypsin-like gut enzyme (Oppert et af, 1997). In the CP73-3 colony
of Heliothis virescens {Lepidoptera: Noctuidae) slower activation of
Cry1Ab protoxin and faster degradation of Cry1Ab toxin in
midgut extract was observed by Forcada ef al. {1996). While
Inagaki ef al. (1992) found that complste degradationof Cry1Ab
by proteases derived from the resistant Spodoptera litura
(Lepidoptera:Noctuidas) was the likely cause of resistance.
Similarly, Keller ef al. (1996) suggested that reduced sensitivity of
fifth-instar larvae of S. Jittoralis to Cry1C could be attributed to
increased degradation of the toxin by proteases in the less
susceptible larvas. Milne ef al. {1995) reported that a protein
complex present in the midgut of spruce budworm, Choristoneura
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Table 1: The effects of Bacillus thuringiensis on parasitoids of different insect pest species

Parasitoids Target Pest Bf products Effect of Bt on parasitism References
Encarsia formosa Trigleurodes vaporariorum Bf var. aizawai Nat toxic Hayashi {1996)
Apanteles pliteflae Piutella xylostella Bt var. kurstaki Not toxic Talekar and Yang (1991)
Cotesia marginiventris Heliothis virescens Bt var. kurstaki Nat toxic Atwood ef al (1998)
Cotesia plutellae Piutella xylostella Bf var. kurstaki Negative effect on parasitoid Chilcutt and Tabashrik {1997}
Cotesia Plutelfae Plutelia xylostelia Bt Canola No effect Schuler ef af (1999); (2001}
Meteorus leviventris Agrotis ypsilon B. thuringiensis Retarded development/emergence Hafez et al. (1997)
Pteromalus puparum Pieris brassicae B. thuringiensis No effect on adults Mushtaque ef al (1993)
Diadegma eurocerophaga Piutella xylostella Bt var. kurstaki Not toxic Talekar and Yang (1991)
Diadegma insulare Piutella xylostella Bt var. kurstaki No effect in the field Caballo et af (1989)
Diadegma pierisae Pieris brassicae Bf var. kurstaki No effect on adults Mushtaque ef al (1993)
Diadegma semiclausum Piutella xylostella Bt var. kurstaki Least toxic of insecticides tested Obra and Rejesus (1997)
Diadegma sp. Piutella xylostella Bt var. kurstaki Not toxic Monnerat and Bordat (1998)
Telenomus remus Spodoptera litura Bf var. kurstaki No effect Chari ef al (1996)
Trichogramma cacoeciae Sitrofraga cerealella Bt var. kurstaki High concentration repellent Hassan and Krieg (1975)
Trichogramma evanescens  Ostrinia furnacalis Bt var. kurstaki No effect on parasitoid abundance Tandan and Nillama (1987}
Helicoverpa armigera
Trichogramma evanescens  Spodoptera lituralis Bf var. gallerise Bt treated eggs parasitism decreased  Salama and Zaki (19856)
Trichogramma exiguum Helicoverpa zea, Manduca Bt var. kurstaki No effect Campbell et al. (1991)

spp. and Trichophisia ni

Table 2: Effect of Racillus thuringiensis on predators of different insect pest species

Predators Tamget Pest Bt products Effect of Pf on parasitism  References

Chauliognathus luqubris Chiysoptharta bimaculata Bt var. fenebrionis  No toxicity Beveridge and Elek {1999)
Pterostichus spp. Cydia pomonella Bt var. kurstaki No effect Riddick and Mills {1995}

Coccinella septempunctata  Helicoverpa armigera Bt var. kurstaki No effect Manjula and Padmavathamma (1996}
Coccinella undecimpunctata  Spodoptera littoralis Bt {Bactospeine) Harmless Fl Husseini {1984)

Chrysopa carnea Spodoptera littoralis Bt var. kurstaki Slightly affected Salama and Zaki (1984)

Chrysopera camea

Fphestia kuehniella

predator population

Cry1Ab

Toxic ta C. carnea

Hilbeck et al {1998a)

Table 3: Species of insects selected in the laboratory or field' for resistance to Baciffus thuringiensis

Insect species Common Names Family References

Aedes aegypti Yellow fever mosquito Culicidae Goldman et al. (1986)

Cadra cautella Almand moth Pyralidae McGaughey and Beeman (1988)
Choristoneura fumiferana Spurce budworm Tortricidae Van Frankenhuyzen et al. (1995)

Chrysomela scripta
Culex quinquefasciatus
Heliothis virescens
Homoeosoma electelfum

Cottorwood leaf beetle

Chrysomelidae

Bauer ef al {1995)

