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Abstract: Results of former researches have shown that spectrally based analysis alone could not satisfy forest
type classification in mountamous mixed forests. Forest type based on composed different parameters such
as topography elements like aspect, elevation and slop. These elements that are affected on occurrences of
forest type can be stated as spatial distribution models. Using ancillary data integrated with spectral data could
help to separate forest type. In order to find the abilities of using topographic spatial predictive models to
unprove forest type classification, an investigation was carried out to classify forest type using ETM+ data in
a part of northern forests of Tran. The Tasseled Cap, Ratioing transformations and Principal Component
Analysis were applied to the spectral bands. The best spectral and predictive data sets for classifying forest
type using maximum likelihood classification were chosen using the Bhattacharya seperability index. Primary
analysis between forest type and topographic parameters showed that elevation and aspect are most correlated
with the occurrences of type. Probability occurrence rates of forest type were extracted in the aspect; elevation,
integrated aspect and elevation as well as homogeneous units structured on elevation and aspect classes.
Based on occurrence rates of forest type, spatial predictive distribution models were generated for each type
mndividually. Classification of the best spectral data sets was accomplished by maximum likelihood classifier and
using these spatial predictive models. Results were assessed using a sample ground truth of forest type. This
study showed that spatial predictive models could considerably improve the results compared with spectral
data alone from 49 to 60%. Among spatial models used, the spatial predictive models constructed based on the
homogeneous umts could improve results in comparison to other models. Applying other parameters related
to forest type like soil maps would generate accurate spatial predictive models and may improve the results.
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INTRODUCTION
Forests of Iran with an area about 12.4 million
hectare comprise 7.4% of the country’s area. These
forests have various geographic conditions, producing
different forests of various tree and shrub species and
production capacity m different edapho-climatic
conditions (FAOQ, 2002). Among five large vegetation
regions in throughout Tran, the most important vegetation
region according to density, canopy cover and diversity,
1s the Hyrcanian (Caspian) region that covers an area of
1,925,125 ha, extending throughout the south coast of the
Caspian Sea in the northern part of the country. The
Hyrcanian vegetation zone 1s a green belt stretching over
the northern slopes of the Alborz mountam ranges

(Sagebtalebi et al, 2003). Tt has a high production
capacity due to humid temperate climate and suitable soil.
Hyrcaman forests extend for 800 km n length. These
natural mixed-hardwood forests have rich diversity based
on tree species. Species such as beech (Fagus orientalis),
hornbeam (Carpinus betelus), alder (dlnus glutinosa),
oak (Quercus castaneafolia), maple (dcer velotonia),
ironwood (Parotia persica) are the main species in these
forests (Sageb-Talebi et al., 2003).

Conservation and protection of these forests are
a major duty for the government of Iran. Mapping
forest variables such as types and stands is fundamental
for forest management. Forest type mapping through
field study 18 time-consuming and cost-intensive.
Satellite data and 1its potential are new tools to manage
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and mapping of the forest-covered area. Forest extent
mapping has been reported feasible with good certainty
using satellite data in the northern mountainous forests of
Iran (Darvishsefat and Shataee, 1997; Rafeian, 2003). The
next step for forest managers was a feasibility study to
apply satellite data to classify northern forest types.

Previous results have shown that the discrimmation
of forest types that are composed only of one species, as
pure types is very successful by using satellite data
(Walsh, 1980, Mayer and Fox, 1981). When a forest
type 1s composed of two or many species such as in the
study area, separating the type may be more difficult
(Shataee et al, 2004) because, the classes of interest are
often poorly separable in the feature space provided by
remotely sensed data. Also, spectral signatures used in
supervised classifications may overlap considerably,
making effective discrimination unachievable based on
spectral reflectance characteristics alone. Making an
attempt on the mprovement of the classification results
has been the mam objective for those mterested in forest
type mapping using satellite data. Many attempts have
been made to use different techniques such as rule-based
classification (Bolstad and Lillesand, 1992) mcorporated
domam knowledge m the way of slope, aspect and
spectral data (Hutchinson, 1982) and using ancillary data.
Information from ancillary data sources has been
widely shown to aid discrimination of classes that are
difficult to classify using remote sensing data
(Apisit and Sherestha, 2000, Hopkins et al, 1988;
Hutchinson, 1982; Strahler, 1980). Tn these cases, ancillary
data sources and expert knowledge related to spatial
distribution of types can provide useful information to
help distinguish between inseparable classes.

