Pakistan
 Journal of Biological Sciences

ANSIreet

An Investigation of Vitamin Levels of the Carp (Cyprinus carpio L.) Muscle Tissue Subjected to Thiazole Copper (II) Complex

F. Karatas, ${ }^{1}$ E. Obek, M. Karatepe, S. Saydam and ${ }^{1}$ Y. Saatcı
First University, Faculty of Science and Arts, Department of Chemistry, Elazığ-TURKEY ${ }^{1}$ Firat University, Faculty of Engineering, Department of Environmental Engineering, Elazığ-TURKEY

Abstract

In this study, four groups of carp, each containing 12 fish (Cyprinus carpio L.) were chosen. The first group of fish was fed with $\mathrm{Cu}(I I)$ added pellet fish food, the second group, was fed with thiazole ligand added pellet fish food and the third group was fed with thiazole Cu(II) complex added pellet fish food. The forth group was kept as a control group and was fed only with pellet fish food. Retinol, α-tocopherol and ascorbic acid levels in fish's muscle tissues were measured using HPLC. Antioxidant vitamin levels of the fish which fed with $\mathrm{Cu}(I I)$ thiazole complex, were significantly lower than those fed without $\mathrm{Cu}(I I)$ thiazole complex ($p<0.005$). It was found that the decrease in vitamin levels correlated with the $\mathrm{Cu}(I I)$ thiazole complex concentration.

Key words: Thiazole, thiazole Cu(II) complex, retinol, α-Tocopherol, ascorbic acid, HPLC

Introduction

Thiazoles and their derivatives are known to posses antitubercular (Ashtekar et al, 1987) antibacterial, antiviral, cytotoxic (Agarwal, 1997; Gu et al., 1999), antimicrobial (Fahmy, 1997), antitumor, antineoplastic (El-Subbagh and Al-Obaid, 1996), immunomodulatory (Schorlemmer et al., 1989), antifungal (Mishra and Singh, 1991), hypotensive (Nakahara et al., 1985), antiinflammatory (Labanauskas, et al, 2000) and analgesic activities (Body et al, 1999).
Thiazole and their derivatives have also biological significance, for example vitamin-B1 and coenzyme cocarboxylase contains thiazole ring (Breyer, 1963). It is known that 2-aminothiazole is a biologically active compound with broad range of activity and is also an intermediate in the synthesis of antibiotics and dyes. The penicillin molecule too contains a thiazolidine ring (Tortora et al, 1995).

Determination of antiarthritic properties of a novel thiazole derivative (Nishikaku et al., 1994) and several thiazolyl derivatives are reported to act as lipoxygenase inhibitors affecting inflammation and psoriasis (Hadjipavlou-Litina and Geronikaki, 1997). Bonomo et al. (1995) reported that Cu(II) complexes cause an oxidative stress in erythrocytes. Antibiotics increase free radicals in cell (Bulkley, 1983). Superoxide radical's scavering from organism by enzymatic dismutation while antioxidant vitamin (A , E and C vitamin) scavering oxygen radicals from organism (Badwey and Karnowsky, 1980).
Because Cu(II) thiazole complex contains biologically active thiazole group (Tortora et al., 1995), it affects the antioxidant level in organisms. Therefore, the effect of $\mathrm{Cu}(\mathrm{II})$ thiazole complex on the level of retinol, α-tocopherol, ascorbic acid on Carp tissue was thought to have important result. Thiazoles are important constituents of many biologically active compounds, especially drugs and dyes. These compounds find way to ground water, this in turn may affect living organisms in water. Therefore, it was thought that antioxidant level of the Carp tissue may be affected from thiazole containing compound in water originated from environmental pollution.
To our knowledge, the effect of $\mathrm{Cu}(\mathrm{II})$ on antioxidant levels has not been reported in the literature so far. Therefore, in this work, we have investigated the effects of $\mathrm{Cu}(\mathrm{II})$ thiazol on the level of antioxidant vitamins in the tissue of carp.