Leptinotarsa decemiineata
Ostrina nubilalis

Plodia interpunctelia
Plutella xylostelld’

Spodoptera littoralis
Spodoptera exigua
Trichoplusia ni

House mosquito Culiciclae Georghiou and Taylor {1986)
Tobacco budworm Noctuidae Stone et afl. (1989)

Sunflower math Pyralidae Brewer {1991)

Colorado potato beetle Chrysomelidae Whalon ef af {1993)
European corn borer Pyralidae Bolin ef af (1998)

Indian meal maoth Pyralidae McGaughey {1985)
Diamondback moth Plutellidae Kirsch and Schmutterer (1988)
Cotton leafworm Noctuidae Miiller-Cohn et af. (1996}

Beet armyworm Noctuidae Moar et af. (1995)

Cabbage kooper Noctuidae Estada and Ferré {1994)

Table 4: Cross-resistance pattern to Baciffus thuringiensis and its toxins in different insect pest species

Insect species

Bt products

Cross-resistance

References

Plodia interpunctelia
Plodia interpunctelia
Trichoplusia ni
Spdoptera littoralis
Spodoptera exigua
Plutelia xylostella
Plutelia xylostella
Plutelia xylostella
Chrysomela scripta
Culex quinquefasciatus
Culex quinquefasciatus

Bt var. kurstaki
Bt var. aizawa
Cry1Ab

Cry1C

Bt var. kurstaki
Bt var. kurstaki
Bt var. aizawa
Cry1C

Cry3Aa

Bt var. israelensis
Cry11A

Bt var. gallerise

Bt var. kurstaki

Not resistant to Cry1Aa or Cry1Ac
partial to Cry1D, Cry1E and Cry1Ab

Cry1Ab, Cry1C, Cry1E, Cry1H and Cry2 A

Cry1F, Cry1J

Bt var. kurstaki, Cry1Ac

Cry1F, Cry1J

Cry1Ba

Bt var. jegathesan

marginally to Bf var. israelensis,
jegathesan and kyushuensis

McGaughey and Johnson (1994)
McGaughey and Johnson (1994)

Estada and Ferre (1994)

Muller-Cohn ef al. {(1996)

Chaufaux ef af. {(1997) Moar et al (1995)
Tabashnik et af. (1997b)

Sayyed et al. (2000a); Sayyed and Wright {2001a)
Zhao ef al (2001)

Federici and Bauer (1998)

Wirth et al. (1998)

Cheong et al {1997)

fumiferana (Lepidoptera: Tortricide) could inactivate Cry1Aa by
precipitation followed by proteolysis, thus accounting for
resistance to this toxin, However administration of serine
protease inhibitors with protoxin in a susceptible strain of P.
xyiostella did not lead to a decrease in toxicity, which suggested
that the proteolytic enzymes involved in the activation of
endotoxins in this population belongsd to a different group of
proteases {Tabashnik et al., 1992a).

Cross-resistance patterns: Cross-resistance pattemns can help to
identify resistance mechanisms {Roush and Tabashnik, 1990).
reported for a number of toxins (Table 4). Some insect species

Generally the incidence of cross-resistance is low but it has been
can be readily selected for resistance to several different Bt toxins
{(McGaughey and Johnson, 1994). For example, it has been
shown that P. interpuncteila can be selected for resistance to
Cry1Aa, Cry1Ab, Cry1Ca and Cry1Da and possibly other Cry
toxins contained in B. thuringiensis var. aizawai {Bta) (McGaughey
and Johnson, 1994). Cross-resistance betwseen Bf toxins has also
been reported in H. virescens (Gould et al, 1992; Gould et al.,
1995) and P. xylostella (Tabashnik ef al, 1994c; Wirth et al.,
1997; Sayyed et al., 2000a, Sayyed and Wright, 2001a). Cross-
resistance among Cry1A toxins is not surprising, owing to their
structural and functional similarities (Shelton ef al, 1993) and
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studiss have shown that thess toxins may hind to the sams
receptor in most of the insect species tested (Ballester ef af.,
1999).

Several studies have rsported an abssnce of cross-resistance
between synthetic insecticides and Bt. For example Bt resistant
P. xylostella showed no cross-resistance to phenthoate,
fenvalerate, chirofluazuron or abamectin (lgbal et al, 1996;
Sarnthoy et af., 1997). However, resistance to Btk in the shesp
lice, Bovicola (Damaiinia) ovis Schrank (Phthiraptera:
Trichodectidae) was shown to be inversely related to pyrethroid
resistance (Drummond ef al, 1995).