Using ancillary data related to forest types as site
variables and environmental factors can be mcorporated
to spectral data to improve forest type classification
(Brockhaus et al., 1992, Franklin, 2001; Hopkins et al.,
1988). Determination and delineation of site elements
and environmental factors which have effective roles in
the spatial distribution of forest types or groups of
homogeneous species is the first step to incorporate
this non-spectral data with spectral data. This study
presents results using different spatial distribution
models, generated with topographic parameters to
improve classification results. A primary objective of
this study was to investigate how these spatial
models, m combmation with spectral data, improve
forest type classification.

Spatial distribution models: The distribution of forest

types
such as soil, microclimates, as well as specific terram-

can be affected by a number of characteristics

related features such as elevation, slope and aspect.
These characteristics can be considered as indicators of
tree type composition and distribution. Hence, the
variables may be incorporated mto predictive models to
estimate likelihood of the occurrence. These models can
help make accurate decision that a pixel belongs to a
class by algorithms based on accurate location and
distribution range of forest types. One means of
incarporating ancillary data is using prior probabilities of
class membership.

Spatial distribution models can be mstructed based
on environmental parameters that have lngh correlation
with occurrence of forest types. Recognition of specific
places for each type, which is referred to as ecological
factors of species 15 very difficult n the mountainous
forests. In complex forest sites like the present study area,
forest types commonly are related to many variables.
These variables expose specific ecological conditions for
each type, called homogenous umts. Homogenous units
are where specific ecological or topographical condition
causes to grow particular species or specie is dominated
on other species to comprise a homogenous vegetation
cover, forest type or stand. Homogenous unit 1s a place
where a uuque forest stand or type 1s related on specific
condition. Tt means that some ecological elements such as
topographic parameters effect on the spatial distribution
of forest type. They can be delneated by dominant
species on canopy cover or most frequented compare to
other species. For example, the pure Fagus type that
Fagus orientalis is dominant specie or frequented above
90% 1s seen only at altitudes greater than 700 m above sea
level and generally founds at northern aspect With a
simple assumption, homogenous units can be generated
based on environmental variables such as topographic
factors (elevation, aspect and slope) that have important
restrictive roles on species growth

Determination of occurrence rate of each type in one
homogenous
construction of this spatial model to mecorporate remotely
sensing data may improve classification results versus
using each variable individually. For this reason, finding
a relation between spatial occurrence of types and
envirommental variables m the northern mixed hardwood
forest of Iran was the first objective of tlus study. Of
course, based on some ecological and edaphic conditions,
species can be individually exposed in some places, but
collection of the same species as groups and dominant
species may occur in specific places. Consequently,
grouping of these species as homogeneous umts called
forest stand can be reached by these rules.

If these rules could be expressed and constructed as
spatial models, they would help accurate assignment to a

unit based on some variables and
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class of pixels of a homogenous unit. Delineation of
natural requirements of species may lead to specify their
spatial distribution. However, these requirements may
be different when a type is determined with dominant
species and non-dominant species. Thus, specification
and determination of type characters against species
characters can better help to construct types spatial
models. Discrimination of these rules commonly leads
to production of expert knowledge about types
(Franklin, 2001). This knowledge can be extracted in
different ways and from different sources such as aerial
photos, existing maps and expert knowledge. In addition,
they can be obtained from forest inventories through field
work and sample plots.

