Pakistan
 Journal of Biological Sciences

ANSIreet

Distribution, Host Range and Seasonal Abundance of Sipha Sp. (Homoptera: Aphididae) and Their Natural Enemies in Pakistan

R. Mahmood, M.A. Poswal and A. Shehzad
CAB International Regional Bioscience Center, P.O. Box-8, Rawalpindi, Pakistan

Abstract

Two species Sipha maydis and S. elegans were recorded from Pakistan. First one seems to be restricted to hilly areas of temperate climate and lesser annual rainfall with host range mainly restricted to Gramineae. The wild growing grasses including Phacelurus speciosus, Polypogon fugax, Hordeum murinum and Cynodon dactylon seemed its preferred hosts. In laboratory it did not complete its development on some of the reported hosts like sorghum, maize and Arundo donax. S. elegans was recorded occasionally in small numbers in mixed population with S. maydis on barley, wheat, P. speciosus, H. murinum and P. fugax. It was a first record from Pakistan and seems to be an introduced species. It did not breed well on wheat and barley therefore, it may have some other preferred host not recorded during the present studies. Lysiphlebus ambiguus was the only parasitoid recorded from S. maydis from Pakistan. It did not complete development in other aphids tried including some reported hosts such as Aphis gossypii and Aphis donacis. L. ambiguus is an aggressive parasitoid and its parasitism in field populations of S. maydis exceeded 62%.

Key words: Sipha maydis, Sipha elegans, Lysiphlebus ambiguus, hosts, seasonal abundance, natural enemies

Introduction

Cereal aphids represent a problem of increasing importance resulting from changes in agricultural systems (Vickerman \& Wratten, 1979). They gained further economic importance when it was discovered that cereal aphids function as vectors of diseases (Krober \& Carl, 1990).
In the past, aphids associated with cereals in Pakistan have remained under natural control (Hamid, 1983). More recently there have been reports of serious damage by aphids in northern Pakistan (Shehzad, 1999). With the introduction of new high yielding varieties especially of wheat, sorghum and maize having low resistance to pests, and increase in area of cultivation the risk of aphid damage has assumed an increasing importance.
Sipha maydis and related species have become serious pests in various parts of the world (Semenov, 1984; Khairova, 1979; Argyrious, 1970). More recently, S. flava (Forbes) has become a serious pest of sugarcane and pasture grasses in Australia (Barro et al., 1996).
Survey for Sipha sp.. and their natural enemies was carried out throughout Pakistan during 1997-98. The information gathered on the occurrence, host range and seasonal abundance of Sipha sp. and their natural enemies is reported here.

Materials and Methods

Survey for aphids and their natural enemies were carried out in different ecological zones of Pakistan viz: (I) tropical summer rains with higher rain fall (Islamabad, Taxila) and with lesser rainfall (Vehari, Sahiwal); (ii) tropical summer rains but comparatively hot and arid coastal (Thatta) and sub-coastal areas (Hyderabad, Nawabshah, Sakrand); (iii) sub tropical hot arid (Multan, Bahawalpur, Khanpur); (iv) temperate with lesser rainfall south western hills (Ziarat, Quetta, Pishin, Kalat, Khuzdar) and north western hills (Parachinar) and with higher rainfall northern hills (Murree, Singota, Madyan).
Five fields from each area were examined. From each field 50 tillers at random from 5 different spots were sampled. In laboratory the number of different species in a sample were counted and the mummified aphids were separated out and kept individually in gelatin capsules for parasitoids rearing. Identifications of aphids and parasitoids were obtained from International Institute of Entomology, UK.
Suitability of some of the reported hosts for development of Sipha maydis was studied. Ten freshly formed females were released on potted plants (two leafed) of Hordeum vulgare, Arundo donax,

Sorghum sudanensis, Zea mays, Cynodon dactylon in three replicates in two sets, one in May and the other in July. The plant Triticum aestivum was kept as control with each set. Numbers of surviving aphids were counted in each replicate after 10 days of release of mother. Each plant was checked daily and a fallen tiller (with aphids) was cut and kept on the remaining standing tillers in the same pot for transfer of the surviving aphid individuals to the healthy tillers.

