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Abstract: Spatial patterns for several soil parameters such soil texture, Exchangeable Sodium Percentage (ESP),
Electrical Conductivity (ECe), soil pH, Cation Exchange Capacity (CEC) were examined in saline and sodic soils
in Arsanjan plain, Southern Iran, in order to identify their spatial distribution for implementation of a site-
specific management. Soil samples were collected from 0-30, 30-60 and 60-90 cm soil depths at 85 sampling sites.
Data were analyzed both statistically and geostatistically on the basis of the semivariogram. The spatial
distribution model and spatial dependence level varied between soil parameters. Soil pH and ESP had the
minimum and maximwn variability at all depths, respectively. Soil properties indicated moderate to strong spatial
dependence. ECe exlubited moderate spatial dependence at three depths; pH and ESP had a moderate spatial
dependence at 0-30 cm and strong spatial dependence at 30-60 and 60-90 cm depths. Clay and CEC exlubited
strong spatial dependence for the 0-30 ¢m and weak spatial dependence at 30-60 and 60-90 cm depths. Sand and
silt had a non-spatial dependence at 0-30 cm and weak spatial dependency at 30-60 and 60-90 cm depths. The
spatial variability in small distances of ECe, CEC, pH and ESP generally increased with depth. All geostatistical
range values were greater than 1168 m. The results reported herein indicated that the strong spatial dependency
of soil properties would lead to the extrinsic factors such as ground water level and drainage. Tt is important to
know the spatial dependence of soil parameters, as management parameters with strong spatial dependence
will be more readily managed and an accurate site-specific scheme for precision farming more easily developed.
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INTRODUCTION kriging

is more time-consuming and cumbersome.

Precision agriculture uses principles of farming
according to the field variability, which requires new
requirements for estimating and mapping spatial
variability of soil properties. In the last decades, important
contributions has been made by geostatistics to
understand soil  distribution patterns  within  the
landscape, which are required for effective land
management. Samples close to each other have more
similar properties than those located far from each other.
However, the classical statistic, assuming the measured
data independent, is not capable to analyze the spatial
dependency of the variable (Cemek et al, 2007). The
mterpolation  techniques  commonly used n
agriculture include Tnverse Distance Weighting (IDW)
and  kriging (Kravchenko and Bullock, 1999,
Ardahanlioglu et al., 2003). Both methods estimate values
at unsampled location based on the measurements from
the surrounding locations with certain weights assigned
to each measurement. IDW is easier to implement, while

However, kriging provides a more accurate description
of the data spatial structure and produces valuable
information about estimation error  distribution
(Kravchenko and Bullock, 1999). Surface soil
properties (Brejda et al, 2000), soil nutrient content
(Newman et al, 1997), soil chemical properties
(Lee et al, 2001; Ardahanlioglu et al, 2003), nitrate
leaching (Ersahin, 2001 ) and distribution of soil physical
characteristics 1 soils (Sepaskhah et al., 2005) could be
analyzed with geostatistical methods to predict spatial
variation in soil properties.

Although these
information for site-specific recommendations, such

studies provided very precise
information for soils of Arsamjan plain with semiarid
condition is lacking and thus, need to be assessed.
Moreover, it is important to consider the fact that spatial
variability of soils depends on the specific soil studied.
The Arsamjan plain 15 one of the most important
agricultural  production areas of Fars province
(Southern Tran). Crop productivity is threatened in this
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region due to the lack of an outlet for drainage water, high
groundwater level and low quality of water using as
urigation water. Therefore, the assessment of saliuty,
sodicity and other important soil characteristics in  this
plain is needed to establish data of salt and sodic
affected soils and to evaluate their spatial variability for
site-specific management. The aims of this study were to
(1) examine spatial varniability m Exchangeable Sodium
Percentage (ESP), Electrical Conductivity (ECe), soil pH,
particle size distribution, Cation Exchange Capacity (CEC)
and (2) assess spatial distribution patterns of saline and
sodic soils in Arsanjan plam.