Cross-resistance patterns and thsir underlying physiological
mechanism are very complex and somewhat unpredictable, even
in closely related groups of toxins and insects {Table 4; Tabashnik,
1994). Where resistance is dus to reduced binding, then cross-
rasistance can be predicted Trom compstitive binding studies with
susceptible insects, however when the resistance is unrelated to
binding, then this can produce unexpsected results such as the
broad cross-resistance as in H. virescens (Gould ef al, 1995) and
P. xylostella {Sayyed et al, 2000a, Sayyed and Wright, 2001a).

Multiple mechanisms of resistance: These evolve as a
consequence of sserial sxposure fo differsnt  toxins or
combinations of toxins (Wright et al., 1997; Frutos et al, 1999).
For example, Gould ef al (1992) reported that a strain of H.
virescens selected Tor Cry1Ac also showed resistance to Cry1Ab
and CryZ2Aa. Binding analysss showsd that thars was no changs
in the binding characteristics of Cry1Ab and Cry1Ac and although
the resistant strain seemed to have fewer receptors for Cry1Ac,
these were of high affinity. There was no significant decrease in
the affinity or number of binding sites which could explain the
level of resistance which was therefore considered to occur post-
binding {Moar et al, 1995). In a &. fittoralis population,
experiments suggested the low level of activity of Cry1A toxins
was due to an inability to carry out the pore Tormation step
(Escriche ef al, 1998). Similarly, a P. xylostelfa population (SERD3)
Trom Malaysia resistant to both Btk and Bfa showed decreased
binding to Cry1Ab but not to CrylAa, CrylAc or Cryl1Ca,
suggesting that reduced toxin binding alone could not account
for the resistance obhserved (Wright et al, 1997). In another
population {SERDD), collected from the same location, reduced
activation of protoxin is thought to be a major mechanism
(Sayyed and Wright, 2001b).

Genetics of Baciflus thuringiensis resistance: The genetic basis of
resistance is complex (Heckel, 1994). It includes the initial
frequency of resistance alleles, natural wvariability, mode of
inheritance (degree of dominance, sex linkage) and fitness costs
associated with resistance.

Initial frequency of resistance alleles: Although such information
is useful Tor assessing the evolution of resistance, it is not easily
available (Frutos et al, 1999) and the assessment of the initial
frequency of resistance alleles is almost never conducted prior to
development of resistance {Tabashnik et al, 1990; Gould et al.,
1997).

The initial frequency of resistance alleles influences the rate at
which resistance will evolve {(Alstad and Andow, 1995; Gould
at al, 1997). Change in allele frequency is the key indicator of the
effectiveness of an insecticide. The initial allelic frequency is
generally assumed to range from 107° to 10~ {Roush and
McKenzie, 1987; Gould, 1998). A direct approach, making use of
a homozygous recessive resistant strain, has estimated the
frequency of a major Bt resistance allele in a field population of H.
virescens to be 1.b x 1072 (Gould et al., 1997). By applying the
same approach in P. xyiostella, Tabashnik et a/. (1997a) estimated
the frequency of a recessive Bt resistance allele in a susceptible
laboratory population to be 1.2 x 107", While Alstad and Andow
(1996) used a F, screening procedure to estimate the frequency
of Cryl1Ab resistance alleles as < 1.3 x 1072 in a laboratory
population of O. nubilis. Using a slightly modified procedure
Andow et al (2000) and Bentur et al. (2000) estimated the initial
frequency of resistance in an lowa population of Ostrinia nubilalis

(Lepidoptera: Pyrallidag) to Bt comn < 3.9 x 10 and< 3.6 x 107
respectively. Using a new approach, Tabashnik ef al (2000)
estimated initial Trequency of resistancs in a Tisld population of P.
gossypiedla in Arizona to be 1.6 x 1077,

Natural variation in susceptibility to Bt: Intra specific variation in
suscseptibility to Bf betwesn different geographical populations
has been reported for various insect species. For exampls, a
population of rice stripped stemborer, Chilo suppressalis Walk.
(Lepidoptera: Pyralidae) from Southeast Asia was susceptible to
Cry1Ca (Les et al, 1997) whereas a population from Southern
France was not (Fiuza et al, 1996). Similar results were reported
for O. nubilaiis collected from different places of USA (Huang
at al, 1997). However, the spruce budworm, Charisfoneura
fumiferana Clem (Lepidoptera: Tortricidas) showed limited
geographical wariation in susceptibility to Bf although intra-
population variability showed a 2 to 30 fold difference betwesn
the highest and lowest percent mortalities at a single dose (Van
Frankenhuyzen et al., 1995). In general, the susceptibility of Cry
proteins can vary among different populations of a given insect
species (Cabrera ef al, 2001). This could affect the
standardisation of potency of B. thuringisnsis based products
and make sstimation of resistance levels in populations expossd
to Cry toxins more difficult.