Results

Sipha maydis Passerini

Distribution: It is distributed in Europe, the Mediterranean, the Middle East, Central Asia, India, Pakistan and South Africa (Pers. Comm. G. W.). Hamid (1983) reported that it is distributed almost throughout Pakistan, however, during the present studies it was recorded only from Parachinar in north western hills and Quetta in south western hills.

Hosts: It is polyphagous and seems to be restricted mainly to Gramineae, however, it also attacks some plants of Orobanchaceae. Its known hosts in the world are listed in Table 1.

During the present studies in Pakistan, it was recorded from cereal crops wheat (Triticum aestivum), barley (Hordeum vulgare), Polypogon fugax, Phacelurus speciosus and Cynodon dactylon. Maize and sorghum reported by Hamid (1983) as hosts of S. maydis from Pakistan were examined almost in all the areas surveyed but this species was not recorded on these plants.

Seasonal abundance: At Quetta, where sampling was started from May, S. maydis was recorded in small numbers on cereal crops like wheat, barley and grasses Cynodon dactylon, Phacelurus speciosus, Polypogon fugax and Hordeum murinum. Phacelurus speciosus seems to be the main host of this aphid. On this plant S. maydis was recorded in May. Its numbers increased on this plant in June and further increased in July when probably it was maximum at this locality. It was abundant on Polypogon fugax in May. On this plant its numbers decreased in June probably because the plant matured. It was not recorded in July on this plant (Table 2). Similar trends were observed on Hordeum murinum (Table 2).
At Parachinar where observations were started from June, S. maydis was recorded only on P. speciosus. Its density increased in July and continued increasing through August

Mahmood et al.: Sipha sp. in Pakistan

Table 1: Revised world list of hosts of Sipha maydis

Host Plant	Country	Reference
Cynodon dactylon	Israel	Bodenheimer \& Swirski (1957)
	Himachel Pradesh (India)	Shujauddin (1978)
	Pakistan*	Present Recd. (1997)
Triticum aestivum	Tadzhikistan	Khairova (1979)
	Pakistan	Hamid (1983)
	Russia	Semenov (1984)
T. durum	Turkey	Bodenheimer \& Swirski (1957)
Avena sp.	Tadzikistan	Khairova (1979)
A. sterilis	Madrid (Iberian Peninsula)	Castanera \& Santiago (1983)
Avena sp.	Russia	Semenov (1984)
	Israel	Bodenheimer \& Swirski (1957)
Hordeum vulgare	Pakistan	Hamid (1983)
	Tadzikistan	Khairova (1979)
	Morocco	El Yamani \& Hill (1990)
	Russia	Semenov (1984)
H. murinum	Pakistan*	Present Recd. (1997)
H. sativum	Israel	Bodenheimer \& Swirski (1957)
Phleum pratense	Lithuanian SSR	Yuronis (1984)
Dactylis glomerata	Lithuanian SSR	Yuronis (1984)
Arundo donax	Israel	Mescheloff \& Rosen (1990)
Zea mays	Pakistan	Hamid (1983)
	Cordoba (Iberian Peninsula)	Castanera \& Santiago (1983)
	Lebanon	Bodenheimer \& Swirski (1957)
	Turkey	Bodenheimer \& Swirski (1957)
Broom rape	India	Puzzili (1983)
Sorghum halepense	Pakistan	Hamid (1983)
Bromus villosus	Israel	Bodenheimer \& Swirski (1957)
Bromus sp.	Israel	Boenheimer \& Swirski (1957)
Aegilops longissima	Israel	Bodenheimer \& Swirski (1957)
Koeleria phleoides	Israel	Bodenheimer \& Swirski (1957)
Lolium rigidum	Israel	Bodenheimer \& Swirski (1957)
L. temulentum	Israel	Bodenheimer \& Swirski (1957)
Lolium sp.	Israel	Bodenheimer \& Swirski (1957)
Secale cereate	Israel	Boenheimer \& Swirski (1957)
	Russia	Semenov (1984)
Trisetum koelerioides	Israel	Bodenheimer \& Swirski (1957)
T. vulgare	Israel	Bodenheimer \& Swirski (1957)
Utrisetum sp.	Israel	Bodenheimer \& Swirski (1957)
Polypogon fugax	Pakistan"	Present Recd. (1997)
Phacelurus speciosus	Pakistan"	Present Recd. (1997)