MATERIALS AND METHODS

Study area: The study area is located in the educational
and experimental forest of Tehran University in the north
of Iran between 51°33°12”E and 51°39°56” E longitude
and 36°32°08” N and 36°36°45 5 N latitude. This forest
has been subdivided into seven districts. However,
the study has only been performed in three districts
(Patom, Namkhaneh and Gorazbon, respectively) with
about 3000 hectares area (Fig. 1). Altitude ranges from
50 to 1350 m. Regarding different aspects and altitude
zones, a variety of forest types have established.

Data: In order to investigate ETM+data potential for
forest types mapping, a small window of the 164-35 Scene

s s

4 Kilometers FAY

from 2 August 2000 was selected. Except for the thermal
band, all multi-spectral and panchromatic data were used
for this study. In addition, some ancillary data extracted
from DEM such as aspect and elevation maps were
resized to the spatial resolution of satellite data.
These data were imported as thematic layers in the
clagzification process.

Ground truth: The accuracy assessment of classification
results and comparison of classification methods
requires a ground fruth map. Since a forest type map has
not been available in the study area, a sample ground
truth of forest types was designed and generated. The
square sample plots were distributed systematically
throughout a 3000 ha study area. The minimum typical
area to recognize a forest stand or type iz one hectare
{(Shataee and Mohajer, 2002). On the other hand, the
minimal area for selecting samples on the remote senzing
data is about 3x3 pixels (i.e., 8100 m® for ETM data)
{Curran, 1985). Therefore, the size of each plot was
designed 10000 m? (1 ha). The diameter of trees with
the DBHs (diameter at the breast height) greater than
12.5 cm were measured in each plot and the kind of
species were noted for all trees. 193 plots were measured
in the non-protection section of the study area.

In highly dense and mixed hardwood forests like
the study area, the forest has multiple layers with
large diameter trees (thick) dominating the canopy
{Shataee and Mohajer, 2001). Selection of about 100 thick
trees for determination of forest types in each plot refers

IRAN

Parcel boundary
Study Area

W/ District boundary

Fig. 1: Location of the study area at the research forest of Tehran University in the north of Iran
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due to theirs canopy compose forest canopy cover and
theirs reflectance are registered by sensors. The digital
number of remote sensing data is based on the reflectance
of forest crown. Therefore, based on experience, by
computing 100 thick trees and the percentage of
species frequency, the kind of forest type in each plot
was determined. In addition to plantation area, six forest
types were recognized by dominant species frequency of
100 thick trees (Table 1). A vector g round truth map was
generated from square sample plots using GIS software.
The map was then rasterized using a spafial resolution
gimilar to the panchromatic ETM data (Fig. 2).

Pre-processing and processing of images: The first step
before the image analysis is the pre-processing of images
for classification. Because, the ETM-+bands have been
received as orbit-oriented images and not registered to
given references, they were geo-referenced in two steps
in PCI software. First, the panchromatic band was geo-
referenced by ground control points extracted from digital
1:25000 maps and ortho-rectified using DEM. The final
RMSe was about 0.65 pixel (19.5 m) with zecond order
polynomial fransformation and nearest neighbor
resampling method. The multi-spectral images have then
been rectified with the pan image using image to image
matching technique by image control points, the same

Table 1. Determination of forest types through computing frequency percent
of 100 thick trees

Frequency percent of species

Forest types

Pure fagus =90% Fagus orientalis
Mixed fagus 50-20% Fagus arientalis
Pure carpinus =90% Carpims betelus
Wixed carpinus 50-30% Carpinus betelus
Wixed anus =90% Alnus glutinosa
Mixed hardwood Other species, under 50%

transformation equation and resampling method. The total
RMSe was found to be about 0.54 pixel (16.2 m). All
images corresponding to ground truth map were resized
to 10 m resolufion.

