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Abstract
Tomato is the world’s most consumed vegetable crop after potato and it is source of vitamins, minerals, fiber, lycopene, $-carotene and
income. Despite its significant importance tomato can heavily be attacked by different pathogens including Ralstonia solanacearum that
incites bacteria wilt disease. The disease is very devastating causing a considerable yield loss worldwide. The pathogen can survive in plant
debris, infected plants and host weeds and spread from one field to another by irrigation or flood water, soil, farm equipment and workers
and weeds which usually grow along waterways and it is difficult to manage due to complication in biology, nature of infestation and
wide host range. In areas like the Sub-Saharan Africa where there exists a wide diversity of plant species, the pathogen becomes even
more difficult to manage. It is on this basis that this review article, clearly discusses challenges for bacterial wilt disease identification and
management in tomato farming systems with respect to the diagnosis methods used, pathogen genetic diversity and host range and
pathogen survival mechanisms under different environment. The information will empower the responsible personnel involved in tomato
production chain to have clear information about the pathogen and management options available against the disease in Sub-Saharan
Africa. 
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INTRODUCTION

Tomato (Lycopersicon  esculentum  L.) is the second most
important vegetable crop after potato in the world1. It is one
of the most consumed vegetable as a source of vitamins,
minerals and fiber worldwide2,3. Tomato contains lycopene
and $-carotene that have anti-cancer and antioxidant
properties and hence considered as healthy2. Tomato has
become the world agenda in the international horticultural
forums due to its nutritive and economic importance4. In
Tanzania, tomato is the first most important vegetable crop
grown for consumption and income5,6. Tomato provides
smallholder farmers with much higher income and more jobs
per hectare than staple crops2.

The  global  tomato  production   is   estimated   to   be
161 793 834 t/year7. Production of tomato in Tanzania is
estimated  to  be  255  000  t/year  with   average   yield   of
17.5  t  haG1   compared  with  the  global  average  yield  of
33.6 t haG1 1,7. Factors for low production of tomato include low
soil fertility, drought and poor quality inputs including seeds,
unreliable  markets and pests8, 9.  Of  these,  diseases  have
been cited to  be the most limiting factor of tomato
production in Sub Saharan Africa5,10,11. Of the diseases,
bacterial wilt caused by Ralstonia solanacearum is classified as
one of the world's most important phytopathogenic bacteria
due to its lethality, persistence, wide host range and broad
geographic distribution12,13. The pathogen is characterized to
has a very large group  of  strains  varying  in their
geographical origin, host range and pathogenic behavior
worldwide14. It is quarantined organism15 ranked second after
Pseudomonas syringaepathovars based on its economic
importance worldwide16. The R. solanacearum is thought to be
the most destructive plant pathogenic bacterium causing
tomato yield losses ranging from 10-100% worldwide17. Yield
losses depend on prevailing strain, cropping system, soil,
climate and cultivar18. 

Identification of the pathogen is believed to be the
strongest foundation towards developing its management
strategies18,19,20. Techniques for the diagnosis of bacterial wilt
disease of tomato include observation of symptoms and
bacterial streaming, plating on a semi-selective medium,
immunodiagnostic assay by species-specific antibodies and
polymerase chain reaction (PCR)18,21-23. However, use of such
techniques is challenged by factors such as disease symptoms
complex23 which complicate choice of appropriate
identification methods19.

Different management approaches of bacterial wilt
disease in tomato consists use of chemicals, biological agents,
cultural and physical  practices23. Efficacy of  such  methods are

challenged by the pathogen genetic diversity of and existence
of wide host range for the pathogen24,25. Being a complex
plant pathogen, R. solanacearum is able to infect crops as a
soil, water and/or seed borne pathogen12,26,27. It is an
endophyte pathogen which can form genetically different
strains and survive in extremely diverse environment travelling
along waterways13,28. The bacterium is capable of conquering
various host plants which increase its survival and persistence
in the environment13,11,26. This study discusses identification
and management challenges of bacterial wilt disease of
tomato in relation to the genetic diversity, host range, plant
infection machinery and disease diagnosis methods, thus
highlighting the future research study so that sustainable
disease management can be developed. 