MATERIALS AND METHODS

Description of the study area: This study was conducted
within Arsanjan plain that was located in Fras province,
southern Iran (29° 43' to 29° 47' N latitude and 53° 09 to
53° 16' E longitude). The mean annual precipitatiorn,
evaporation and temperature are 323.8 mm, 989.1 mm and
18.2°C, respectively. Soil moisture and temperature regime
are xeric and thermic, respectively. The prominent soils of
Arsanjan plain are somewhat affected with salinity and/or
sodicity because of high evaporation. Extensive areas of
the Arsanjan plain have become and continue to be
degraded by salinization due to the use of low-quality
urigation water with mappropriate imigation methods. As
a result, agricultural production of the Arsanjan plain has
declined significantly in the last two decades.

Soil sampling and laboratory analysis: Soil samples in
September 2006, in the 85 sampling site (10187 ha) were
collected from 0-30, 30-60 and 60-90 cm depths,
georefrenced using GPS receiver (accuracy of +5 m),
analyzed for ESP, ECe, pH, CEC and particle size
distribution. ESP was determined using the ammomum
acetate (NH,OAc) method (Thomas, 1982); soil pH was
measured with a glass electrode pH meter (McLean,
1982). Soluble salts were calculated by measurement of
ECe in the soil extraction by the use of a conductivity
meter (Rhoades, 1982). CEC was determined using the
sodium saturation method (Rhoades, 1986). Particle size
distribution was determined by hydrometer method
(Gee and Bauder, 1986).

Statistical analysis and interpolation: The data analyses
were conducted 1n three stages: (a) normality tests were
applied (Kolmogrov-Smirnov), (b) distribution was
analyzed by classical statistics (mean, maximum, minimu,
standard deviation, of
variations); (c) geostatistical parameters were calculated
for result of corresponding

skewness and coefficient

each variable as a
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semivariogram analysis. Skewness is the most common
form of departure from normality. Tf a variable has positive
skewness, the confidence limits on the variogram are
wider than they would otherwise be and consequently,

the wvariances are less reliable. A logarithmic
transformation is considered where the coefficient of
skewness 13 greater than 1 and a square-root

transformation applied if it 1s between 0.5 and 1 (Webster
and Oliver, 2001). Exploratory statistical analyses were
performed by SPSS (1997) software. A semivariogram was
calculated for each soil property as follows (Isaaks and
Srivastava, 1989; Journel and Huyjbregts, 1978):

N(t)

1

vihy = ™ 21 [zix; + h) —z(x}]
Where:
v(h) = Experimental semivariogram value at
distance interval h
N(h) = Number of sample value pairs within the

distance interval h
Sample values at two points separated
by the distance interval h

z(x,), zZ(x;+h) =

All pairs of points separated by distance h (lag h)
were used to calculate the experimental semivariogram.
Semivariograms were calculated both 1sotropically and
anisotropically. Spherical, exponential or pure nugget
models were fitted to the empirical semivariograms. Model
selection for semivariograms was done on the basis of
regression (1), visual fitting and Residual Sum of Squares
(RSS). To define different classes of spatial dependence
for the soil variables, the ratio between the nugget
semivariance and the total semivariance or sill was
used (Cambardella et al. 1994). Geostatistical software
(G53+5.1, 2001; Gamma Design Software) was used to
conduct semivariogram and special structure analysis for
soil variables.

RESULTS AND DISCUSSION

A histogram, box plot and normal plot were
constructed for all soil properties, revealing three and two
outliers for pH at 0-30 and 60-90 cm  depths,
respectively. Their removal significantly reduced the
coefficient of skewness (lower than 0.4) avoiding the need
for data transformation. Two (21.2, 19.2) and one (0.2)
potential outliers with ECe at depth of 0-30 and 30-60 cm,
respectively, found from exploratory analysis for electrical
conductivity. The bulk of the data has an ECe of
approximately 5 dS m™', which dramatically affects the
normality of the distribution. However, these outliers data
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Fig 1: (& B) maps of estimated silt (%) and ECe (38 m™"1 in 0-30 em depth, respectively and(C, I) experimental and
modeled semivariograms for sitt (%) and ECe (8 m ™" in 030 om depthy, respectively