Another way to estimate the variability in resistance genes is to
measure heritability (h?). Tabashnik ef al. (1994a) sstimated
heritability of resistance to Bik and Cry1A toxins and showed
that compared with eight other insects species, P. interpunciella
had relatively high h? values, indicating low phenotypic variation.
However, relatively higher h? wvalues were found in two
populations of P. xylostelfa from Malaysia (Igbal ef al, 1996;
Wright ef al, 1997; Sayyed af al, 2000a reflecting a low
phenotypic  variation probably resulting from continuous
exposurs to Bf.

Mode of inheritance of resistance: Information on the mode of
inheritance can improve resistance monitoring, risk asssssment,
modelling and resistance management {Tabashnik ef al, 1992h).
Thse inharitance of Bf resistance in insscts has commonly besn
assumed to be recessive in nature. The mode of inheritance of
rasistance in various insect populations is summarised in Table 5.
Tha single backcross method has besn used to dstermine the
number of loci involved in resistance. This has shown that the
backcross data fitted fairly well to a single locus model (Ferré and
Van-Rie, 2002). However resistance to Cry1Ca and Cryl1Ac in
Florida and Melaka populations of P. xylostefla {Zhao ef al., 2000;
Sayyed ef al, 2000a, Sayyed and Wright, 2001a), to Cry1Ab in
a North Carolina population of H. virescens (Sims and Stone,
1991), to Cry1Ca in a population of S. fitfforalis from lIsrasl
(Chaufaux et af, 1997) and to Cry3Aa in a Cry3A-selscted
laboratory population of L. decemfineata {Rahardja and Whalon,
1995) was found to be controlled by the combined interaction of
resistance alleles from the various loci.

It has been shown consistently that the resistance to B.
thuringiensis is autosomally inherited. However, in some cases
the sex of the resistant parent has a significant influsnce on
inheritance of resistance. For exampls, resistance to Cry1C ina 5.
fittoralis population (Chaufaux ef al, 1997), to Cry1Ab in BL and
to Cry1Ac in SERD4 populations P. xylostella had some maternal
influence (Real et al, 1995; Sayyed and Wright, 2001a). In
contrast, a Cry1Ab-sslscted population of P. xylostaila exhibited
some paternal influence.

Al present, the evidence suggests that partial or complstely
recessive modes of inheritance (Table 5) are consistently
associated with modification of hinding sites and therefore altered
specific binding (Liu and Tabashnik, 1997a; Gould et ai., 1997).
Whersas more dominant alleles seem to be associated with other
resistance mechanisms, conferring more broad spectrum
resistance (Tabashnik ef al, 1998). For example, in the SERDb
population of P. xylostelia resistance was incomplately
dominant and reducsed protoxin activation is suggested to be
the major mechanism of resistance to Cry1Ac {(Sayyed et al.,
2001h).
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Table 5: Inheritance of resistance to Bf products and Cry toxins in different insect pest populations

Species Origin Population Bt product/toxin Maode of inheritance Reference
Plodia interpunctella Oklahoma 343-R Btk Recessive McGaughey {1985)
Plutella xylostella Hawaii NO-Q Btk Recessive Tabashnik et af (1992a)
Japan ROO Btk Recessive Hama et af. (1992)
Florida Loxa A Btk Recessive Tang et al. (1997)
Pennsylvania PEN Cry1Aa Recessive Tabashnik ef al (1997a)
Philippires PHI Cry1Ab Recessive Tabashnik ef al (1997b)
Hawaii NO-95C Cry1C Incomplete dominant Liu and Tabashnik (1997b)
Thailand BS Btk Recessive Imai and Mori {1999)
Malaysia MEL Cry1hAc Incomplete dominarit Sayyed et al (2000a)
Malaysia MEL Btk Recessive Sayyed et al (2000b)
South Carolina Cry1CSEL  Cry1C Recessive Zhao ef al (2000)
Malaysia SERD4 Cry1Ac, CrylAb Incompletely dominant  Sayyed and Wright (2001a);
AH. Sayyed and D.J. Wright, Unpublished
Malaysia SERDS Cry1Ac, Cry1Ac Canola Incompletely dominant  A.H. Sayyed and D.J. Wright, Unpublished
Philippines PHI Cry1Ab Incompletely dominant ~ Cabrera ef al (2001)
Heliothis virescens North Carolina  SEL Cry1Ab Incompletely dominant ~ Sims and Stone (1991)
MNorth Carclina  CP-73-3 Cry1Ac Incompletely dominant  Gould et al (1995)
North Carolina  YHD2 Cry2 A Incompletely dominant  Gould et al {1995)
Spodoptera littoralis Israel Cry1Ca Incompletely dominant ~ Chaufaux ef al (1997)
Ostrinia nubilalis Kansas KS-SC-R Btk Incompletely dominant  Huang et ai (1999)
Leptinotarsa decemlineata Michigan Cry3A Incompletely dominant  Rahardja andWhalon {1995)