$"=$ New additions from Pakistan
Table 2: Numbers of Sipha maydis recorded on 50 tillers of different plants at Quetta and Parachinar

Month	Locality		
	Quetta		Parachinar
	No. of aphids on different plants		No. of aphids on
	Phaceleurus speciosus Hordeum murinum	Potypogon fugax	Phaceleurus speciosus
May	180	380	-
June	240 100	190	410
July	590 0	0	530
August	- -	-	580
September	- -	-	400
October	- -	-	350

- No observation

Table 3: Survival and multiplication of Sipha maydis on different plants per ten females released on a plant species for 10 days.

Set No.	Month	Host Plant	Temperature of the rearing room		Number of aphids surviving up to 10 days of release	
			Mean Minimum	Mean Maximum	Mean	Standard deviation
1	May	Arundo donax	19.4	24.2	0	0
		Sorghum sudanensis	"	"	0	0
		Zea mays	"	"	0	0
		Triticum aestivum	"	"	51.3	7.58
II	July	Zea mays	22.4	26.1		
		Hordeum vulgare	"	"	60.3	2.49
		Cynodon dactylon	"	"	20.3	3.85
		Triticum aestivum	"	"	44.6	7.58

Mahmood et al.: Sipha sp. in Pakistan

Table 4: Revised world list of hosts of Sipha elegans

Host Plant	Country	Reference
Triticum aestivum	Czechoslovakia	Honeka (1985)
	Germany	Zimmermann \& Basedow (1980)
	Pakistan"	Present. Recd.(1997)
Hordeum vulgare	Turkey	Elmali(1997)
	Germany	Zimmermann \& Basedow (1980)
	Czechoslovakia	Honeka (1985)
H. murinum	Pakistan"	Present Recd. (1997)
H. jubatum	Pakistan"	Present Recd. (1997)
Festuca arundinacea	Manitoba	Robinson \& Hsu (1963)
F. pratensis	Washington, USA	Clement et al. (1990)
Agropyron desertorum	Manitoba	Robinson \& Hsu (1963)
Polypogon fugax	Manitoba	Robinson \& Hsu (1963)
Phacelurus speciosus	Pakistan"	Present Recd. (1997)
Aegilops sp	Pakistan""	Present Recd.(1997)
Aegilops sp.	Manitoba	Robinson \& Hsu (1963)
Agropyron cristatum	Cechoslovakia	Havlickora et al. (1996)
A. repens	Manitoba	Robinson \& Hsu (1963)
A. trachycaulum	$"$	Robinson \& Hsu (1963)
A. trichophorum	$"$	Robinson \& Hsu (1963)
Agrostis stolonifera	$"$	Robinson \& Hsu (1963)
Bromus inermis	$"$	Robinson \& Hsu (1963)
Phleum pratense	$"$	Robinson \& Hsu (1963)
Setaria italica	Robinson \& Hsu (1963)	
Sorghum sudanense	$"$	Robinson \& Hsu (1963)
" New		

* = New records

Table 5: Parasitism of Lysiphlebus ambiguus on Sipha maydis on different plants at Quetta and Parachinar during 1997.

Month	Host Plant	No. of aphids in a sample	Parasitism(\%)
At Quetta	Phacelurus speciosus		
May	Hordeum murimum	67	22.3
	Polypogon fugax	225	20.4
	Triticum aestivum	368	17.3
	H. vulgare	40	5
	P. speciosus	37	5.4
June	H. murinum	225	6.6
	P. fugax	92	19.5
	P. speciosus	165	3.0
July		567	0.7
At Parachinar	P. speciosus		
June	P. speciosus	412	0
July	P. speciosus	553	14.9
August	P. speciosus	580	40.0
September	P. speciosus	350	52.0
October			62.5

when it was maximum (Table 2). After this month the population started decreasing and this trend continued through October.

Host suitability: Suitability of some of the reported host plants for multiplication of S. maydis was studied. The results are presented in Table 3. The aphid did not establish on A. donax, S. sudanensis and Z. mays. Its survival was the highest on H. vulgare followed by T. aestivum and C. dactylon (Table 3).

