http://www.pjbs.org



ISSN 1028-8880

# Pakistan Journal of Biological Sciences



Asian Network for Scientific Information 308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

# Heterosis on Productive and Reproductive Performance of Crossbreds from Jamunapuri and Black Bengal Goat Crosses

<sup>1</sup>M. R. Zaman, <sup>2</sup>M. Y. Ali, <sup>3</sup>M. A. Islam and <sup>4</sup>A. B. M. M. Islam <sup>1& 2</sup>Livestock Development Program, Proshika, Dhaka, Bangladesh <sup>3</sup>Poultry Production Research Division, BLRI, Savar, Dhaka, Bangladesh <sup>4</sup>Department of Genetic & Animal Breeding, BAU, Mymensingh, Bangladesh

**Abstract:** The experiment was carried out by crossing Jamunapuri male with Black Bengal female goat to assess the heterosis of productive and reproductive traits of  $F_1$  and  $F_2$ .  $F_1$  and  $F_2$  for birth weight, live weight at 3, 6, 9 and 12 months of age, pre and post- weaning body weight gain, and litter size was significantly better than that of Black Bengal goat. However,  $F_1$  was found to be higher than that of  $F_2$ . But pre-weaning survival rate was higher in Black Bengal goat than that of  $F_1$  and  $F_2$  crossbreds. Pre-weaning gain was higher than post-weaning gain in all populations. Heterosis of birth weight, live weight at 3,6,9 and 12 months of age, pre and post weaning gain, litter size and pre-weaning survival rates were 17.19, 23.35, 12.93, 7.44 and 5.71, 36.34, 31.87,15.38 and -4.82% for  $F_1$  and 8.60, 11.67, 6.46, 3.72, 2.86 and 18.17, 15.94, 7.69 and -2.41% for  $F_2$  respectively at location 1. But at location -2, heterosis of birth weight and pre-weaning survival rate were 24.79 and 16.54% for  $F_1$  and 12.40 and 8.27% for  $F_2$  respectively.

Key words: Black Bengal and Jamunapuri goat, locations, F<sub>1</sub> and F<sub>2</sub> crossbreds, productive and reproductive traits, heterosis

### Introduction

Goats are numerically and economically very important and promising genetic resources in developing countries of Asia and Africa. There are about 703.39 million goats in the world, and 95% of them are found in developing countries. Asia have, 446.26 million goats, which is almost 66.3% of the world's population (FAO, 1997). Bangladesh is in 2nd highest position of Asiatic countries for goat population (FAO, 1997). Meat, milk and skin production are about 27.0,23.0 and 28.0 % respectively to the total production of Livestock Sector. Goat contributes Significantly to the GDP in Bangladesh (FAO, 1991). Though Black Bengal goat is dwarf but it is World famous for its adaptability, fecundity, delicious meat and superior skin quality (Devendra and Burns, 1983; Devendra, 1985; Saadullah, 1991 and Husain, 1993). Jamunapuri goat originated from India, is an excellent breed for Milch and meat production. Approximate milk production is 235 kg over a lactation period of 261 days (Devendra and Burns, 1970). The economic value of goats depends upon their productive and reproductive efficiency (Malik et al., 1986). Introduction of high yielding specialized breed may bring drastic changes for increasing overall productivity like birth weight, growth rate and kid survivability (Keeping, 1951). Birth weight of goat is correlated with its adult size and with kids survivability (McGregor, 1984). The quantity of meat depends on growth rate, live weight at slaughter and total number of goats available for slaughter (Devendra, 1985). A work revealed that growth rate of Black Bengal is very low (Husain et al., 1996). Lower birth weight and growth rate and insufficient milk production of dam are responsible for higher kid mortality (Husain et al., 1995). Some reports indicate that crossbreeding between Jamunapuri buck and local small type goat might increase the birth weight, subsequent growth rate, adult size and carcass weight due to heterosis or non-additive gene effects (Peters and Horst, 1981 and Mukherjee, 1991). So, the present study was undertaken to evaluate heterosis (hybrid vigour) of productive and reproductive traits of crossbreds (F1 and F2) of Jamunapuri and Black Bengal goat in Bangladesh.

# Materials and Methods

The experiment was carried out at following two locations:

**Location 1:** The research unit located in some areas around the Bangladesh Agricultural University campus, where 100 farmers were selected having 176 Black Bengal goats. Four Jamunapuri bucks were used for crossing with all Black Bengal goats. The  $F_1$  bucks and does were used to produce  $F_2$  progeny. A total of 215  $F_1$  and 79  $F_2$  goats were used in this study. Each animal was ear tagged to maintain individual identity pedigree and just after birth. Bucks were selected individually on the basis of their phenotypic performance. Animals were fed grass, herbs, tree leaves avoiding extra concentrated feeds.