Table 1: Teeocripdiee ctatictics for sadied soil properties

Depths
Pararneters (i) MEan 5D CWE DBlin.,  DMae.  Shiewmess
pH 0-z0 78T 0327 34 750 240 146
30-60 827 031 3s  T7a3 Q30 034
a0-9 240 034 41 7Hl 40 175
ECe 0-30 652 425 652 280 2120 211
30-60 673 341 507 020 1250 125
a0-m 240 517 a6lS 220 1320 134
EZP 0-%0 1080 11.1% 1034 321 7017 381
I0-60 1413 1346 882 32T 553200 286
a0-w 1670 1421 851 253 5240 158
Clay 0-%0 4461 237% 532 1vA0 7320 017
30-60 4056 2668 658 1940 65320 045
a0-w 3282 M68 752 1840 Tla0 035
Sit 0-30 3889 1942 501 2040 4020 013
I0-60 3810 2027 532 1420 4210 006
a0-w 3736 1946 521 las0 5880 072
Sarud 0-30 1647 244 148 710 55100 202
30-60 2016 355 174 G800 4330 074
a0-w 2234 454 203 6l0 5170 095
CEC 0-30 2627 1187 452 1730 3460 021
I0-60 0 2312 751 325 15200 3050 034
G0-90 1731 52% 303 1070 3450 044

v Stanchrd devistion; ®: Coefficient of waristion
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ate of most interest to the analysis of sairdty and hence,
they atre kept in the dataset Futhermore, sitce the
coefficierts of skewness in some soil properties (ECe and
EZF at three depths and sand at 0-30 em) are greater than
1 (Table 1), the nataral logarithm is applied for a kriging
analysis to stabilize the wariance [Goovaerts, 1997
Applying ardinary kriging to logarithen ic transform ed data
is the essence of lognommal kriging Explanatory analysis
for CEC revealed two potertial outliers (346 and 31.2),
howrevwer, wisnalization showed that this value is located
ofithe periphery of the study area and theref'ore it will not
be included in moany lags It dso has reldiwvely large
values cortiguous to it. ©onsequently, the decision was
to include the data in the analysis Although the
coefficiert of skewnessfor CEC at 0-30 cm is located in
the range
appropriate, it is that outlving walue on the periphery that
is skewing the data, so the data were left inits origina

whetre a squareroot transformation is
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Table 2: Semivariogram models and models parameters for siudied soil properties

Depths (+) Spatial distribution Nugget Sill Range MNugget/
Parameters (cm) and model (Cp) (Ct+C) (m) Sill (%) r *RSS
pH 0-30 8. 8pheroid 0.11 1.2148 1811 9.00 0.81 0.00021
30-60 S. Exponential 0.22 1.4865 2081 14.80 0.72 0.00084
60-90 3. Exponential 0.76 4.1989 7342 18.10 0.77 0.00032
ECe 0-30 M. Spherical 0.51 1.1806 2121 43.20 0.81 0.00024
30-60 M. Spherical 0.73 2.2813 2321 32.00 0.72 0.00010
60-90 M. Spherical 1.30 4.3046 1680 30.20 0.74 0.00054
ESP 0-30 M. Spherical 7.80 12.704 3042 01.40 0.61 0.00080
30-60 S. Exponential 5.40 26.601 6368 2030 0.84 0.00210
60-90 3. Exponential 14.80 77.487 11631 19.10 0.73 0.00014
Clay 0-30 S. 8pherical 7.20 36.000 1611 20.00 0.69 0.00015
30-60 W. Spherical 49.30 03.449 17191 77.70 0.78 0.00440
60-90 W. Spherical 55.30 68.953 10352 80.20 0.70 0.00022
Silt 0-30 Pure nigget 73.30 73.300 - 100.00 0.31 0.02500
30-060 W. Exponential 60.35 62.800 - 96.10 0.35 0.00540
60-90 W. Exponential 53.18 54.600 - 97.40 0.44 0.00210
Sand 0-30 Pure nugget 58.10 58.100 - 100.00 0.55 0.00540
30-60 W. Spherical 65.43 70.200 - 93.20 0.47 0.00740
60-90 W. Spherical 61.02 63.500 - 96.10 0.35 0.00031
CEC 0-30 3. Exponential 21.40 89.167 11031 24.00 0.62 0.00091
30-60 W. Exponential 58.10 76.337 9012 76.11 0.77 0.00021
60-90 W. Exponential 60.40 83.417 0377 79.60 0.71 0.00124

(+): Spatial distribution (S-strong spatial dependence (<25%); M-Moderate spatial dependence (26-75%); W-weak spatial dependence (=75%); Pure Nugget-

no spatial correlation (100%6) and their spatial distribution model

*: Residual sum of squares (often the model with the lowest RSS chooses as optimal)

form. The exploratory analysis and descriptive statistics
of the other soil parameters at each depth suggested that
they were all normally distributed and therefore no
transformation was needed for geostatistical analysis.