Table 6: Mechanism of resistance to Bf products and Cry taxins in different insect pest populations

Bf product/
Insects Origin Cry toxins

Number of Allele

Mechanism of resistance Reference

Heliothis virescens

Strain CP73-3 North Carolina Cry1Ac Maonagenic Broad-resistance Gould et al {1992)

Reduced activation Forcada ef al. {1996)
Strain YHD2 North Carolina Cry1Ac Monogenic Reduced binding Gould et al {1995)

Heckel ef al. (1997)

Leptinotarsa decemiineata Michigan Cry3A Palygenic N.A. Rahardja and Whalon (1995)
Plodia interpunctelia
Strain 343 Oklahoma Btk Monagenic Reduced binding Rie ef al {(1990)
Strain 133r Kansas Bik Monogenic Reduced activation Oppert ef al (1997)
Strain 198r Kansas Btk Maonagenic Reduced activation Oppert ef al (1997)
Plutelia xylostella
Strain NO-Q Hawaii Btk Monagenic Reduced binding Tabashnik et al (1994a)
Strain NO-QA Hawaii Btk Monagenic Reduced binding Tabashnik et al (1997a)
Strain NO-95C Hawaii Cry1C Palygenic Reduced binding Liu and Tabashnik {1997 a)
Strain SERD3 Serdarng Btk Paolygenic Reduced hinding Wright ef af {1997)
Strain Loxa A Florida Btk, Cry1C Monagenic Reduced binding Tang et al (1997); Zhao et al (2000)
Strain MEL Melaka Btk Monagenic N.A. Sayyed et ai (2000b)
Strain MEL Melaka Cry1Ac Paolygenic Reduced hinding Sayyed et al (2000a)
Strain SERD4 Serdang Cry1Ac, Cry1 Ab  Polygenic Reduced binding Sayyed and Wright (2001a)

Reduced activation A.H. Sayyed and D.J. Wright Unpublished
Strain SERDS Serdang Cry1Ac Palygenic Reduced activation Sayyed et ai (2001b)
Ostrinia nubilalis Btk Monogenic N.A. Huang et af (1999)

Table 7: Fitress costs and reversion of resistance to 8f products and Cry toxins in different insect pest populations

Number of
Insect population Origin Bt products _ Fitness costs Reversion gererations References
Spodoptera littoralis France Cry1C N.A. > 500 folds 1 Mililler-Cohn ef al. (1996)
Heliathis virescens North Carolina Btk No fitness cost 56 fold 5 Gould and Anderson (1991)
Leptinotarsa decemiineata Michigan Cry3A Fitness costs 80 faolds 8 Rahardja and Whalon (1995);
Alyokhin and Ferro (1999)
Pectinophore gossypiefla  Arizona Bt cotton Fitness costs N.A. N.A. Liu et al (1999)
Ostrinig nubilalis Mennresota Cry1Ac Balin et al {(1999)
Plutelia xylostella
NO-QA Hawaii Btk High fitness costs 3200 folds 5 Groeters ef af (1994);
Tabashnik et af.(1994b)
ROO Japan Btk N.A. Hama et al {1992)
Loxa A Florida Btk Lack of fitness costs Tang et al (1996); (2001)
NO-95 Hawaii Cry1Ab N.A. Stable Liu et al (1996)
Melaka Melaka Btk, Cry1Ac N.A. Sayyed et ai. (2000a); (2000b)
SERD4 Serdang Cry1Ac Lack of fitness Sayyed and Wright (2001b)

Number of resistance alleles: Theoretical models describing the
evolution of resistance in various insect population have been
developed based on a monogenic mode of inheritance {Ferré and
Van-Rie, 2002). However, results obtained by using different
methods indicate that insects may have more than one Tactors
conferring resistance to Cry toxins. For example, in backcross
experiments results showed that Bt resistance populations did
not fit a monofactorial model {Rahardja and Whalon, 1995; Liu
and Tabashnik, 1997a; Sayysd af al., 2000a; Sayyed and Wright,

2001a) (Table 6). The results of different approaches used to
determine the number of resistance alleles are summarised
(Table 6).