Materials and Methods

Fish used in this work were caught from Keban Dam Lake in Elazığ, situated south east of Turkey, by fishing cast-net in July 2000. The fish ages were determined from scale (Robert et al., 1990) and they were found to be one years of age. The length and weight of the fish were $11 \pm 2 \mathrm{~cm}$ and $40 \pm 7 \mathrm{~g}$, respectively. Four groups were formed with 12 fish in each. The first group of fish was fed with $450 \mu \mathrm{~g}$ ligand $/ \mathrm{g}$ food (Fig. 1a) and second group, with $500 \mu \mathrm{~g}$ thiazole $\mathrm{Cu}(I I)$ complex/g food (Fig. 1b) and third group was fed with pellet fish food containing $88.6 \mu \mathrm{~g} \mathrm{CuCl}_{2}$. $2 \mathrm{H}_{2} \mathrm{O} / \mathrm{g}$ food. The forth group was kept as control and only fed with pellet fish food.

(a)

(b)

Fig. 1: a) 2-hydroxybenzildin-2-aminobenzothiazol (LH) ligand b) 2-hydroxybenzildin-2-aminobenzothiazol $\mathrm{Cu}(\mathrm{II})$ complex

The concentration $\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ complex were chosen below the toxic level which is over $0.3 \mu \mathrm{~g} / \mathrm{g}$ (Howarth and Sprague, 1978). It was thought that a fish would consume 1% of its weight ($\mathrm{g} / \mathrm{day}$) fish food and food additives. So the

Karatas et al.: Vitamin levels of the carp subjected to thiazole

amount of food was adjusted accordingly. To prepare the fish food, the additives were dissolved in ethanol mixed with corn oil and then added to commercially supplied fish food. The pellets were made from this mixture. The fish food for the control group was made in the same way except that this time no additives were introduced. The fish food used in the experiments was supplied from Pinar ${ }^{\text {TM }}$. Feeding continued for 21 days and then fish were killed. Retinol, α-tocopherol, ascorbic acid levels were measured in their muscle.
Sampling procedure was as follows. The carp (Cyprinus carpio L.) muscle was homogenized, 1.0 g of sample was then taken to a polyethylene tube and 2.0 ml ethanol was introduced to the muscle sample to precipitate the proteins. After that, it was separated by centrifuge, followed by the addition of 0.3 ml hexane, and mixed well, and then vitamins were extracted. This step was repeated again, and n-hexane phase was added to the first one. Under nitrogen atmosphere, n-hexane was evaporated to dryness. Then 0.2 ml methanol was added to solve the residues followed by injection to HPLC. Mobile phase used in HPLC was methanol, acetonitrile and chloroform (47:42:11 v/v). Flow rate was 1.0 $\mathrm{ml} / \mathrm{min}$ and analys is wavelengths were 296 nm for α-tocopherol and 326 nm for retinol (Miller et al., 1984).
Ascorbic acid was determined by the following procedure: 1.0 g fish muscle sample was taken in 0.5 M perchloric acid (0.5 ml) (Cerhata et al., 1994) and then the volume of sample was brought to 5.0 ml , after that it was centrifuged for ten minutes at 4000 rpm. $20 \mu \mathrm{l}$ of solution was taken from centrifuge and introduced to HPLC, equipped with C-18 column. Mobile phase was a 0.05 M phosphate buffer ($\mathrm{pH}=4$), flow rate was $1.0 \mathrm{ml} / \mathrm{min}$; absorption wavelength was 246 nm (Tavazzi et al., 1992).
All the chemical reagents were of analytical grade and obtained from Merck Company (Darmstadt, Germany). Double distilled water was used throughout the work. HPLC was performed with CECIL-1100 (Cambridge, England).
The results are statistically analyzed by calculating the Standard Deviation of the mean (mean \pm SD). The results are expressed as mean $\pm S D$ and values of $p<0.005$ were accepted as significant.

