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Abstract: This study shows the ability of Artificial Neural Network (ANN) technology to be used for the
prediction of the correlation between common lambsquarters (Chenopodium album L.) population, com
(Zea mays 1..) population and planting pattern in different days after planting (as inputs) with common
lambsquarters biomass production (as output). The number of patterns used in this study was 60 which were
randomly divided into 45 and 15 data sets for training and testing the neural network, respectively. The results
showed that a very good performance of the neural network is achieved. Some explanation of the predicted
results is given. The multi layer perceptrons with training algorithm of backpropagation (BP) was the best one
for creating nonlinear mapping between input and output parameters. The mean training of root mean square
error (RMSE) was equal to 0.0156. ANN model predicted the common lambsquarters biomass with maximum
RMSE, t-value, average prediction error and correlation coefficient of 0.0091, 0.985, 2.6% and 0.989, respectively.
The ANN model, predicted common lambsquarters biomass within £ 5% of the measured biomass for 59.8% of
the samples indicates that the ANN can potentially be used to estimate plant biomass. Adjusting ANN
parameters such as learning rate, momentum, number of patterns and number of hidden nodes/layers affected

the accuracy of biomass production predictions.
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INTRODUCTION

Specific mechanisms that result in enhanced
competitiveness of the crop with weeds are not well
understood. A more equidistant spatial arrangment of
com plants, by optimizing planting pattern and plant
population, 1s thought to play a role m reducing the
potential for weed interference by enhancing the
competitiveness of the crop (Fischer and Miles, 1973;
Holt, 1995; Teasdale, 1995). Studies have shown that
agronomic practices, such as planting pattern and plant
population, type and time of tillage, crop rotation and
cover crops that promote competitive crops are suitable
tools for weed management (Gill et al., 1997, Swanton and
Weise, 1991). Studing the effects of weed management
techniques on weed growth and reproduction help to
researchers for using the effective long-term weed
managements.

The use of models in the decision-making process is
a central component of Integrated Weed Management
(TWM) (Swinton and King, 1994; Wilkerson et al., 1990).
However, little research has quantified the effect of weed
management techniques on weed survival, biomass and

seed production. Weed biomass loss models are one of
the important tools for investigation weed management
efficiency (Begna ef of., 2001, Hékansson, 2003). Some
researchers showed that the ability of weed biomass to
predict crop yield loss (Zimdahl, 2004; Askew and Wilcut,
2001; Baziramakenga and Leroux, 1998; Clewis et al.,
2001), plant biomass (Scursom and Satorre, 2005) and
weed seed production (Draper and Smith, 1998; Bosnic
and Swanton, 1997, Kropft et al., 1995) was very accurate.
Thus, weed biomass can as an effective predictor use to
estimate crop and weed seed production.

Various linear and nonlinear techniques have been
used to perdict plant biomass and yield (France and
Thornley, 1984; Cousens, 1985; Dieleman et al., 1995;
Hakansson, 1997). Clewis et al. (2001) reported a linear
relationship between weed density and weed
aboveground diy biomass. Bosnic and Swanton (1997)
applied nonlinear regression related weed shoot
biomass or fecundity to weed density and time of cohort
emergence. Kropff et al. (1995) applied nonlinear
regression related weed shoot biomass or fecundity to
weed relative leaf area or weed relative volume. Plant
biomass is a complex interaction involving some
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parameters which have various degrees of effect on the
biomass production. The relationships between biomass
and related variables are almost always very complicated
and highly non-linear which are hard to describe with
mathematical models. Thus, it is important to researchers
to find a model-free stimator model that incorporates a
large number of variables. One of the most appropriate
methods to illustrate it, seems to be Artificial Neural
Networks (ANNs) (Almeida, 2002). In fact, this method is
very powerful in dealing with non-linear relationships.
Artificial neural network (ANN) models are powerful
empirical modeling approaches and relatively simple
compared to mathematical models (Hornik et af., 1989).
Neural networks could be used for modeling nonlinear,
accommodating multivariate and nonparametric  data.
Neural network approach, unlike the mechanistic model,
is a model-free estimator; they don’t require any external
manifestation of parametric relationship. Hence, the
relationship between the parameters is automatically
incorporated into the network model in an implicit manner
during the training process (Drummond, 1998). So, it
eliminates the difficulty of extracting the parameters for a
mechanistic model. Accordingly, the use of ANNs has
gained increasing popularity for application where a
mechanistic description of the dependency between
dependent and independent variables is either unknown
or very complex (Almeida, 2002). Neural networks have
been employed in a wide variety of applications,
including the prediction of seil moisture content (Chang
and Tslam, 2000), crop yield (Cerrato and Blackmer, 1990;
Drummond et al., 2003, Feng Lei, 1999; Heinzow and Tol,
2003; Safa et al., 2004; Kaul et ai., 2005; Liu et al., 2001
O"Neal et al., 2002, Shearer et al., 1999, Simpson, 1994;
Uno et al, 2001, Yang et al, 2003), seeding dates
(Major et al., 1996), organic matter content in soils
(Ingleby and Crowe, 2001), maturity of spring wheat
(Hill et al., 2002) and physical and physiological damage
to wheat seeds (Khazaei and Shahbazi, 2005). In
conclussion, the neural network modelling is suitable for
simulations of correlations which are hard to describe by
mathematical models. Some other studies have also
reported that ANN’s were better than traditional statistical
methods when estimated soil water content based on soil
physical properties, nitrogen leaking below the root zone
of turf grass and soybean rust (Batchelor et al., 1997,
Pachepsky et al., 1996; Starrett and Adams, 1997).