Genstic analysis using isozyme polymorphism has also besn used
to identify the number of factors confarring resistance. For
example, a backcross design with 10 marker loci in the YHD2
strain of H. virescens revealed the existence of a major locus
named BtR-4 on linkage group 9, responsible for as much as 80%
of the total resistance to Cry1Ac (Heckel et al, 1997). Using the
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Ingestion and solubilisation of protoxin
Proteolytic activation at N-and C-termini
Interaction with cell surface binding protsin

T WM =

Proteolytic nicking and conformational change exposing o-4-b helical hairpin
Oligomerisation and insertion into membrane to form pore

Fig. 1: Proposed mechanism of action of Bt toxin (After De Maagd et al, 2001)

isozyme-linkage method, a strong correlation was found between
Cry1A mesistance and two mannoss-6-phosphate isomerass
isozymes in the PHI strain of FP. xylostelfa {(Herrero ef afl., 2001).

Rewversion of resistance and fitness costs: Instability of resistance
is the tendency Tor the frequency of resistance gsnotypes to
decrease in a population beyond effects directly attributable
immigration or emigration {Tabashnik et al, 1994a). Resistance to
insecticides is often accompanied by fitness costs, such as a
decreased rate of development, fecundity, survival or mating
competitiveness relative to susceptible insects {Roush and
McKenzie, 1987). In the majority of cases, resistance to Bt and
individual Cry toxins has besen Tound to be unstable. A rapid
decline in resistance has been Tfound in three sslected strains of F.
xylostella from Hawaii with 2800 to 90-fold resistance (Tabashnik
at al, 1994c¢). A fast rate of decline of resistance has also been
reported for Btk resistant P. xylostella populations from Japan
and Malaysia {(Hama et al, 1992; Sayyed et al, 2000b). Such
declines in resistance ars most likely caused by fitness costs
associated with resistance. However, P. inferpuncielia resistance
did not decline in one strain {343-R} even after 29 generations on
untreated diet. Similarly, in a P. xylostella population from Hawvaii
resistance in one isofemale line of the selected strain NO-Y
remained stable after 32 generations without exposure
(Tabashnik et af, 1995). It has besn shown that the decline in
resistance in moderately resistant strains of F; xylostella
(Tabashnik et al., 1994a), F. interpunctella (McGaughey and
Beeman, 1988) and H. virescens (Sims and Stone, 1991) was
much slower than in populations with higher levels of resistance.
The results of reversion of resistance studies are summarized in
Tabls 7.

High Titness costs associated with evolution of Bf resistance have
been reported (Tabashnik et al, 1994a; Groseters ef al, 1994).
Howvever, in other casses Tewv it any Tithess costs have been Tound
{McGaughey, 1985; Liu ef at, 1996; Tang et al, 1997). For
axampls, thers werse no differences in fitness betwesen Bi-
susceptible and resistant population of H. virescens, when larvae
ware fad diets that did not contain Bt (Gould and Anderson,
1991). However, there were increases in both development time
and mortality for Bif-resistant H. wvirescens larvas forced to
consume Bik. Relative to Bt-susceptible L. decemiineata, larval
development was delayed and egg production was decreased in
a Bt-resistant population feeding on potato plants not treated
with Bt var. tenebrionis (Trisyono and Whalon, 1997; Alyokhin
and Ferro, 1999). Also, more Bf-susceptible than Bt-resistant 1.
decemiineata survived after overwintering in diapause (Alyokhin
and Ferro, 1999). While a resistant population of P. gossypiella
feeding on transgenic Bi-cotton showed a longer development
time than Bt-susceptible bollworms (Liu ef g/, 1999).

In contrast, two populations of P. xylostella Trom Malaysia
showed shorter development times and greater pupal weight
compared with unselected sub-populations in the presence of
Cry1Ac (Sayyed and Wright, 2001b). Likewise, H. virescens was
reported to show enhanced growth in the presence of Cy1Ab
toxin {(Gould et al, 1995). Liu et &. (1996) suggested that
prolonged sslsction in the fisld reduced fitness costs sither in
substitution of alternate alleles conferring resistance or by
selection of fitness modifiers at loci not directly rslated to
resistance. Fitness costs are often difficult to describe owing to
their compost nature and dependence on various physiological
aspects as well as mechanisms of resistance (Frutos ef af.,1999;
Sayyed and Wright, 2001b). In addition, genetic drift or mutation
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can cause instability (Tabashnik et al, 1994a). However, these
mechanisms may not be expraessed in larger fisld populations. In
addition, diverging opinions exist regarding the impact of fithess
cost on delay of resistance. Some consider that fithess costs
directly caused by resistance alleles will have important effect in
the field (Tabashnik ef ai., 1994b), whereas othar consider that
even strong fitnass costs will have a minimal impact on evolution
of resistance (Roush, 1997). Liu et al {1996) suggested that
stability is not necessarily a fixed trait even for a particular
population.