The coefficient of variations (CV) of soil properties
except pH was fairly high, indicating that soil properties
were generally heterogeneous (Table 1). The highest CV
value was for ESP, while the CV values for pH was the
lowest in all the three depths. In general, the CV for other
soil characteristics, except ECe, decreased with soil depth.
However, the mean values of pH, ECe and ESP increased,
whereas the mean values of CEC decreased with soil
depth due to the fact that, clay content decreased with
soil depth. Application of poor quality water would result
i mcrease m pH, ECe and ESP. A highly significant
positive correlation was observed between soil salimty
and water content in Entisols, with high clay content and
low infiltration capacity (Mivamoto and Chacon, 2005).
Another reason for higher values of these soil properties
in the lower layers was due to the decrease in clay content
with depth (Table 1). Kachanoski et al. (1988) found that
ECe was affected by volumetric water content and
mcreased with mcreasing water content when clay
content was low,

Anisotropic semivariograms did not show any
differences m spatial dependence based on direction and
therefore 1sotropic semivariograms were chosen. The
geostatistical  analysis  indicated different  spatial
distribution models and spatial dependence levels for the
so1l parameters. Exponential, spherical and pure nugget
models were used to define soil properties (Table 2).

Nugget effect was higher for CEC, clay, silt, sand and ESP
compared to pH and ECe. This indicated that these soil
properties had spatial variability i small distances. The
nugget effect of ECe, pH, clay and ESP were generally
increased with depth. The large nugget semivariance and
the non-spatial dependence for silt and sand (Fig. 1A, B
for silt at 0-30 cm, slope of semivariogram was close to
zero, 1 00%, nugget semivariance/sill ratio) suggest that an
additional sampling of these variables at smaller lag
distances and m larger numbers 13 needed to detect
spatial dependence. However,
circumstances (which means in a commercial context) a
larger sampling density is usually not feasible. The recent

under no research

research showed that using geostatistical and remote
sensing approaches for mapping
characteristics could improve the prediction quality
(Lopez-Granados et al., 2005).

When the distribution of soil properties 1s strongly
or moderately spatially correlated (for example for EC
at 0-30 cm depth, indicated in Fig. 2C, D), the mean extent
of these patches is given by the range of the

soil  surface

semivariogram. A larger range indicates that observed
values of the soil vanable are influenced by other values
of this variable over greater distances than soil variables
which have smaller ranges (Samper-Calvete and Carrera-
Ramirez, 1996). Range value varied from 1168 m
{(Ece m the 30-60 cm depth) to 17191 m (clay at 60-90 cm
depth). Thus, clay had a range of more than 17000 m at
30-60 cm depth. This indicates that clay contents
influenced the neighboring values of clay over greater
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distances than other soil variable e.g., ECe, which had a
range of less than 1200 m at 0-30 cm depth.

Generally, range values of ECe and pH were smaller
than that of the other soil properties. Soil properties
exhibited both a consistent and non-consistent spatial
pattern regarding the sampling depth at three locations.
Some so1l properties such as ESP, clay and CEC following
a different spatial distribution at each depth, showed a
moderate spatial dependence in 0-30 cm depth and a
strong spatial dependence in other tow depths (Table 2).
Similarity, ECe and pH showed a similar trend at three
sampling depths and followed the same spatial pattern.
Cambardella and Kallen (1999) reported a similar
spatial distribution
according to the sampling depths eg., NH,-N showed
three spatial patterns: Moderate spatial dependence at
0-10 cm depth, no spatial dependence at 10-20 cm depth
and strong spatial dependence 20-30 cm depth, while pH
exhibited a strong spatial dependence at all depths.