Before the classification of images, some suitable
image proceszing analyses were applied to the ETM+
main bands: Ratioing, taszeled cap transformation
and Principal Component Analysis (PCA). Ratioing is
mathematical or logical operation on the certain spectral
band:s to generate artificial bands. The Ratio
transformations are often used in image processing to
reduce radiomeiric effects of dope, illumination angle or
seagonal variability (Ivits and Koch, 2002). The first three
components of Principal Component Analysis contain
more information confrary to each band individually. The
brightness, wetness and greenness axes of the tasseled
cap calculation can be wuseful in the topographic
variations as well as to differentiate between closed forest
canopy condifions (Cohen and Spies, 1992).
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Fig 2: Sample ground truth map of forest types in the study area
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These processing were applied to the main bands to
create new artificial bands. Using seperability analysis
the best chammel set was selected and specified to be
useful for some artificial bands. These new images were
used in combination with ETM+ images in the
classification processes.

RESULTS

Specification of the best channel set and classification
with spectral data: In order to compare using spectral data
and integration of spectral and ancillary data for
classification of forest types, classification of ETM+
bands and some artificial bands was accomplished. In
supervised classification, some pixels known from
fieldwork were selected as traming area for each type. The
feasibility of being separable and a good extraction of
forest types were tested using the Bhattacharya
seperability mdex. Finally, the best bands set were
selected based on spectral properties of the training areas
by the Bhattacharya seperability index (Table 2).

Following many studies, where the maximum
likelihood classifier was reported as a suitable classifier
(Hopkins et al., 1988; Williams, 1992; Darvishsefat, 1994,
Shataee et al., 2004), this classifier was applied to separate
forest types.

Determination of parameters related to forest types to
construct spatial predictive models: As mentioned before,
the maximum likelihood classifier has the capability to use
prior probabilities of class occurrences as values and as
spatial imagery models. It means that as an alternative,
prior values may be specified according to spatial
characteristics associated with defined classes. To
construct spatial models, it should be first specified which
environmental and ecological parameters have the
greatest effect on the spatial distribution of forest types
and consequently can be used as spatial predictive
models. This mformation can be extracted in different
ways such as information of obtained sample plots
inventories. In this study, this information was collected
through ground plots. On the other hand, some forest
researchers have found that topographic parameters have
strong correlation with forest types in medium scale in the
northern forests of Tran (Asadollahi, 1987). With respect
to these reasons, a digital elevation model (DEM) was
generated using the 1:25000 digital topographic map. From
DEM were extracted the elevation map with 100 m
intervals, slope and aspect maps with defined classes.
These maps were compared with the ground truth map to
specify cormrelation between these parameters and forest
types. The primary results showed that elevation has

more effect on the distribution of forest types than other
topographic parameters 1.e., aspect and slope. Table 3
shows the range of occurrences of forest types in the
each of topographic parameter.

The results showed that the slope parameter is not a
useful parameter for differentiating forest types. Also,
since ranges of each forest type overlapped with respect
to the topographic variables, these topographic variables
were studied individually and in combination. Results of
these analyses are summarized in the following sections:

Classification with spatial predictive model based on
elevation: According to Table 3, the elevation parameter
1s more effective on the spatial distribution of forest
types. Based on this primary result, a spatial predictive
model was created using mformation of occurrence rates
of forest types in each 100 m elevation class. These prior
probabilities were computed as:

P ('l = N (fvhyZ N (fish) (1)
Which:
P (fh) = Probability of type of A in the elevation
classes
N (fi‘h) = Number of pixels of type A in the elevation
classes

EN (filh)= Total number of pixels of type A in the
elevation classes

For this reason, the digital elevation model was
classified in 100 m classes. Consequently, for each forest
type a spatial predictive model (six models) was created as
layer (umage) (Fig. 3). These images had values, which
showed prior probabilities rates for each forest type in the
elevation classes. Classification of forest types was
accomplished using integration of the best band set and
spatial predictive imagery models.

Classification with spatial predictive model based on
aspect: In natural forests, distribution of forest types is
additionally correlated with aspect (Asadollatl, 1987). In
this study, the aspect-based prior probabilities of each
forest type were calculated and the improvement of
classification by using spatial distribution models was
investigated. An aspect class’s map was extracted from
the DEM to create the aspect distribution model. The
occurrence rates of forest types mn the each aspect classes
were computed the same as elevation (Table 4).