Sipha elegans del Guercio
Distribution: It is distributed in Europe, Central Asia and introduced into North America (Blackman \& Eastop, 1994). This is a first record from Pakistan (Pers. Comm. R.L.).

Hosts: The reported hosts of S. elegans in the world are given in Table 4. From Pakistan it was recorded in mixed population with S. maydis in small numbers on wheat, barley, Polypogon fugax, Phacelurus speciosus and Hordeum murinum at Quetta in May and on P. speciosus at Parachinar in August - September.
As it was recorded occasionally in small numbers from the plants sampled for S. maydis and no parasitoids were reared from the
aphid individuals collected in samples, therefore, it appears that this species has some other preferred hosts not recorded during present studies.

Natural enemies
 Parasitoids

Lysiphlebus ambiguus (Haliday)
Synonymy, hosts and distribution: It has been mostly known under the name of its synonym Lysiphlebus or Adialytus arvicola. From Pakistan Hamid (1983) reported L. arvicola on Myzus obtusirostris from northern hills and on Rhopalosiphum maidis from western and northern hills. During the present studies it was reared from S. maydis from south western hills and north western hills of Pakistan.

Seasonal distribution: At Quetta its incidence was maximum in May on S. maydis on P. speciosus followed by H. murinum, P. fugax, H. vulgare and T. aestivum (Table 5). In June probably because of attack of hyper parasitoids the overall incidence of L. ambiguus decreased on all plants except H. murinum. Its parasitism further decreased in July possibly because of warming of weather (Table 5).

Mahmood et al.: Sipha sp. in Pakistan

At Parachinar, the parasitism on S. maydis was negligible in June whereas L. ambiguus population started developing in July reaching to its peak in October (Table 5). No observations were taken from November onwards in the area.

Hyper parasitoids: Two species Syrphophagus aphidivorus Mayr and Pachyneuron aphidis (Bouche) were reared from field collected mummies of S. maydis from Quetta and Parachinar. The percent parasitism of two hypers on L. ambiguus was 14.2 on H . murimum and 19.1 on P. speciosus in June at Quetta. Their percent parasitism on L. ambiguus on P. speciosus at Parachinar was 15.5 in July, 10.0 in August, and 7.0 in September. No hyper parasitoids were reared in October.

Predators: Syrphus balteatus (De Geer) was recorded on Sipha maydis on Phacelurus speciosus in May at Quetta and in June and July at Parachinar.

Discussion

Sipha maydis distribution in Pakistan remained under scrutiny throughout the survey period in 1997. Hamid (1983) indicated that it is widely distributed in Pakistan. During present studies aphid samples were taken from all the host plants of S. maydis reported by Hamid (1983) in all the areas surveyed from high hills ($3,000 \mathrm{~m}$) to low lands (7 m) (including plains, semi deserts, coastal and sub-coastal areas). The aphid S. maydis was recorded only from altitudes between 1, 662-1,720 m in the north western and south western hills. Thus it seems to be restricted to hilly areas with temperate climate and comparatively lesser annual rainfall ($<250 \mathrm{~mm}$).
Host range of S. maydis was found to be mainly restricted to Gramineae. The wild growing grasses including Phacelurus speciosus, Polypogon fugax, Hordeum murinum and Cynodon dactylon seemed its preferred hosts though it also attacked cereal crops like wheat and barley. In laboratory, it did not complete its development on some of the reported hosts like sorghum, maize and Arundo donax. Therefore, S. maydis recorded during the present survey from hills of Pakistan may be a different strain or subspecies to the one reported by Hamid (1983).
Sipha elegans was recorded occasionally in small numbers in mixed population with S. maydis on barley, wheat, P. speciosus, H. murinum, and P. fugax. It did not breed well on wheat and barley though tried repeatedly in the laboratory and soon the colonies were lost, therefore it seems to have some other preferred hosts not recorded during present studies. It was a first record from Pakistan and seems to be an introduced species as it was not recorded in previous surveys conducted by CABI Bioscience in 1970 s and 1980s.
Several hosts of Lysiphlebus ambiguus have been reported from the world. However, in Pakistan it was reared only from S. maydis during the present studies. It did not complete development in other aphids tried, including some reported hosts such as Aphis gossypii and Aphis donacis (Shehzad, 1999). This indicated that a complex of subspecies and/or strains exists in L. ambiguus, and the Pakistan strain is probably specific to genus Sipha.
Pimental (1963) and Carl (1982) indicated that several native pests in the world have been controlled by introduced natural enemies of related genera and species, therefore, it is hoped that the recent efforts by Department of Agriculture, State of Hawaii, USA to introduce L. ambiguus from S. maydis against S. flava will be successful. L. ambiguus is an aggressive parasitoid and its parasitism in field populations of S. maydis, as observed in the present studies, exceeded 62% indicating its potential usefulness in controlling S. flava.