The low nugget variance/total variance ratio and
small range values for some soil properties exhibited
patchy distribution pattern. The patchy distribution can
be related to the groundwater level and topography. This
study emphasizes that even though the previous
agricultural management was similar, the spatial
distribution and spatial dependence level of soil
properties can be different. These results confirm the
umportance of collecting mformation in every agricultural
region to select the proper a site specific system. Long-
term field management histories should be knowrn, since
even the same farmmg practices, clearly effectively
affects both spatial distribution and the level of spatial
dependence. Strong spatial dependency of soil variables
may be controlled by intrinsic wvarations in soil
characteristics (Cambardella et of., 1994). The results
presented here suggested that extrinsic factors such as
ground water level, drainage and irrigation systems would
be 1mportant factors affecting strong spatial
dependency of soil properties. Soil salimty (ECe) and
sodicity (ESP) had generally high values in the northeast
side of the study area. Values for ESP and ECe ranged
between high and very high in the Northeast side,
suggesting that proper soil management and drainage
techniques are needed to decrease soil salinity and
sodicity in these regions. Jackknifing analysis was used
to test if the chosen semivariogram models accurately
predicted soil properties at unsampled locations. The
results indicated that the mean reduced error was near
zero and the squared differences between the jackknifed

and non-consistent

consistent

n

and the original values were lowest for the fitted models.
This means that the kriging estumates are accurate and the

242

spatial relationships derived from the studied part of the
research site may be applicable to other areas with similar
characteristics 1 the Arsamjan plain.

CONCLUSIONS

In general, most of the studied soil properties
indicated strong spatial dependency in 0-30 cm depth,
while they exhibited moderate spatial dependency in the
30-60 and 60-90 cm depths. Geostatistical range values for
properties, greater than 1200 m,
indicating that soil-sampling distance for further sampling
designs should be taken as 1200 m. The nugget effect of
ECe, CEC, pH, clay and ESP were generally higher in
0-30 cm than in 30-60 and 60-90 cm depths. The majority
of so1l properties showed a strong spatial dependency at
small distances 1n the topsoils. This could be attributed to
different in the fluctuation and drainage of the
groundwater in the Arsanjan plain and other places in arid

most  soil were

and semiarid areas with similar conditions. The results
emphasized that irrigation was created salimity and
sodicity problem in the study area and probably low
quality of irrigation water, extreme water use and
wnsufficient drainage are mainly responsible for such
condition. Besides, this study suggested that distribution
maps of these soil properties may be used to develop
indicator maps, which can separate areas within the
Arsanjan plain, according to thewr management and
reclamation requirements. Recently, the amount of
irrigation water was decreased in order to lower the
adverse effects of irrigation water on soil properties. In
the study area, furrow irrigation is in progress. Sprinkle or
subswrface irrigation methods is recommended instead of
furrow 1rrigation to decrease the amount of irigation water
used. Also, local areas with high salinity and sodicity or
having salimity and sodicity risk should be continmuously
depth table
groundwater salinity to avoid upward transport of soluble
salts with evaporation during irrigation season.

momtored for of groundwater and

REFERENCES

Ardahanlioglu, 1., T. Oztas, 3. Evren, T. Yilmaz and
Z.N. Yildirim, 2003. Spatial variability of exchangeable
sodium, electrical conductivity, soil pH and boron
content in salt and sodium-affected areas of the Igdir
plain (Turkey). J. Arid. Environ., 54: 495-503.

Brejda, 1.1, T.B. Moorman, I.I.. Smith, D.I.. Karlen,
D.L. Allan and T.H. Dac, 2000. Distribution and
variability of surface soil properties at a regional
scale. Scil Sci. Soc. Am. 1., 64: 974-982.



Pak. J. Biol. Sci., 11 (2): 238-243, 2008

Cambardella, C.A., TB. Moorman, JM. Novak,
TB. Parkin, DL. Karlenn RF. Turco and
A E. Konopka, 1994. Field-scale variability of soil
properties in central lowa soils. Soil Sci. Soc. Am. J.,
58:1501-1511.

Cambardella, C.A. and DJIL. Kalen, 1999. Spatial
analysis of soil fertility parameters. Precision
Apgric., 1: 5-14.