Implications of genetic diversity for resistance management: The
main purpose of resistance management is to diminish the
selection of initially rars individuals carrying resistance alleles and
hence to keep the frequency of resistance alleles sufficiently low
for insect control {Schnepf et al, 1998). Strategy development
generally relies on theoretical assumptions and on computer
models (Tabashnik ef al, 1994c; Roush, 1997, 1998). However,
a thorough understanding of the genetics of resistance to Cry
toxins is essential Tor the development and maintenance of
resistance management strategies (Tabashnik et af., 1991). It had
been widely assumed that resistance to Bt in insects is inherited
as a recessive trait (McGaughey, 1985; Tabashnik et al, 1992a;
Ferré et al, 1995). However, as we have seen incompletsly
dominant, polygsnic modss of inhsritance of resistance to
Cryl1Ac were prasent in thres fisld populations of P. xylostalla
from Malaysia. Some degree of dominance has also been reported
in two other field-derived Cry toxin resistant populations of P.
xyliostella from the Philippines and Hawaii and in laboratory
selected populations of at least five other insects species (Table
5). Thus, the monogenic recessive model of Bt resistance in P.
xylostella {Tabashnik et af., 1992a) may not necessarily be the
most common in the field, with many resistant insect populations
having more complex genetics of resistance. There is also
evidence that a Cry toxin resistance mechanism (reduced
activation) other than reduced binding is of major importance in
P. xylostella (Sayyed ef al, 2001b).

V arious strategies to manage resistance to Bf toxins have been
proposed (Tabashnik ef al, 1994a; Gould, 1998; Frutos et &/,
1999), all of which rely to a greater or lesser extent on resistance
being recessive, that the frequency of resistance alleles is low in
the Tield compared with susceptible alleles and that the Trequency
of resistancs alleles will decrsass whan the sslaction prassurs is
released. For example, i resistance is recessive, F, offspring
produced by mating between susceptible and resistant adults are
killed by eating Bt plants. If mating is random, initially rare
homoeygous resistant adults emerging from Bf plants are likely
to mate with the more abundant homozygous susceptible adults
emerging from non-Bf plants, producing F, progeny that cannot
survive on Bt plants expressing high doses of toxin (Fishhoff,
1996). Mathematical models and data from laboratory and
greenhouse studies indicate that resistance can be delayed
substantially when these assumptions are valid {Gould, 1998).
However, it is difficult to predict the exact concentration of Cry
toxin for incomplsete mode of inheritance of resistance. Whereas,
Gould et al. (1994) proposed 25 times the concentration needed
to kill 99 percent of susceptible insects. Population genetics
theory (Tabashnik and Croft, 1982; Gould, 1986; Mallet and
Porter, 1992; Alstad and Andow, 1996) and laboratory
experiments {Liu and Tabashnik, 1997; Roush, 1998} predict that
this approach will substantially dselay evolution of mesistance, if it
is appropriately implemented and its assumptions ars met.

The principal methods proposed for Bt resistance management
are: {a) mixtures, mosaics or rotations of transgenic plants; (b}
time or tissue-specific expression of toxin; (c) low doses of toxin
in combination with natural enemiss; (d) co-expression of
different cry genes; and (g) high expression (dose) with refugia,
which is the strategy recommended currently {(Shelton ef af,
2000; Tang et &, 2001). However, if non-recessive inheritance
and multiple mechanisms of resistance to Cry toxins are, in fact,
relatively common in field populations of insects, rethinking of
resistance management strategies may be required {Tabashnik

ef al, 1998).

The refuge/high-dose strategy entails high risk because it could
greatly accelerate resistance if certain assumptions are not valid.
For example, non-random {assortative) mating and movement of
adults may lead to failure of this strategy. Resistant larvae of P.
gassypisfia on Bt cotton have besn observed to take long
duration to develop, compared with susceptible larvae on non-Bt
cotton {Tabla 7). While Cry1Ac-SEL SERD4 and Cry1Ac-SEL MEL
sub-populations of P. xyjostella had a shorter development time
on CrylAc-treated leaves compared with an unselected
population on untreated leaves (Table 7). In the above examplas
assortative mating could occur if local populations of insects were
sufficiently synchronised and mating occurred prior to dispersal.
While this is parhaps unliksly to be the cass with P. xylosialia,
where overlapping generations is common, such developmental
asynchrony could be important in cotton crop pests with non-
overlapping generations. If disparsal occurs after mating,
immigration of resistant individuals could increase the
frequency of heterozygotes in the refugia {Caprio and Tabashnik,
1992).