A neural network has two components: the node and
the connection. A node consists of a newon with
positioning and connecting information. A connection
consists of a weight with node addressing information.
Neurons are single processing elements, which connected
to neurons in the next layer, therefore forming different
types of ANN. The parameter of weight is associated with
each connection between two neurons, thus each cell in
the upper layer receives weighted inputs from each node

327

in the layer below. Newal networks are mainly
characterized by the type of learning rule, neurons used
(transfer function) and the way that they are organized,
number of layers and number of neurons per layer. These
specifications are related to the number of training points
and to the nature of the function (Weiss et al., 2000). The
learning algorithm is a procedure for modifying the
weights and biases of the network. This procedure may
also be referred to as a training algorithm. The learning
algorithm is applied to train the network to perform some
particular task. Among the many learning algorithms of
neural networks, the backpropagation (BP) has been
shown to be theoretically sound and has demonstrated
excellent capability for various complex classification and
prediction problems (Shearer et al, 1999; Pao, 1989).
Transfer functions for the neurons are needed to
introduce nonlinearity into the network. Without this
nonlinearity, neurons would perform in a linear fashion
and the ANN would not be able to map non-linear
input/output relationships. For the output neuron(s), one
should choose a transfer function suitable to the
distribution of the target values. Many transfer functions
have been introduced over the last few vears by
researchers specialized in ANN. However, only three of
these transfer functions are commonly used: Linear,
Sigmoid and Tang hyperbolic (Ripley, 1996).

The objectives of this research were (1) to build up
and evaluate the predictive performance an ANN to
approximate a nonlinear function relating common
lambsquarters biomass in different days after planting
respons to common lambsquarters, corn population and
corn planting patternand (2) to evaluate the effects of the
ANN model parameters on model performance.

MATERIALS AND METHODS

Dataset and input/output parameters: A neural networl is
usually trained using a large number of input with
corresponding output data (input/output pairs). This
means that for reliable training and performance of any
neural network, we need an appropriate database. Using
such a database, we can train neural networlk to perform
complex functions. The common lambsquarters biomass
data at different common lambsquarters population, corn
population, planting pattern and different days after
planting were used to develop and assess the ANN
models. The variable levels used in this study are shown
in Table 1. Three replications were made for each
combination of the input variables. The averages of
the treatments were used for training and testing the
ANN models.

Field experiments were conducted at the field
experiment of Tehran University (With 33: 28" N, 51: 46" E
and 1180 m altitude) in 2003. The soil was loam silt which
itwas chiseled plowed in the fall and field cultivated in the
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Table 1: Summary of input and ocutput variables ranges

Input/Qutput Factors Levels
Tnput Corn population (plant ha™") 70,000 105,000
Common lambesquarters population (plant m™) 5 10 15
Planting pattern Planting on one Planting on two
side of ridge sides of ridge
Days after planting 43 57 71 85 99
Minimum Maximum Mean STD
Qutput Common lambesquarters biomass 53 618 307 149.4
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Fig. 1. Topology of the 4-layers, feedforward backpropagation NN with four input for calculating common