**Location 2:** Here data were collected from the goat farm of Bangladesh Mission Ganakbari, Savar, Dhaka, where two bucks of Jamunapuri mated naturally with 37 Black Bengal goats for  $F_1$  progeny. The  $F_1$  bucks and does were mated for  $F_2$  progeny. Here 51  $F_1$  and 50  $F_2$  goats were used for study. Animals were ear tagged for individual identity. Buck and does were fed green grass, herbs and tree leaves. Only the pregnant does and breeding bucks were provided supplementary feed for their productive purpose.

The following traits of F<sub>1</sub> and F<sub>2</sub> crossbred were recorded:

- Birth weight, 6 hours after birth at location 1 and 3 hours after birth at location 2
- Live weight at 3, 6, 9 and 12 months of age. Individual body weight of kid was recorded in the morning before feeding.
- 3. Daily body weight gain:
  - Pre-weaning body weight = (3 months body weight birth weight)/90
  - Post weaning body weight = (12 months body weight 3 months body weight)/270
- 4. Liter size = No.Kids/ birth/ doe.
- Pre-weaning kid survival rate, calculated as percentage up to 3 months of age.
- Survivability: Calculated as percentage.

Performance of percent Black Bengal goat  $(P_1)$ ,  $F_1$  and  $F_2$  progeny were investigated but for unknown parent Jamunapuri  $(P_2)$  goat was calculated by Bowman (1984) formula:

Zaman et al.: Heterosis of crossbred goat

 $MP_2 = 2(MF_1-HF_1)-MP_1$ 

Where

 $MF_1$ = Mean of  $F_1$  progeny,  $HF_1$ = absolute heterosis of  $F_1$ ,

 $HF= 2(MF_1 - MF_2),$ 

 $MF_2$  = Mean of  $F_2$  progeny,

MP<sub>1</sub>= Mean of parent P<sub>1</sub>

 $MP_2 = Mean of parent P_2$ 

Heterosis for each trait was estimated using the following formula: Percent of heterosis in  $F_1=\phantom{-}100 \text{(Mean of } F_1\text{-}\text{ Mean of parents)}$ 

/Mean of parents

Percent of heterosis in  $F_2 = 100$  (Mean of  $F_2$  progeny - Mean of parents)/Mean of parents

**Statistical analysis:** Data were analyzed using computer MSTAT package programme.

The following statistical model was used for data analysis:

 $Yij = \mu + \beta i + eij$ 

Traits

Where, Yij is the observations of jth population in ith genetic group.

 $\mu$  is the overall mean

B is the fixed effect of ith genetic Groups (I = 1-3) eij is the random error.

Location 1 (BALI)

### Results and Discussion

Birth weight of  $F_{\scriptscriptstyle 1}$  progeny was significantly higher than that of Black Bengal goat  $(P_1)$  but not  $F_2$  progeny at both locations. Estimated value of Jamunapuri (P2) at location 1 was much higher (1.69 kg) than that of  $\rm P_1, \ F_1$  and  $\rm F_2$  (Table 1). The heterosis of  $\rm F_1$ and F<sub>2</sub> for birth weight at location 1 was 17.19 and 8.60%, and at location 2 was 24.79 and 12.40% respectively (Table 2). Live weight at 3, 6, 9 and 12 months of age, pre and post weaning body weight gain differed significantly among P<sub>1</sub>, F<sub>1</sub> and F<sub>2</sub> (P < 0.001). The highest live weight at different age, pre and post weaning body weight gain were found on F<sub>1</sub>, intermediate on F<sub>2</sub> and lowest on P1 (Black Bengal goat) at location 1 only. The estimated live weight of Jamunapuri (P2) at 3, 6, 9 and 12 months of age was 4.72, 8.25,12.2 and 15.77 kg respectively, its pre and post weaning body weight gain was 35.98 and 33.97 kg respectively (Table 1). The heterosis of these traits was almost double in F<sub>1</sub> than that of F<sub>2</sub> (Table 2).