IDENTIFICATION CHALLENGES OF BACTERIAL WILT
DISEASE IN TOMATO FARMING SYSTEMS

Identification challenges of bacterial wilt disease of tomato
based on symptoms: It is often challenging to differentiate
bacterial wilt disease symptoms from those caused by other
disease causing factors29,30. Plant wilting can be a result of
vascular bundles failing to function, high salinity, saturated soil
or infection by bacteria, fungi and/or nematodes31. Secondary
infections by other  pathogens  may  interfere  with  those of
R. solanacearum27. There are situations that some infected
plants by the same bacterial wilt disease-causing pathogens
do not show up symptoms30,32. This consequently, causes
increased spread of bacterial wilt disease in the farming
system. Therefore, studies should be conducted to
complement symptoms with other plant disease diagnosis
methods. 

Identification challenges by using bacterial streaming
technique: Bacterial  streaming  is  an  initial  step  to  detect
R. solanacearum in a plant tissue showing wilting symptoms
under condition of adequate soil moisture in which a cut plant
tissue exhibits bacterial slime by suspending vascular vessels
in clean water18. The technique is simple and convenient to be
performed in the field or laboratory33,34. However, it gives a
generalized indication for the infection caused by bacteria but
cannot be informative on the bacterial species or strain27. In
addition, visibility of bacterial streaming by naked eye
depends on bacterial population in the xylem which should
not be low18. Research is needed to advance this technique in
such a way that bacterial species can be detected so long as
even at low population. 
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Identification challenges by using species-specific
antibodies:  This  is a commercially developed diagnosis kit for
the detection of R. solanacearum in plant tissue and culture in
the field or laboratory. Test kit which usually contains
immunostrips, sample extraction bags and user guide requires
to be stored at lower temperatures of 2-8EC and should be
tightly stored in the desiccated container at all times. Prior to
use, immonostrips and extraction buffer need to be warmed
at temperatures of 18-30EC to make test components ready
foruse35.

In performing the test, a plant tissue of 0.15 g is taken
from a wilting plant and put into an extraction buffer of 3 mL
in    a   sample   extraction   bag.   Presence   or   absence    of
R.  solanacearum  can then be detected from the strips as a
positive or negative result. The test is sensitive with bacterial
population from 105 CFU mLG1. The whole process usually
takes about 5-30 min depending on pathogen titer in the
sample. The technique could be one of the quicker and
cheaper methods of detecting bacterial wilt disease however
its application faces certain challenges in developing
countries.

First, immunostrips are not readily available at the
community level and hence expensive, this has limited their
application and adoption as majority of farmers cannot
afford19. Secondly, immunostrips is incapable of detecting
bacterial population which is below 105 CFU mLG1 and can
only   detect   R.   solanacearum   to  the  species  level.  Since
R. solanacearum has a quarantine status, presence of
bacterium even at low population has to be detected for
prevention and management measures15. Third, the
recommended storage temperature range of 2-8EC may not
be achievable in tropical and subtropical countries where
average temperature is high. Therefore, the immunostrips
technology requires harmonization for the farming
community in the Sub-Saharan Africa to use effectively and
efficiently.

Identification  challenges  by  using  carbon source and
semi-selective medium: The carbon source utilization
method uses disaccharides and hexose alcohols for the
determination of biovars of R. solanacearum35. Disaccharides
used are maltose, cellobiose and lactose while hexose alcohols
are sorbitol, dulcitol and  Mannitol18.  Biovars  determination
is imperative in development of management strategies18,32.
The procedure is mainly performed by experts in specialized
laboratories18,19. The semi-selective medium method
constitutes isolation of R.  solanacearum  from plant tissues on
a specific diagnostic media18. A major challenge of this

technique is that it takes time (at least 3-6 days) to carry out
and obtain diagnosis results. This may look to be long period
to implement the required management measure as by then
the plant will have wilted resulting into huge yield
reduction14,18. Developing biosensors could be a way forward
for  timely  implementation  of  management  measures in
Sub-Saharan Africa where techniques such as
Immunodiagnostic assays still faces some challenges. 