lambesquarters biomass

spring. Based on the soil test results, Nitrogen and
phosphorus (P,0;) fertilizers were applied broadcast at a
rate of 180 and 120 kg ha™', respectively. The experimental
design was a randomized complete block in a factorial
arrangement with three replications. Plant population
treatment was at two levels: recommended and 1.5 times
recommended plant population. Planting pattern treatment
was at two levels: one and two rows planting (planting on
both of ridge sides) and the common lambsquarters
was established in an addition series experiment
(Radosevich et al., 1997) at four densities. Each plot was
7%3 m and consists of 4 rows. The com hybird single
cross 704 com and common lambsquarters were planted
to 0.75 m rows on the 23th and 24th of May. After comn
and common lambsquarters establishment, both of them
were thinned to achieve the desired population ratios.
Except of common lambsquarters, all other weeds 1 each
plot were controlled by hand throughout the growing
seasorl. Biomass of common lambsquarters were
determined biweekly 43 days after planting in five stages.
In each sampling, common lambsquarters plants that were
placed in 0.225 m*(0.30x0.75 m) harvested. These samples
were oven dried at 75°C for 48 h and then weighed. The
statistical analyses were performed using the General
Lmear Model (GLM) procedure of SAS (SAS Institute,
1994). The data obtained from the experiments were used
to train and test the ANN models.

Artificial neural network model development: Feed-
forward artificial neural networks were used as a modeling
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techmque to model correlations between common
lambsquarters population, corn  population, planting
pattern m different days after planting with common
lambsquarters biomass. In this study, both multi-layer
perceptron trained by BackPropagation (BP) and Radial
Basis Function (RBF) neural networks to predict common
lambsquarters biomass were developed. The networks
were developed by using experimental biomass data for
common lambsquarters. All of the ANN models had four
input nodes and one output node corresponding to
common lambsquarters biomass (Fig. 1). There were a
total of 60 patterns each with 4 components (x1, x2, x3,
x4, Y,) four of which are the input variables whereas the
Y is the output variable. Initially 45 of samples were
randomly selected to tram the ANNs and the remaming
15 were used to test the accurcy of the developed
models.

Adjustment of ANN parameters included the number
of hidden layers and newrons, the type of transfer
function, learning rate, momentum and a number of
patterns. Preliminary trials indicated that two lndden layer
networks performed better results than one hidden layer
networks. Figure 1, shows the topology of the 4-layers,
feedforward backpropagation neural network for
calculating common lambsquarters biomass based on the
four input variables.

The number of hidden nodes selected for ANN
models was equal to one-half the total mumber of inputs
plus outputs. The number of neurons were then increased
and decreased by two to improve model performance.
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The performances of the ANNs were compared using
the Root Mean Square Error (RMSE) and the t-statistics
that measures the scattering around the line (1:1),
(Khazaei and Shahbazi, 2005). When t 1s close to 1.0, the
fitting is very good Meanwhile, the accuracy of the
trained ANN was evaluated by calculating an individual
absolute error for each of the examples reserved for
testing (Khazaei and Shahbazi, 2005).

In order to achieve fast convergence to minimal
RMSE, the input and output data were normalized with
respect to the corresponding maximum and mmimum
values. As aresult of normalization, all variables acquire
same significance (importance) during the learning
process. It must be pointed out that the same
normalization process should be used for both training
and prediction data sets to ensure that all the data items
lie over the same range. In the present study, the
transformation was performed as follows:

X, =0.05+ 0.9%[(X, - X, V(X —X,.)]

Where X, i3 the transformation of the data point
X; X the overall minimum 1n traming end prediction data
sets; and X, the overall maximum in training and
prediction data sets. The value of X, lies between 0.05
and 0.95, corresponding to X, = X, and X, = X
respectively. The Neuralworks professional 11/plus
Simulator, version 5.23, was the software package used
n this study.

RESULTS

Common lambsquarters biomass production: The results
showed that the common lambsquarters biomass
production in different days after planting was influenced
by its own population, corn population and comn planting
pattern. Sigmficant effects of Common Lambsquarters
population, corn population and planting pattern on
common lambsquarters biomass occurred m different days

after planting (Table 2). Thus, Common Lambsquarters
population, corn population, com planting pattern and
days after planting applied as input vamables for
predicting common lambsquarters biomass.

Neural network modelling: Different ANN models were
developed and tested for common lambsquarters biomass
production based on the four mput variables (Fig. 2).
Neuwral network models were built directly from
experimental data. Using tlus method, the best neural
network model was obtained to predeict the correlation
between the input and output parameters.