Cemek, B., M. Guler, K. Kilic, Y. Demur and H. Arslan,
2007. Assessment of spatial variability in some soil
properties as related to soil salimty and alkalinity in
Bafra plain m northern Twkey. Environ Monit.
Assess., 124: 223-234.

Ersahin, S., 2001. Spatial variability of some physical and
chemical soil properties i an alluvial field. Applied
Eng. Agric., 13: 34-41.

Gee, G.W. and I W. Bauder, 1986. Particle Size Analysis.
Tn: Methods of Seil Analysis, Part 1, Klute, A. (Ed.).
2nd Edn. ASA-SSSA, Madison, WL

Goovaerts, P., 1997. Geostatistics for Natural Resources
Evaluation. Oxford University Press, New York,
pp: 483.

G3+5.1, 2001. Gamma Design Software. Plainwell, ML,
USA.

Isaaks, EH. and R.M. Srivastava, 1989. An Introduction
to Applied Geostatistics. Oxford University Press,
pp: 561.

Jouwnel, A.G. and C.J. Hugybregts, 1978 Miung
Geostatistics. Academic Press, London, pp: 600.
Kachanoski, R.G., E.G. Gregorich and I.T. Van Wesenbeck,
1988. Estimating spatial variations of soil water
conterit using non-contaiming  electromagnetic

inductive methods. Can. T. Soil Sci., 68: 715-722.

Kravchenko, A. and D.G. Bullock, 1999. A comparative
study of interpolation methods for mapping soil
properties. Agron. J., 91: 393-400.

Lee, BD., R.C. Graham, T.E. Laurent, C. Amrhein and
RM. Creasy, 2001. Spatial distributions of soil
chemical conditions 1n a serpentimitic wetland and
surrounding  landscape.  Soil  Sei. Am.
J.,65:1183-1196.

Lopez-Granados, F., M. Jurado-Exp’osito, I M. Pena-
Barragan and L. Garcia-Torres 2005  Using
geostatistical and remote sensing approaches for
mapping soil properties. Eur. J. Agron., 23: 279-289.

Soc.

243

Mclean, E.O., 1982. Soil pH and lime requirement.
Methods of Soil Analysis. Part II. Chemical and
Microbiological Properties, ASA-SSSA, Madison,
pp: 199-224.

Miyamoto, 3. and A. Chacon, 2005. Soil salinity of urban
turf areas irrigated with saline water: 1. Soil factors.
Landscape Urban Planming, 71: 233-241.

Newman, 3., KR. Reddy, WF. DeBusk, Y. Wang,
G. Shih and M.M. Fisher, 1997. Spatial distribution of
soil nutrients m a northern Everglades marsh:
Water conservation area. Soil Sci. Soc. Am. T,
61:1275-1283.

Rhoeades, ID., 1982. Scluble Salts. In: Methods of Soil

Analysis. Part II. Chemical and microbiological

properties. Madison, ASA-SSSA, WI, USA.,
pp: 167-179.
Rhoades, 1.D., 1986. Cation Exchange Capacity. I

Francis, C.A., et al. (Eds.). Methods of Soil Analysis.
Part 2. Agron Monogr. 9. Madison, ASA-SSSA, W1,
USA., pp: 149-158.

Samper-Calvete, F.J. and T. Carrera-Ramirez, 1996.
Geostadistica. la  Iudrologia
subterranea. de Métodos
Numéricos en Ingenieria, Universitat Politécnica de
Catalunya, Espafia, pp: 484.

Sepaskhah, A.R., SH. Ahmadi and A.R. Nikbakht
Shahbazi, 2005. Geostatistical analysis of sorptivity
for a soil under tilled and no-tilled conditions. Soil
Tillage Res., 83: 237-245.

SPSS, 1997. SYSTAT 6.0 for Windows Statistics and
Graphics. SPSS, Inc. Chicago, IL.

Thomas, G.W., 1982. Exchangeable Cations. Methods of
Soil Analysis. Part II. Chemical and Microbiological
Properties, ASA-S5SA, Madison, pp: 159-165.

Webster, R. and M. Oliver, 2001. Local Estimation or
Prediction: Kriging, Geostatistics for Envirornmental

John Wiley and Sons, England,

Aplicaciones
Centro Internacional

a

Scientists.
pp:149-191.



	PJBS.pdf
	Page 1