Identification challenges by using polymerase chain
reaction (PCR): With PCR technique plant, soil or water
samples suspected to contain R. solanacearum is subjected to
DNA testing for identification purposes18. Various methods can
be used for  the  DNA  extraction  using  specific  primers  for
R.  solanacearum36,37. The technique is however considered as
one of the most complicated and costly pathogen detection
method38 as it depends on bacterium pure culture isolation,
DNA extraction and testing. For instance, the procedure of
obtaining a pure bacterium culture for DNA extraction,
sequencing and sequence alignment is a process which is
resources demanding. This limit technological application as
well as adaption to benefit from its use in developing
countries. Use of isothermal amplification which is more
affordable and appropriate than DNA-based methods could
be exploited in Sub-Saharan Africa. 

MANAGEMENT CHALLENGES OF BACTERIAL WILT DISEASE
IN TOMATO FARMING SYSTEMS

Several management methods of bacterial wilt disease
have been reported as shown in Table 1. Based on the agent
used and mechanism of action in disease management such
methods are grouped as chemical, biological, cultural and
physical methods39. 

Management challenges due to the pathogen genetic
diversity: Despite the availability of the several disease
methods to combat bacterial wilt, this disease has not been
successfully managed in Sub-Saharan Africa region. Breeding
resistant cultivars against R. solanacearum for example has
been popularly promoted as one of the best strategy to
manage bacterial wilt disease12,26. However, success of
breeding resistant cultivar against bacterial wilt disease is
hampered by the genetic diversity of R. solanacearum23,26,113,36. 

One of the factors for the failure of  management
methods   could   be   attributed   to   the  genetic diversity of
R.  solanacearum.  There  exists  a  wide   genetic   diversity  of
R.   solanacearum   worldwide13,24   and   several   authors   have
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described the pathogen using different criteria. For instance114,
grouped species of R. Solanacearum in to five races based on
geographical location while24,115 described the pathogen
biovars based on their ability to utilize and/or oxidize hexose
alcohols and disaccharides. The R. solanacearum has
extremely wide host range  infecting  more than 200 species
from over 50 plant families12,116. More information on
distribution and host of the R. solanacearum races is as shown
in Table 2.

Classifying R. solanacearum based on race or host is
complex and they often overlap due to a wide range of strains,
environments and host range, therefore, isolate biovars have
been used to determine pathogen phylotype18,24. Phylotyping
which is based on DNA sequence  analysis  divides  strains of
R. solanacearum into four phylotypes according to their
geographical origin namely phylotype I, II, III and IV
corresponds to strains from Asia, Americas, Africa and
Indonesia,  respectively31.  Recent research suggest to  group
R.   solanacearum   species   complex    into    three    species:
R. solanacearum (phylotype II), R. pseudosolanacearum
(phylotype I and II), and R.  syzygii  (phylotype IV)112.

It  is  thus   evidence   that   the   environment   in   which
R. solanacearum is found can determine prevailing race and
the biovar and its virulence. Based on virulence, race 1 biovar
1 (R1B1) is considered as the most virulent but relatively
uncommon as compared to race 1, race 2 biovar 1 and race 3,
biovar 2 which are the most common and important strains in
Africa15,117. Race 2 strains have a more limited host range than
race 1 and mostly restricted to tropical environments while
Race 3 biovar 2 is  common  throughout  the  world117.  Since
R.  solanacearum   has  ability  to change genetically and form
new strains over a time, this may challenge management
approach(es).  Information on  emergence  of  new strains of
R.  solanacearum  in Sub-Saharan Africa is limited and thus
calls for a research to generate and quantify the status of the
prevailing pathogen stains. 

Management challenges due to persistence of wide host
range: R. solanacearum infect different host plants that are
common in tomato farming systems and the host plants
overlap as well24,33. Managing pathogen which is host of
several and commonly cultivated plant species is challenging
in the farming system. The use of crop  rotation  for  example
is challenged by the long period that  R.   solacearum, is
capable  to  strive  in  the soil27,118. Effective crop  rotation  for
R. solanacearum in infected land requires abandoning of land
to grow host plants for 2-5 years119. This is in practice infeasible
in the majority of small holder farmers in Sub-Saharan Africa
due   to   land   scarcity   issues.   Crop   rotation   can   be  more

challenging to growers who have ventured in protected
vegetable cropping where tomato are grown in greenhouse
structures and where investment is intense28. Once the
greenhouse soil is infected by R. solanacearum, eradication is
difficult and a grower suffers economic losses23. The
mechanism used by R. solanacearum to concur wide range of
host plant species is not well known. Study should be
conducted   to   understand   factors   favoring   capability  of
R.  solanacearum  to infect wide range of host plant species for
better disease management.