Results showed that BP neural networks were able to
create a good nonlinear mapping between input and
output parameters. The configuration that had a minimal
dimension and minimum error gaving satisfying results,
was retained with trial and error method. Table 3 shows
the best BP neural network model and the best related
parameters value to predict the common lambscuarters
biomass. Before amving at this optimum, several tests
were carried out with different configurations of the neural
network. The range of neural networks parameters tried
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Fig. 2: Normalized predicted common lambsquarters
biomass data using BP NN versus the normalized
measured data

Table 2: The main effects of cormmon lambsquarters population and corn population and planting pattern on common lambsquarters biomass production, in

different days after planting

Mean squares of common lambsquarters biomass production (g m™2)

Source of variation df DAP,; DAP, DAP: DAP, DAP

Cormmon lambsquarters population 3 117308 251858** AT9A] ] e 611978+ TATA3TH
Com population 1 405.0ns 2718ns 1986* 11335 11 649
Corn planting pattern 1 2.9ns 1251ns 538ns 9413ng 2890%

## Difference significant at 1%, * Difference significant at 5%, ns: Not significantly diffrent, DAP: Days After Planting

Table 3: The best BP structure and optimum values of the ANNs used to predict the common lambsquarters biomass data

Optimum
Structure mn o Transfer function RMSE training RMSE testing L P Epochx1000
4-25-10-1 0.2 03 Tagh 0.0156 0.0091 0.985 2.6 25

1 = Leaming rate o = Momentum P,., =Mean predicted error (%)
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Fig. 5. Average of the root mean square error versus the
number of epochs

were: Number of hidden layers: one and two layers;
neurons/hidden layer: from 3 to 40; activation function:
sigmoid, linear and tanh; learning rate: 0.01-0.9;
momentum: 0.01-0.9; number of epochs: 1000-100,000.
Figure 2 shows the testing results for the final BP NN
model. Comparisons between the 15 predicted common
lambsquarters biomass data (test set data) versus the
same set of measured data are visually presented using
the 45° line of graph and two deviation lines, the +5%
deviation from the 45° line, as shown m pictures. On
the y-axis, the network output i1s represented for the
15 cases and compared, on the x-axis, with the target
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training RMSE for the final networlk

{(measured data). Agreement between the predicted and
measured common lambsquarters biomass data within
+5% can be observed.

Figure 3, represents a lustogram of the actual
predicted error of the output pomts generated by the BP
NN medel corresponding to the experimental test data
presented to the network during the testing phase. The
error magnitudes are represented for all the 15 data points
in the test set. The study of the relationship between the
predicted error and values estimated by the final BP model
showed complete independence (Fig. 4). The results
obtained from this study showed that the network
parameters affected the BP NN significantly. The learning
rate, momentum term and epoch size were adjusted to
achieve the least error ( Fig. 5, 6 and Table 3).

DISCUSSION

Common Lambsquarters biomass production: Table 2
showed that Common Lambsquarters population, corn
population and comn planting pattern effect on Common
Lambsquarters biomass in different days after planting. So
that, the significant effects of Common Lambscuarters
population, corn population and corn planting pattern
on common Lambsquarters biomass detected mn 43, 71
and 99 days after planting, respectively. Common
Lambsquarters biomass i lugh level of its population, low
level of comn population and one-row planting pattern of
corn was higher than that at low level of its population,
high level of com population and two-rows planting
pattern, respectively (data not shown).

The decline common lambesquater biomass under
two-rows planting pattern and high population compared
to one-row planting and low population of corn can be
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explained by accelerated leaf senescence and decreased
photosynthetic rate due to shading effect Some
researchers (Board and Harville, 1992; Ottman and Welch,
1989) have reported ncreased light mterception by crops
such as corn and soybean due to higher plant population
and narrower row spacing. There are some researches
which confirm our results about the effects of weed
population, Planting patterns and crop population on
biomass production. For example, weed biomass was
reduced 50% by increasing corn density twofold in
Ontario (Tollenaar et al., 1994). Increased crop density not
only reduces weed biomass (Hashem et al., 1998; Tanj
and Zimdahl, 1997) but may also reduce quantity of weed
seed produced. Planting patterns that favor crops in terms
of better lLight mterception should also result m the
crops accumulating more biomass than the potentially
competing weeds (Fischer et al., 2004). Relationship
between weed population and weed biomass was also
proved by some researches (Spitters and Aerts, 1983;
Scursoni and Satorre, 2005).

Neural network modelling: Based on the RMSE, t-value,
R’ and predicted errors, the results showed that among
the various BP models, model of good performance was
produced by the 4-25-10-1 structure. This BP neural
network produced the smallest RMSE (0.0156) in training,.
This result implies that the designed ANN was able to
properly leam the relationship between the nput and
output parameters. In deed, a well-trained ANN model
is the key to design and analysis the inputs and outputs
relations. In this study, the well trammed ANN model was
able to predict biomass production data with RMSE of
0.0156, t-value of 0.985, (Table 3) and the highest
correlation coefficient of 0.989 between the actual and
predicted data (Fig. 2). Ideally, the RMSE values should
be close to zero, indicating that, on average, there 1s no
difference between the predicted and measured values.
This again confirm that given sufficient hidden units,
multi-layer feed-forward network architectures can
approximate virtually any function of interest to any
desired degree of accuracy (White et al., 1992). Haykin
(1999) has also reported that one or two hidden layers
with an arbitrarily large number of neurons may be
enough to approximate any function.