Based on these prior probabilities, for each forest
type a spatial predictive model (six models) was created as
layer (umage). Classification of forest types was
accomplished using integration of the best band set and
spatial predictive imagery models.
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Table 2: The ETM+, artificial bands and best bands set selected by seperatulity index

ETM+ Bands Artifical Bands

Best bands

PC1, PCZ, PC3, Brightness, Greenness, wetness,
Ratio (NIR-G), Ratio (MIR/G), Ratio (NIR/R+G),

PCAL PCAS, Brightness, Greenness,
Ratio(4/2), Ratio(4/3+2), ETM4

Ratio (NIR-MIR/NIR+MIR), Ratio (NIR -R/NIR+R)

Tahle 3. Distribution of forest types in the topooraphic parameters

Forest types Elevation {m) Agpect Slope
Pure Fagus 1100-1350 All aspect 0-40%
Mized Fagus 400-1300 Al aspect 0-40%
Pure Carpinus T00-800 Southern 0-40%
Mized Carpinus 400-1350 Al aspect 0-60%
Mized Alnus 1100-1300 West southern T-40%
Mizxed 0-1300 Al aspect 0-100%
Table 4: Occurrence rates (Total 1.0) of foresttype in the aspect classes

Forest types/
Total Pure Faous Mixed Fagus Pure Carpinus Mixzed Carpinug Mized Alnug Mixzed Replantation Agpect Clagses
1 0.04 0.53 0.00 0.13 0.00 0.24 0.06 North
1 0.14 0.61 0.00 011 0.00 012 0.0z Northeast
1 0.00 0.46 0.00 0.1% 0.00 0.32 0.07 East
1 0.07 0.08 0.0z 0.47 0.00 0.32 0.04 Southeast
1 0.06 0.23 0.0z 0.43 0.01 0.25 0.0o0 South
1 0.0z 0.36 0.00 0.38 0.01 022 0.01 Southwest
1 0.03 0.46 0.00 0.26 0.00 0.23 0.0z West
1 0.09 0.47 0.00 0.29 0.00 0.13 0.0z Northwest

Spatial Pror Probabdity Map for Mixed Fagus Spatial Prior Probability Mag for Pure Fagus
P

0
o1
0.28
0,30
I 0.33
0,38
| 0.46
B 0.51
I 0.52

1 Hbarveery

LEGEND

L 054 |

Fig. 3: Elevation spatial models as prior probability images for pure (a) and mixed (b) Fagus types

Classification with spatial predictive model based on
integration of elevation and aspect: As expressed before,
distribution of forest types iz not related to only one
parameter. Therefore, for integrating ancillary data with
spectral data, it seems that using a mulfi-parameter
spatial model may improve the classification results better
when it is integrated with spectral data. By this
agsumption, a spatial distribution model was constructed
by incorporating aspect and elevation parameters. This
multi-parameter spatial model was built as follow:

*  Addition of aspect and elevation occurrence images
that subdivided two created
occurrences images.

aspect-elevation

*  An elevation likelihood image was built on condition
that where each forest type is occurring will be °1°
and other places will be 0°.

»  Spatial distribution model was
multiplication of the last step images.

obtained by

An aspect-elevation spatial model was created for
each forest type separately (six models). Classification of
forest types was accomplished using integration of the
best band set and these spatial predictive imagery models.

Classification with spatial predictive model based on
homogenous units: Homogenous units are places having
equal conditions regarding the variables such as aspect,
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Table 5: Accuracy assessment results obtained from spectral data only and spatial models

Spectral data

Spectral data

8pectral data and Spectral data

aspect and and elevation elevation-aspect and homogenous
Methods/Accuracy Spectral data spatial model spatial model spatial model units model
Overall accuracy (90) 49.680 56.28 57.65 5834 60.87
Kappa coefficient 0.275 0.34 0.35 0.37 0.41

elevation or slope. In mountainous regions, some different
aspects can be found in each elevation class. Regarding
the impact of aspect on the distribution of forest types,
the occurrences rates of forest types can also be different
m a given elevation class. Thus, the homogenous umnits
can be considered for different aspect and elevation
conditions. For these reasons, comparing elevation and
aspect class maps created the homogenous units.
Corresponding to previous ways, the occurrence rates of
forest types were extracted and homogenous spatial
models were built for each type (six models). Classification
was accomplished using the integration of the best band
set and homogenous umt spatial predictive imagery.