The highest litter size was found on  $F_1$ , intermediate on  $F_2$  and the lowest on  $P_1$  at location 1(P<0.01) and location 2(P<0.05). The estimated litter size of Jamunapuri was 1.47 for location 1 and 1.16 for location 2 (Table 1). Heterosis of  $F_1$  and  $F_2$  was 15.38 and 7.69 at location 1 and 16.54 and 8.27 at location 2 respectively. Pre-weaning survival rate was

Location 2 (Ganakhari Savar)

Table 1: Least mean ± SE of different traits of different goat populations at different locations

| Traits                          | Location 1 (BAU)                   |                        |                           |                          |              | Location 2 (Ganakbari, Savar)                       |                      |                           |                     |                            |
|---------------------------------|------------------------------------|------------------------|---------------------------|--------------------------|--------------|-----------------------------------------------------|----------------------|---------------------------|---------------------|----------------------------|
| (P <sub>2</sub> )               | Black Bengal<br>(P <sub>1</sub> )  | F,<br>LSM± SE          | F <sub>2</sub><br>LSM± SE | Level of<br>significance | Jamunapuri   | Black Bengal<br>(P <sub>2</sub> ) (P <sub>1</sub> ) | F <sub>1</sub>       | F <sub>2</sub><br>LSM± SE | Level of<br>LSM± SE | Jamunapuri<br>significance |
|                                 | LSM± SE                            |                        |                           | (Estimated<br>values)    |              | LSM± SE                                             |                      |                           |                     | (Estimated<br>values)      |
| Live weight (Kg)                |                                    |                        |                           |                          |              |                                                     |                      |                           |                     |                            |
| Birth weight                    | 0.87 <sup>b</sup> ± 0.012<br>(176) | 1.50a± 0.018<br>(215)  | 1.39a± 0.031<br>(79)      | ***                      | 1.68         | 1.00b± 0.015<br>(37)                                | 1.51a± 0.034<br>(51) | 1.36a± 0.014<br>(50)      | ***                 | 1.42 (kg)                  |
| 3 months weight                 | 4.36± 0.048<br>(151)               | 5.60a± 0.051<br>(177)  | 5.07b± 0.055<br>(71)      | ***                      | 4.72         | -                                                   | -                    | -                         |                     | =                          |
| 6 months weight                 | 6.91c± 0.067<br>(127)              | 8.56a± 0.081<br>(146)  | 8.07b± 0.078<br>(62)      | ***                      | 8.25         | -                                                   | -                    | -                         |                     | -                          |
| 9 months weight                 | 9.30± 0.101<br>(88)                | 11.55a± 0.093<br>(115) | 11.15b± 0.097<br>(57)     | * ***                    | 12.2         | -                                                   | -                    | -                         |                     | =                          |
| 12 months weight                | 11.54± 0.158<br>(58)               | 14.43a± 0.110<br>(99)  | 14.04b± 0.10<br>(48)      | ***                      | 15.77        | -                                                   | -                    | -                         |                     | -                          |
| Daily weight gain (g)           |                                    |                        |                           |                          |              |                                                     |                      |                           |                     |                            |
| Pre-weaning gain                | 32.82b± 0.26<br>(140)              | 46.90a± 0.31<br>(180)  | 40.65a± 0.42<br>(68)      | ***                      | 35.98        | =                                                   | -                    | =                         |                     | =                          |
| Post-weaning gain               | 27.15b± 0.44<br>(116)              | 40.30a± 0.24<br>(101)  | 35.43ab± 0.45<br>(47)     | ***                      | 33.97        | -                                                   | -                    | -                         |                     | -                          |
| Litter size                     | 1.13b± 0.158<br>(116)              | 1.50a± 0.053<br>(120)  | 1.40a± 0.084<br>(47)      | **                       | 1.47<br>(20) | 1.15b± 0.08<br>(22)                                 | 1.50a± 0.128<br>(18) | 1.4a± 0.146               | *                   | 1.16                       |
| Pre-weaning survival<br>rate(%) | 89.20a± 0.02<br>(176)              | 79.02b± 0.03<br>(205)  | 81.16b± 0.04<br>(69)      | *                        | 77.00(%)     | -                                                   | -                    | -                         | -                   | -                          |

Means with uncommon superscripts (a,b,c) differ significantly, \*\*\*\*, p< 0.001; \*\*\*, p< 0.01; \*\*, p< 0.05.