Results and Discussion

The recovery rates, found for retinol, α-tocopherol and ascorbic acid were $97.8 \%, 99.2 \%$ and 96.7% respectively. Thiazole and benzothiazole can generate oxidative stress in vivo (Kim and Cho, 1996), if constantly being subjected to oxidative stress. Aerobic organisms are protected against oxidative damage by a variety of antioxidant systems under normal conditions. The antioxidant system is divided into two groups as enzymatic and nonenzymatic. Nonenzymatic system constitutes antioxidant vitamins. Oxidative damage, however, may occur when antioxidant potential is decreased and when oxidative stress is increased (Ibrahim et al, 2000). It was observed that, the fish feed with $33 \mu \mathrm{~g} \mathrm{Cu}(I I)$ (added as $\mathrm{CuCl}_{2} . \mathrm{H}_{2} \mathrm{O}$ to fish food) showed lower amount of antioxidants α-tocopherol, retinol and ascorbic acid as compared with the control group (Table 1). As can be seen from Table 1, the fish supplemented with $450 \mu \mathrm{~g}$ thiazol ligand $/ \mathrm{g}$ food showed lower α-tocopherol, retinol and ascorbic acid level in comparison with the control group and $\mathrm{Cu}(\mathrm{II})$ group.
Table 1 show that the fish supplemented with $500 \mu \mathrm{~g}$ thiazole $\mathrm{Cu}(\mathrm{II})$ complex/g food showed the lowest level of antioxidants, α-tocopherol, retinol and ascorbic acid level in comparison with control and other groups.

This indicated that, antioxidant vitamin levels of fish feed with supplemented feed result in lower level of vitamins in comparison with the control group ($p<0.005$).
Cupper produces oxidative stress in erythrocytes, causing the production of free radicals (Bonomo et al., 1995). This explains the lower level of antioxidant vitamins determined in this work. Some metabolic effects caused by antibiotic treatment produce free oxygen radical which in turn has a toxic effect on cell membrane, enzymes, nucleic acid and polysaccharides causing tissue deformations (Bulkley, 1983; Wolff et al., 1986).
Antibiotics increase the formation of free radicals in the body (Wolff et al., 1986). It seems that the thiazol ligand acts the same way as antibiotics. The fish fed with the $\mathrm{Cu}(\mathrm{II})$ thiazol complex supplemented food showed considerable decrease in the antioxidant vitamin levels compared with the other groups ($p<0.005$). This is because the complex has both the $\mathrm{Cu}(\mathrm{II})$ and thiazol groups which collaborately decrease the antioxidant vitamin levels.
In conclusion, it can be suggested that, $\mathrm{Cu}(\mathrm{II})$, thiazol ligand and $\mathrm{Cu}(11)$ thiazol complex produce more free radicals and in turn decrease the level of antioxidant vitamins in the tissue of carp. From these results, we suggest that, antioxidant vitamins such as vitamin A, E, and C should be taken along with the medicine containing thiazole group to compensate the vitamin deficiency caused by the drugs.

References

Agarwal, N., S. Kumar, A.K. Srivastava and P.C. Sarkar, 1997. Synthesis and biological evaluation of 2-amino-4 aryl thiazole and their N -aroyl derivatives. Ind. J. Het. Chem., 6: 291-294.
Ashtekar, D.R., F. Fernandes, B.G. Khadse and M.V. Shirodkar, 1987. A rapid method for the evaluation of new antituberculous agents. Chemotherapy. 33: 22-7.
Badwey, J.A. and M.L. Karnowsky, 1980. Active oxygen species and the function of phagocytic leukocytes. Ann., Rev., Biochem., 49: 695-725.
Body, R. E., J.B. Press, C.R. Rasmussen, R.B. Raffa, E.E. Codd, C.D. Connelly, D.J. Bennett, A. L. Kirifides, J.F. Gardocki, B. Reynolds, J. T. Hortenstein and A. B. Reitz, 1999. Alpha (2) adrenoceptor agonists as potential analgesic agents. (Imidazolylmethyl)oxazoles and-thiazoles. J. Med. Chem., 42: 5064-71.
Bonomo, R.P., A. De Flora, E. Rizzarelli, A.M. Santoro, G. Tabbi and M. Tonetti, 1995. Copper(II) complexes encapsulated in human red blood cells. J. Inorg. Biochem., 59: 773-784.
Breyer, H., 1963. Organic Chemistry, Verlag Harry Deutsch, Frankfurt/Main Und Zrich.