Management  challenges  due   to   endophytic   nature   of
R. solanacearum: The R. solanacearum enters plants via
wounds, root tips or cracks at the sites of lateral root
emergence13,18,120.  Unlike  many   phytopathogenic bacteria,
R. solanacearum potentially requires only one entry site to
establish a systemic infection that results in bacterial wilt
disease121. The bacterium subsequently colonizes the root
cortex, invades the xylem vessels and reaches the stem and
leaves through the vascular system27. It can then rapidly
multiply in the xylem causing rapid irreversible plant wilting
and death18,122. Within xylem for example, high densities of the
pathogen increase expression of pathogenicity genes such as
the hrp genes which control induction of disease
development and the hypersensitive reaction48. The
endophitic nature of R. solanacearum makes its management
challenging. Chemical control for instance, apart from being
potentially harmful to the environment, has been reported to
be inefficient123. This can be explained by the fact that the
bacterium is sheltered in xylem vessels of infected plants.
Ways should be explored by targeting management strategies
which can be applied via the xylem system.

Management challenges due to pathogen ability to survive
without host: After destroying the host, R. solanacearum can
survive in reservoir plants, soil or water environment27.
Association of R. solanacearum with either reservoir plants or
plant debris has been frequently suggested to promote
survival of the pathogen in soil and water119. The pathogen has
ability to persist in deadly environments, for example it can
survive for up to one year in agricultural soil even after
treatment with an herbicide up to two years after crop
removal and withstand a four-year intercropping period27,124.
Moderate changes in moisture do not negatively affect the
pathogen population121. The bacterium can multiply in pure
water in the absence of nutrients for up to four years125. The
cells of R. solanacearum are capable of forming various forms
as survival mechanisms in unfavorable environments such as
in soil or water and the most frequently reported forms are as
discussed in the following section. 
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Table 2: Race, biovars, distribution and host plants of R.  solanacearum
Common reported host plants
------------------------------------------------------------------------------

Race Biovar Distribution Common name Scientific name References
1 1,3,4 Asia, Australia Tomato Solanum  lycopersicum, EPPO15 and Elphinstone21

and America Groundnut Archishy  pogaea,
Pepper Capsicum  spp.,
Coleus Plectranthus scutellarioides
Banana Musa  spp.,
Tobacco Nicotiana  tabacum,
Roses Rosa  spp.,
Eggplant Solanum  melongena,
Potato Solanum  tuberosum,
Sunflower Helianthus  annuus 
Anthrium Anthurium  spp.,
Dahlia Dahlia  spp., 
Heliconia Heliconia  spp.,
Hibiscus Hibiscus  spp., 
Lesianthus Lesianthus  spp.,
Lilium Lilium  spp.,
Pothos Pothos  spp.,
Strelitzia Strelitzia  spp.,
Verbena Verbena  spp., 
Zinnia Zinnia  spp.;
Marigold Tagetes  spp.
Eucalyptus Eucalyptus  spp.,
Apple Maluspumila
Neem Azadirachta  indica
Cowpea Vigna  unguiculata
Cucurbits Curcurbita  spp.
Hyacinth beans Lablab  purpureus
Jute mallow Corchorus  olitorius
Moringa Moringa  oleifera
Mulberry Morus  spp.
Nutmeg Myristica  fragrans
Patchoul, Pogostemon  cablin
Sesame Sesamum  indicum
Strawberry Fragaria  ananassa
Water spinach Ipomoea  aquatic

2 1 Caribbean, Brazil Taro Colocasia  esculenta, EPPO15, Elphinstone21 and 
and Philippines Pumpkin Cucurbita  maxima, Dasgupta et al.112

Goosegrass Eleusine  indica,
Cocoa Gliricidia  sepium,
Banana Musa  spp.,
Guava Psidium  guajava,
Heliconia Heliconia  spp.

3 2 Worldwide except US Tomato Solanum  lycopersicum, EPPO15, Elphinstone21 and 
and Canada Pepper Capsicum  spp., Alvarez et al.27

Garden cosmos Cosmos  bipinnatus,
Tree tomato Cyphomandra  betacea,
Jimson weed Datura  stramonium,
Ground cherry, Purslane Pysalis  spp.,
Bittersweet nightshade Portulaca  gleracea,
Eggplant Solanum  dulcamara,
Black nightshade, Potato Solanum  melongena,
Stinging nettle Solanum  nigrum,

Solanum  tuberosum,
Urtica  dioica.