Table 2: Percent heterosis of F<sub>4</sub> and F<sub>5</sub> goats for different traits at different locations

| Traits                    |                   | Location 1 (BAU)     |                                  | Location 2 (Ganakbrari Savar) |                                  |  |  |
|---------------------------|-------------------|----------------------|----------------------------------|-------------------------------|----------------------------------|--|--|
|                           |                   | F₁ percent heterosis | F <sub>2</sub> percent heterosis | F₁ percent heterosis          | F <sub>2</sub> percent heterosis |  |  |
| Live weight (kg)          |                   |                      |                                  |                               |                                  |  |  |
|                           | Birth weight      | 17.19                | 8.60                             | 24.79                         | 12.40                            |  |  |
|                           | 3 months weight   | 23.35                | 11.67                            | -                             | -                                |  |  |
|                           | 6 months weight   | 12.93                | 6.46                             | -                             | -                                |  |  |
|                           | 9 months weight   | 7.44                 | 3.72                             | -                             | -                                |  |  |
|                           | 12 months weight  | 5.71                 | 2.86                             | -                             | -                                |  |  |
| Daily weight gain         | (g)               |                      |                                  |                               |                                  |  |  |
| , ,                       | Pre-weaning gain  | 36.34                | 18.17                            | -                             | -                                |  |  |
|                           | Post-weaning gain | 31.87                | 15.94                            | -                             | -                                |  |  |
| Litter size               |                   | 15.38                | 7.69                             | 16.54                         | 8.27                             |  |  |
| Pre-weaning survival rate |                   | -4.82                | -2,41                            | -                             | -                                |  |  |

<sup>\*</sup> Collected data of F1 and F2 at location 2 were not available (except birth weight and litter size)

Figures in parentheses indicate number of animals.

<sup>-</sup>Collected data from the location 2 were not available (except birth weight and litter size).

89.20, 79.02 and 81.16 % in  $P_1$ ,  $F_1$  and  $F_2$  respectively and estimated value in Jamunapuri was 77.00%. The heterosis was found to be - 4.82 and - 2.41 for F<sub>1</sub> and F<sub>2</sub> respectively. The highest productive and reproductive performance was found in F<sub>1</sub> progeny compared with F2 or parents (P1) supported by Mishra et al. (1976), Castillo and Garcia (1971) and Verma et al. (1991). Pre weaning daily gain was higher than post weaning, which was advocated with the findings of Wahid et al. (1985). Birth was related with subsequent body weight, weight gain & litter size, supported by Gall (1981). Heterosis for birth weight at location 1 and 2 was found to be 17.19% (F<sub>1</sub>), 8.60 % (F<sub>2</sub>) and 24.79% (F<sub>1</sub>), 12.40% (F<sub>2</sub>) respectively. Difference between two locations seemed to be caused by the variation in management and plane of nutrition, which was consistent with Kanauiia and Pander (1987), who found 27.18% (F<sub>1</sub>) and 15.90% (F<sub>2</sub>) in Beetal and Black Bengal crosses. Heterosis for 3- months live weight was found to be 23.30% (F<sub>1</sub>) and 11.67% (F<sub>2</sub>) at BAU location. The heterosis for 3months live weight was higher than that of birth, 6, 9 and 12 months of live weight. It might be due to maternal influence supported by Singh et al. (1990), but was inconsistent with Kanaujia and Pander (1987), where they described as 37.44% heterosis in F<sub>1</sub> for Beetal (G ) and Black Bengal (E) crosses. Heterosis for litter size was found to be 15.38% (F<sub>1</sub>) and 7.69%  $(F_2)$  at location 1 and 16.54%  $(F_1)$  and 8.27%  $(F_2)$  at location 2. The results of the two locations were almost similar because of gene combination of Jamunapuri and Black Bengal goat. In comparison, 17.8% heterosis for litter size in F<sub>1</sub> was observed by Nitter (1987) in sheep and 10.1% in F<sub>1</sub> of Cher Berrich (CB) 5 Romanov sheep was observed by Ricordeau et al. (1977), while 10% in F<sub>1</sub> for Collected data from location 2 were not available (except birth weight and litter size).

The results in this study were almost similar to those results. The study showed the considerable heterosis for all traits, except pre-weaning kid survival rate. It revealed that under improved management, crossbred of Jamunapuri and Black Bengal goat would be suitable for meat production. However,  $\mathsf{F}_1$  crossbreds may get prime consideration for meat production, though it had higher mortality.