The host range and distribution of Sipha sp.. and their natural enemies in Pakistan has been cleared. S. elegans is a new entrant in Pakistan and at present it could not build up high populations probably because of competition with other aphid species having common host range. L. ambiguous is an aggressive parasitoid and has not let S. maydis to develop into outbreak proportions. Regular monitoring of Sipha sp.. on cereal crops in Pakistan is necessary as they have been reported from other countries causing considerable reduction in yield of crops because of their feeding and also they act as disease vector (El-Yamani and Hill, 1990).

Acknowledgments

The studies reported here were made possible through financial grant provided by the, Department of Agriculture, State of Hawaii, USA, which is most gratefully acknowledged.
Highest appreciation and special thanks are due to Dr. Myron, O. Isherwood, Agricultural Pest Control Manager and Dr. Bernarr, R. Kumashiro of Department of Agriculture, State of Hawaii, for their continuous support and valuable suggestions during the course of this work. They also provided useful research articles on Sipha maydis and Hoyer's mounting medium for making aphid slides. Thanks are also extended to Drs. G.W. Watson, R. L. Blackman, J. Noyes, J. Lagalle and A. Polszek of International Institute of Entomology, London, UK for identification of insects.

References

Argyrious, L.C., 1970. Aphids injurious to citrus in greece and their natural enemies. Benaki, 9: 114-117.
Barro, P. J. De., P.G. Allsopp and P.W. Wellings, 1996. The yellow sugarcane aphid: a potential threat to the Australian sugar industry. In: Wilson, J. R.; Hograth, D. M.; Campbell, J. A.; Garside, A. L (Eds.) Sugar 2000 Symposium: Sugarcane; research towards efficient and sustainable production Brisbane, Australia; CSIRO Division of Tropical Crops and Pastures, 223-225 ISBN 0- 46305941. (Review) Agric. Entomol. Ser. A, 85: 7800).

Blackman, R.L. and V. F. Eastop, 1994. Aphids on the world's crops and identification guide. A Wiley Interscience publication, John Wiley \& sons, New York, pp: 987.
Bodenheimer, F.S. and E. Swirski, 1957. The aphidoidea of the Middle East. The Weizmann Science Press of Israel. Jerusalem, pp: 378.
Carl, K.P., 1982. Biological control of native pests by introduced natural enemies. Biocontrol News Inf., 3: 191-200.
El Yamani, M. and J. H. Hill, 1990. Identification and importance of barley yellow dwarf virus in Morocco. PI. Dis., 74: 291-94.
Hamid, S., 1983. The natural balance of graminicolous aphids in Pakistan. Survey of populations. Agronomie, 3: 665-673.
Khairova, S.A., 1979. The injuriousness of cereal aphids. Zashechita Rastenii, 10: 44-44.
Krober, T. and K. Carl, 1990. Cereal aphids and their natural enemies. Annual Report International Institute of Biological Control, European Station Delemont Switzerland, pp: 31.
Pimental, D., 1963. Introducing parasites and predators to control native pests. Canadian Entomologist, 95: 785-792.
Semenov, P.V., 1984. Cereal aphids - dangerous pests. Zashchita Rastenii, 10: 42.
Shehzad, A., 1999. Host range studies of Lysiphlebus ambiguus (Hym.: Braconidae), a promising parasitoid of Sipha maydis (Hom.: Aphididae). M.Sc. Thesis. Dep. Entomol. Univ. Arid Agriculture, Rawalpindi, pp: 35.
Vickerman, G.P. and S.D. Wratten, 1979. The biology and pest status of cereal aphids (Hemiptera: Aphididae) in Europe: a review, Bull. Entomol. Res., 69: 1-32.