ACCURACY ASSESSMENT AND
COMPARISON OF CLASSIFICATION
APPROACHES

In order to obtain the results of integrating different
spatial with spectral data, the accuracy
assessment of the results was done with the sample
ground truth map (Table 5).

models

DISCUSSION

This study showed that the maximum likelihood
classifier has high capabilities to integrate ancillary
data as prior probability and spatial models. The
study confirms the results by (Hopkms, 1992;
Darvishsefat, 1994; Apisit and Sheresta, 2000) that
spectral data alone are insufficient for the classification of
forest type Specifically,
classification based on solely on spectral data resulted in
the relatively low values for overall accuracy (49.68%) and
kappa coefficient (0.275).

When integrating ancillary data it should be first
mvestigated which parameters are effective on the spatial
distribution forest types and second how they should be
incorporated into the spectral data. This study confirmed
that using topographic data related to classes could
mnprove the results, which agrees with other studies
(Janssen et af., 1990). The primary results showed that the
elevation parameter has more impact on the forest types
distribution than other topographic parameters i.e., aspect
and slope. Results showed that the slope 1s not a
parameter that can differentiate forest types.

in  mountainous areas.

Ancillary data could be imported as prior probability
imagery mto the classification processes. Compared
with spectral data, these spatial predictive models
could improve the classification results; in this study,
ancillary data improved overall accuracy by 6.5-11% and
kappa by 0.065-0.135.

Using spatial predictive model created by aspect in
combination with spectral data could improve the overall
accuracy by 8%. This 13 a significant increment in
accuracy compared with only spectral data. This
increment refers to accurate addressing of some types by
aspect and increment of occurrence probability.

Construction of a spatial predictive model based on
elevation parameter and mtegration of this model with
spectral data, specified that increment of overall accuracy
improved more (about 1% more than aspect). This result
exposed that elevation has almost more mmpact on the
distribution of forest types compared with aspect. The
silviculture knowledge (Asadollahi, 1987) confirms the
role of elevation parameters on the spatial distribution of
certain species like beech and refers to the equal umpact
on the formation of forest types or grouping
establishment of species that comprise a forest type.

Incorporated spatial predictive model based on
aspect and elevation could not improve classification
results considerably. Although a little mcrement
(about 0.02) was found in the overall kappa compared with
using aspect and spattal models that
constructed as earlier, but this improvement i1s not
atlractive.

Creating homogenous based on aspect,
elevation and using this spatial predictive model with
spectral data showed that the classification result could
be significantly improved by 11% in overall accuracy and
0.14 in overall kappa.

This study showed that if spatial models accurately
are specified addressing of forest type occurrence
and/or be determinate the distribution of forest types
with strong related parameters, are capable to improve the
classification results when integrated with spectral data.

Although, the overall accuracy of both spectral data
and integration of spectral with spatial data results were
generally low and sufficient to illustrate applicability,
the results emphasized the considerable improvement.
They may be madequate for uses requiring lugh precision,
but they probably give the best available picture of forest

elevation

units
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type in the region. These results encourage us to
investigate other techniques and methods that may
umprove classification results so that it would be feasible
to apply them for forest management.

Other factors related to species distribution, such as
soil and climate, may be of future use in the classification
process or geographical knowledge to integrate them with
spectral data. Other techmiques such as rule-based
classification or expert system should be investigated to
improve the results so that an executive forest type
mapping method would be obtained using satellite data
without extra time and cost consumption.
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