Radial Basis Function (RBF) neural networks were
also employed to predict the common lambsquarters
biomass. However, it did not produce any meamngful
model for the biomass production estimation. The RBF
models produced very small t-value and large RMSE
between the actual and the predicted biomass data than
the BP models. Compared to the 3-layer models, almost 4-
layer models produced better performance. This indicates
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that increasing the number of hidden layers increased the
modeling capability. In general, a higher non-linear level
1n the function corresponds to a larger number of neurons
(a more powerful network). Previous study has also
reported that two hidden layers generally perform better
for continuous data (Heinzow and Tol, 2003).

Goel et al. (2003) used artificial neural networks to
identify weed stress and nitrogen status of com. They
tried the models with one to two hidden layers and
reported that the models with two hidden layers were
useful. Park et al. (2005) found that ANN without cross-
validation shows very high modelling accuracy, with
r-values mostly exceeding 0.95 when this techniques to
predict crop yield response under varying soil and land
management conditions. Zaidi ef al. (1999) indicate that
neural networks were able to model lettuce plant growth
with high correlation between the predicted and measured
values (R* = 0.92-0.99).

Figure 2 shows agreement between the predicted
and measured common lambsquarters biomass data
within £5%. Tt is obvious that BP NN have successfully
provided prediction of the
lambsquarters biomass data.

Statistical comparisons between experimental and the
predicted common lambsquarters biomass values using
BP model were also performed by using the student
t-distribution. The comparison was based on a 1% level
of sigmificance. The analyses showed that there was
no significant difference between the predicted and
experimental values (data not shown). These results again
confirm that BP NN 13 function approximation models that
can be trained by examples to implement a desired input-
output mapping. These results indicate that the network
successfully leamed the relationship between the mput
factors and common lambsquarters biomass as output for
all ranges of biomass data equally well (Fig. 3). As shown
in Fig. 3 the histogram approached a normal distribution,
except that there were a few over-predictions of common
lambsquarters biomass. As clear the predicted error data
ranged from -25.8 to 19.8. The mean predicted error from
the ANN model was approximately 2.6%, which indicates
good model performance. The picture shows that the BP
NN model, predicted data within +5% of the measured
biomass data for 59.8% of the samples which indicates
the ANN can potentially be used to estimate common
lambsquarters biomass.

The study of the relationship between the predicted
errors and values estimated by the final BP model showed
some overe and under-stimates of some weak values
were possibly observed (Fig. 4). The coefficient of
determination was negligible (R’ = 4x1077) and the slope
of correlation between estimated values and residuals

accurate common
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close to 0 (y = -0.02x+2.6), the residuals were well
distributed on either side of the horizontal line
(ordinate) representing the residual mean. This was the
consequence of the scarcity of low values in the database
for an effective learning of the model. These results
indicate again that a BP neural model can predict all
ranges of common lambsquarters biomass data equally
well.

Figure 5 shows that the convergence of the RMSE of
the network during training and represents the number of
iterations performed by the network was achieved until
the target RMSE. With epochs near to 25000 iterations,
the final neural network structures give a good estimate of
the plant biomass production. And so, in the final BP
network, 25000 epochs were used. Because 1t 1s possible
to obtamn a near perfect fitting, the error on the training set
is always decreasing with increasing complexity. Here, the
testing error was also decreased continuously with
mncreasing the epoch size from 1000 to 100000 and 1t does
not show any changes at epochs higher than 25000. One
of the important problems related to ANN i3 over fitting
which was not occurred here. At this case, the error on
the testing set at first decreases as the fitting improves,
but 1t increases again when the epochs increase.

The lower training and testing RMSE and the best
distribution of the predicted error were found for learning
rate and momentum values of 0.2 and 0.3, respectively.
This indicates that using these values, the necessary
weight adjustments are appropriate.

Finally, the results showed the lower the training
and testing RMSE the better distribution of the predicted
error for learning rate and momentum values of 0.2
and 0.3, respectively.

The neural network models have the ability to re-leam
and they improve their performance if new data are
available. This ability i1s mnportant to make a powerful
model based on the several years data. Thus,
characteristics of ANN such as high performance,
accuracy of the prediction and re-learming showed that
this approach has a high potential to use in weed
management programs.
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