Karatas et al.: Vitamin levels of the carp subjected to thiazole

Bulkley, G. B., 1983. The role oxygen free radicals in human disease processes. Surgery, 94: 407-411.
Cerhata, D., A. Bauerova and E. Ginter, 1994. Determination of ascorbic acid in blood serum using high performance liquid chromatography and its correlation with spectrophotometric (colorometric) determination. Caska-Slov-Farm, 43: 166-168.
El-Subbagh, H.I. and A.M. Al-Obaid, 1996. 2,4-Disubstituted thiazoles II. A novel class of antitumor agents, synthesis and biological evaluation. Eur. J. Med. Chem., 31: 1017-1021.
Fahmy, H. T., 1997. Synthesis and antimicrobial screening of some novel thiazoles, dithiazoles and thiazolylpyridines. Pharmazie, 52: 750-753.
Gu, X. H., X.Z. Wan and B. Jiang, 1999. Syntheses and Biological Activities of Bis(3-indolyl)thiazoles, Analogues of Marine Bis(indole)alkaloid Nortopsentins. Bioorganic\& Medicinal Chemistry Letters, 9: 569-572.
Hadjipavlou-Litina, D. J. and A.A. Geronikaki, 1997. ThiazolyI and benzothiazolyl schiff bases as novel possible lipoxygenase inhibitors and anti-inflammatory agents. Synthesis and biological evaluation. Drug. Des., Discov., 15: 199-206.
Howarth, R.S. and J.B. Sprague, 1978. Copper lethality to rainbow trout in waters of various hardness and pH . Water Res., 12: 237-252.
Ibrahim, W., U.S. Lee, H.C. Yen, D.K.S. Clair and C.K. Chow, 2000. Antioxidant and oxidative status in tissues of manganese superoxide dismutase transgenic mice. Free Radical Biology\& Medicine, 28: 397-402.
Kim, S. G. and M. K. Cho, 1996. Expression of glutathione Stransferases $\mathrm{Ya}, \mathrm{Yb} 1, \mathrm{Yb} 2, \mathrm{Yc} 1$ and Yc 2 and microsomal epoxide hydrolase gene by thiazole, benzothiazole and benzothiadiazole. Biochem. Pharmacol., 52: 1831-1841.
Labanauskas, L., A. Brukstus, E. Udrenaite, P. Gaidelis,V. Bucinskaite and V. Dauksas, 2000, Synthesis of 6,7-dialkoxy-2-arylmethylidene-2,3-dihydrobenzo [4,5] imidazo [2,1-b] [1,3] thiazol-3-ones exhibiting anti-inflammatory activity. Pharmazie, 55: 429-431.

Mishra, L. and V.K. Singh, 1991. Metal-thiazole Chelates as Fungicides. Agric. Biol. Chem., 55:1883-1885.
Miller, K.W., N. A. Lorr and C. S. Yang, 1984. Simultaneous Determination of Plasma Retinol α-Tocopherol, lycopere, α Carotene, and β-Carotene by High Performance Liquid Chromatography. Analytical Biochem., 138: 340-345.
Nakahara, H., M. Nakazawa, T. Tsukada and S. Imai, 1985. Mechanism of the hypotensive effect of a new beta-adrenergic blocking drug, arotinolol (S-596) in anesthetized rabbits. Arch. Int. Pharmacodyn Ther., 277: 253-263.
Nishikaku, F., S. Aono and Y. Koga, 1994. Protective effects of DPenicillamine and a thiazole derivative SM-8849, on pristaneinduced arthritis in mice. Int. J. Immunopharmacy, $16: 91$ 100.

Robert, C. and G. Summerfelt and E. Hall, 1990. Age and Growth of Fish IOWA State Universitys Pres/Ames, IOWA.
Schorlemmer, H.U., G. Dickneite, H. Hanel, W. Dürckheimer and H.H. Sedlacek, 1989. Immunomodulation by the new synthetic thiazole derivative tiprotimod 3rd Communication: Influence on host resistance to microorganisms, tumors and on experimental immune disorders. Arzneim.-Forsch./Drug Res., 39(II). Nr. 10.
Tavazzi, B. G. Lazzarino, D. Di-Pierro and B. Giardina, 1992. Malondialdehyde Production and Ascorbate Decrease are Associated to the Eperfusion of the Isolated Postischemic Rat Heart. Free-Radic. Biol. Med., 13: 75-78.
Tortora, G.J., B.R. Funke and C.L. Case, 1995. Microbiology, 5 th edition, The Benjamin/Cummings Publishing, California.
Wolff, S. P., A. Garner and R. T. Dean, 1996. Free radicals, lipids and protein degradation. Elsevier Science Publishers. Amsterdam. Tibs, 11. 27-31.