4 3,4 Asia Ginger Zingiber  officinales, Elphinstone21

Mioga Zingibe  rmioga,
Patumma Curcuma  alismatifolia.

5 5 China Mulberry Morus  spp. Elphinstone21
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Viable but non culturable (VBNC) form: R. solanacearum in
soil can change and became VBNC within a month after
exposure to low temperature of 4EC126 with cold-stressed cells
progressively losing wilting capacity27,125. The VBNC state has
also been reported to occur in infected plant where
proportion of cells becoming VBNC increase after the plant’s
extensive necrosis126.

Starvation-survival response: This is a physiological survival
state  in  energy-deficient  condition,  in  which   bacterial  cells
starve to maintain a non-growing but culturable
condition27,127. Starved R. solanacearum cells remain
pathogenic in the water microcosms over four years119.

Phenotypic conversion (PC) type: This is a form that describes
a morphological change of the R. solanacearum colonies from
fluidal to afluidal form Popoola et al.128. PC-type which occurs
in most R. solanacearum strains can be easily observed by
prolonged culture on agar plates and when the bacterium is
grown in a non-aerated liquid medium with glucose and
organic source of nitrogen129. PC-type variants have selective
advantage over the non PC-type. For example PC-types have
higher motility for aerotaxis in oxidative stress environment27.

Biofilms forms: Some cells of R. solanacearum  form biofilms
on host xylem vessel walls to protect them from host defenses.
Biofilms also filter nutrients from the flow of xylem fluid37.
Different strains of R. solanacearum form biofilms on polyvinyl
chloride (PVC) wells at the liquid air interface and on the
surface of tomato seedlings130. Aerotaxis deficient mutants
overproduce biofilms on abiotic surfaces which lead cells to
avoid toxic oxygen levels at the liquid-air interface by forming
protective thicker biofilms to facilitate survival27,37.

The survival strategies of R. solanacearum to live and cope
with unsuitable conditions such as starvation response, being
viable but non-culturable, physiological and morphological
changes and aggregation may raise new concerns about the
epidemiology of bacterial wilt disease in tomato farming
systems. Although these infecting populations are not as high
as those from wilted plants, the continuous flow would
contribute to persistence of the pathogen in the environment.
Knowledge on the ability of R. solanacearum to form different
forms in different environmental conditions may have some
positive implication towards development of its management
strategies in farming system. When environmental condition
is unsuitable (soil temperature for example), R. solanacearum
become avirulent27, further research is required to investigate
the potential of this knowledge in R. solanacearum
management. 

Management challenges due to pathogen ability to travel
along waterways: The R. solanacearum can enter the
surrounding soil, water or plants and be disseminated to
uninfected environment through the moving water131. Plants
which grow along waterways are mostly reported to facilitate
R. solanacearum movement in waterways. The common
examples include bittersweet nightshade, black nightshade
and stinging nettle132.  Roots  and  stems  of  bittersweed 
night shade for example can shelter R. solanacearum cells and
continuously release them into the water system21. The use of
contaminated water for field irrigation has been associated to
most outbreaks of bacterial wilt disease119,124,125. Irrigation
water could be treated prior to crop irrigation, but there still
some challenges associated with this approach including
exposure of the community to the health risks of exposure to
chemicals, costly and contamination of water system. Use of
management methods which are environmentally friendly like
the use of plant extract could be the best approach to combat
bacterial wilt disease in the farming system132. Because the
pathogen stains vary with geographical location, there is a
need to investigate effect of various plant species in the
management of bacterial wilt disease. 

CONCLUSION

This  review  article  has  discussed  the   challenges  for
the identification and management of  bacterial wilt disease
in tomato farming systems in Sub-Saharan Africa. It has
exposed the reality that the pathogen is indeed challenging.
Due to complexities in the identification and management
there is urgent need to find ways for simple and quick
identification methods. Use of biosensors which can detect
low bacterial population densities as well as determining
responsible strains and characterizing with molecular
methods could a way forward. There is need also to explore
sustainable pathogen management options including use of
botanical plants.
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