The refuge/high-dose strategy will also fail if the plants do not
produce, or fail to maintain, a dose sufficiently high to kill most
heterozygotes. For example in Bt cotton fields in Australia, the
damage dus to H. armigera was similar to that in refugia
(Forrester and Pyke, 1997). Efficacy against Helficoverpa spp.
typically declines through the boll maturation psriod, to the point
where survival of larvae is little different to that in refugia
although growth rates of survivors on the INGARD Bt crops are
still dramatically reduced {Fitt, 2000). Clearly this pattern is not
consistent with a high dose strategy and the changing efficacy
of Bt cotton imposes additional risks Tor resistance management.
In Australia, Bf cotton sxprassing two indepsndent Cry toxins
(Cry1 Ac and Cry2A) shows much more consistent efficacy
compared with Bt cotton expressing Cryl1Ac alone and will
greatly enhance the sustainability of resistance management
(Roush, 1996). Other possibilities for Cry toxins are also being
investigated (Llewellyn and Higgins, 1998, Hanzlik and Gordon,
1998).

The refuge in the refuge/high-dose strategy should ideally be
maintained free of any treatment with pesticides to ensure the
presence of a sufficient number of susceptible adults (Gould,
1998). In fact, it is recommend the planting of 20% non-Bf plants
of cotton that can be treated with a non-Bt foliar insecticids, or
a 4% refuge of non-Bt plants that is left untreated. However,
Shelton et al. (2000) have shown that the insect population in the
sprayed refuge had a significantly lower average mortality at the
diagnostic dose Tor resistance compared with the insects in the
unsprayed refuge. Insects collected from the Bf plants would
have a resistant genotype for Bf mesistance and significantly
greater numbers of Bi-resistant larvas were Tound on the Bt
plants when the refuge was sprayed compared with when it was
not sprayed. Howevar, if the 20% non-Bt refuge is managed
using an IPM strategy in such way that the population of
beneficial insscts increasses this could result in a significant
decrease in the pest population {Roush, 1996; Riggin-Bucci and
Gould, 1997). Therefore, the use of chemical sprays can be
reduced, increasing the effectiveness of the refuge (Gould, 1998).
The multiple toxin strategy is usually considered as an adjunct to
the high-dose strategy. Instead of having a high concentration of
one toxin, plants express high concentration of two or more
toxins. The multipls toxin strategy coupled with a refugia could
provide benefits even if a high dose (25 times the LD, of
susceptible insects) is not reached {(Gould et &, 1994). However,
if the two toxins are each expressed at levels that only kill 50-
80% of the insects, this strategy may not bae highly effective in
slowing the evolution of resistance (Gould ef al., 1994).
Cross-resistance between Cry toxins (McGaughsy, 1994) and
multiple resistance have important implications for Bt resistance
managsment. In the pressnce of cross-resistance, a two-toxin
resistance management strategy (Bt plants expressing two Cry
toxins) can fail quickly. However, in the absence of cross-
resistance there is a ten-fold advantage of using this strategy
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(Roush, 1998). The potential of Cyt1A in preventing evolution of
resistance in mosquito and P. xylostella larvae exposed to Bti and
Btk (Wirth et al., 1997; Sayyed et al, 2001a) and resistance to
Cry3A in C. scripta (Federici and Baur, 1998) has also been
reported.

In crops such as cotton, with multiple pests, because of unique
biology of each pest it is hard to design a resistance managsment
strategy that is appropriate for all the pest spacies. A toxin may
be highly active against a given pest (e.g., CrylAc vs H.
virescens) but less active against another prasent on the same
crop (e.g., Cry1Ac vs H. zea or H. armigera). In such a cass, the
second pest may be sxpossd to a modsrate or weak dose on a Bt
crop and may evolve resistance. This leads to use of Bt plants as
a component of a comprehensive IPM approach {Hoy, 1998). The
use of Bi-based Tormulations within an IPM program was shown
to be effective for controlling pests {(Trumble et al, 1994; Meade
and Hare, 1995). IPM can delay resistance by providing multiple
sources of mortality (Denoholm and Rowland, 1992). For
example, the use resistant cabbage cultivars will not only slower
the development of P. xylosiella but the synergistic interaction
can also lead to more successful control by Bt as well as an
improved efficacy of natural enemies {Schuler and Emden, 2000).
As there is no single answver or strategy to delay resistance, only
sound and flexible methods of pest control will provide
sustainability. The refuge/high-dose strategy is currently the most
promising approach, however the strategy is based on
assumptions that as ws have discussed may not always apply.
Continued studies on thse genstic diversity of Bf resistance in
different insect populations are required and the susceptibility of
pest populations must continue to be monitored to evaluate the
success of rasistance managemsnt plans.
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