## References

- Bowman, J. C., 1984. An Introduction to Animal Breeding. 2nd Edition Edward Arnold (publishers Ltd. London, pp. 65-67)
- Castillo, M. J. and B. O. Garcia, 1971. The Nubian + Crioll cross. I. Growth of kids. iii reun Lat am. Prod. Anim. Bogota. III Anim. Breed. Abst., 40: 314.
- Devendra, C., 1985. Prolific breeds of goats. In: genetics of reproductive in sheep. Ed. by R.B. Land and D.W. Robinson, Buterworths, London, 69-80
- Devendra, C. and M. Burns, 1970. Goat Production in the tropics. Tech. Common. No.19 Comm. Bur. Anim. Breed Genet. CAB.
- Devendra, C. and M. Burns, 1983. Goat production in the tropics.

  Commonwealth Agricultural Bureaux, U.K. Farhham. Royal Bucks, England.
- FAO, 1991. Statistics on Livestock Year Book. Asian Livestock, 9:107.

- FAO, 1997. FAO Production Year Book (1994). Food and Agricultural Organization of the United Nations, Rome, Italy.
- Gall, C., 1981. Goat Production. Academic Press, London, New York, Toronto, Sanfrancisco and Sydney.
- Husain, S. S., 1993. A study on the productive performance and genetic potentials of Black Bengal Goats. A Ph.D. thesis. BAU, Mymensingh, Bangladesh.
- Husain, S. S., P. Horst and A. B. M. M. Islam, 1995. Effect of different factors on pre-weaning survivability of Black Bengal kids. Small Ruminant Res., 18:1-5
- Husain, S. S., P. Horst and A. B. M. M. Islam, 1996. A study on the growth performance of Black Bengal goats in different periods. Small Ruminants Res., 21: 165-171.
- Kanaujia, A. S. and B. L. Pander, 1987. Heterosis in some economic traits in Beetal and Black Bengal Crosses. Indian J. Anim. Sci., 58: 127-129.
- Keeping, G. S., 1951. A review of progress recorded in the up grading and breeding of the pedigree imputed and local goats. Malay. Agric. J., 34: 32-39
- Malik, C. P., K. S. Kanaujia and B. L. Pander, 1986. Factors affecting post weaning growth in Beetal and Black Bengal goats and their reciprocal crosses. Indian J. Anim. Sci., 56: 964-967.
- McGregor, B. A., 1984. Growth , development and carcass composition of goat. A review of goat production research in the tropics. Proceeding of a workshop held at the University of Queensland, Brisbane, Australia. February, 1984. ACAR proc. Series No.7
- Mukherjee, J. K., 1991. Crossbreeding for genetic improvement of local goats. Goat husbandry and breeding in the tropics. Ed. by J. M. Parandam, S. Sivaraj, T.K. Mukherjee and P. Horst, University of Malay. Kualalampur, Malaysia, pp. 34-52.
- Mishra, R. R., D. S. Bhatnagar and D. Sundaresan, 1976 Heterosis of various economic traits in Alpine + Beetal crossbres goats. Indian J. Dairy Sci., 29,235-237.
- Nitter, G., 1978. Breed Utilization for meat production in sheep. Animal Breeding Abstracts. Commonwealth Bureau of Animal Breeding and Genetics, 46:131-140.
- Peters, K. J. and P. Horst, 1981. Development Potential of goat breeding in the tropics and subtropics. Anim. Res. Develop., 14: 55-71.
- Ricordeau, G., L. Tchamitchian, C. Lefevre, Brunel and A. Devignes, 1977. Improvement of Productivity of Cher Berrichon ewes by crossbreeding, 3. Reproductive performance of the first three generations of Cher Berrichon and Romanov crossbred ewes. Annalesele- Genetique-et-de- Selection- Animal, 8:405-419e
- Saadullah, M., 1991. Research and development activities needs on small Ruminants in Bangladesh. Paper presented at SRUPNA 1st Annual Workshop. July 1991, Bogra, Indonesia.
- Singh, D. K., C. S. P. Singh and H. R. Mishra, 1990. Factors affecting growth of Black Bengal and its crossbreds with Jamunapuri and Black Bengal goats. Indian J. Anim. Sci., 61: 1101-1105.
- Verma, R. R. P., B. K. Singh, M. P. Singh and B. Singh, 1991. Factors affecting reproductive performance in Black Bengal goats. Indian Vet. J., 68: 235-236.
- Wahid, A, R. Hamzh and P. F. Cheah, 1985. Introduction of Saanen and Anglo Nubianx+ Local and Jamunapuri+ Local Crossbred goats. Observation on their growth performance. Quality in Livestock production. Proceedings of the 9th Annual Conference, Malaysian Society of Animal production, held at University Partanian, Malaysia.