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Abstract
Cardiovascular disease accounts for one-third of all deaths, with ischemic heart disease as the main cause of death. Under pathological
conditions, ischemia-reperfusion injury (IRI) often occurs in tissues. Ischemic injury is mainly caused by anaerobic cell death and
reperfusion which results in a wide range of inflammatory responses. These responses are able to increase tissue damage and even
damage to the whole body. IRI can also aggravate the original cardiovascular disease during the treatment of cardiovascular disease.
Therefore, it is particularly important to understand the mechanism of myocardial ischemia-reperfusion injury (MIRI) for clinical treatment
and application. At the same time, it is necessary to find a safe, reliable and feasible method for treating MIRI to reduce the incidence of
complications and mortality as well as improve the prognosis and quality of life of patients. As a selective antioxidant, hydrogen can
neutralize excessive free radicals, has certain anti-apoptotic and anti-inflammatory effects and it has gradually become a focus and hotspot
of preclinical and clinical research. Hydrogen has been shown to have a certain therapeutic effect on MIRI, which can provide a new
therapeutic direction for the clinical treatment of myocardial ischemia-reperfusion injury. In this review, the protective mechanism and
clinical application of hydrogen in myocardial ischemia-reperfusion injury is discussed.

Key words: Myocardial ischemia-reperfusion injury, cardiovascular disease, inflammation, hydrogen, therapeutic effect, clinical treatment, clinical
application

Citation:  Liangtong Li, Xiangzi Li, Zhe Zhang, Li Liu, Yujuan Zhou and Fulin Liu, 2020. Protective mechanism and clinical application of hydrogen in
myocardial ischemia-reperfusion injury. Pak. J. Biol. Sci., 23: 103-112.

Corresponding Author:  Yujuan Zhou, Medical College, Hebei University, 071000 Baoding, China
Fulin Liu, Department of Cardiac Surgery, Affiliated Hospital of Hebei University, 071000 Baoding, China

Copyright:  © 2020 Liangtong Li et al.  This is an open access article distributed under the terms of the creative commons attribution License, which permits
unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. 

Competing Interest:  The authors have declared that no competing interest exists.

Data Availability:  All relevant data are within the paper and its supporting information files.

http://crossmark.crossref.org/dialog/?doi=10.3923/pjbs.2020.103.112&domain=pdf&date_stamp=2019-12-26


Pak. J. Biol. Sci., 23 (2): 103-112, 2020

INTRODUCTION

The latest study shows that MIRI caused by acute
myocardial  infarction  in  coronary  heart  disease  will cause
10 of patients to die and the incidence of cardiac dysfunction
exceeds 25%1. Ischemia-reperfusion injury (IRI) refers to tissue
damage caused by inadequate oxygen supply in experimental
and clinical  settings,  accompanied  by a series of extensive
and complex inflammatory reactions caused by successful
reperfusion, which may exacerbate the local tissue damage
and damage the function of long-distance organs2-4. This
outcome is also the feature of IRI. The theoretical basis of IRI is
based on 2 hypotheses. First, a large number of cells are
irreversibly destroyed during tissue ischemia and will
eventually perish, while other cells will remain in a clearly
viable state. Second,  although  many  cells  are  at risk of
death, a large number of putative cells are regarded as
potentially viable2,5. Therefore, there are 2 situations in which
IRI may occur: acute myocardial infarction and non-acute
revascularization. Acute myocardial infarction is myocardial
necrosis caused by acute, persistent ischemia and hypoxia in
the coronary arteries6. Non-acute revascularization includes
percutaneous  coronary  intervention  (PCI) and coronary
artery bypass surgery (CABG)7. PCI refers to the treatment of
myocardial perfusion by transcatheter catheterization to clear
the stenosis or even occlusion of the coronary lumen8. The
main principle of CABG is to establish a bypass ("bridge")
between the aorta and the diseased coronary artery using the
autologous blood vessels (the internal mammary artery, the
radial artery, the right gastric artery, the great saphenous vein)
to make the aorta 9.  The blood inside is directly perfused to
the stenotic distal end across the stenosis of the blood vessel,
thereby restoring myocardial blood supply.

Hydrogen is widely distributed in nature and is a colorless
and odorless reducing gas. Due to the small mass of hydrogen
molecules, it can penetrate the blood-brain barrier and
metabolize without residue in the body10. The current study
found that hydrogen has a certain inhibitory effect on
oxidative stress11, inflammation12, apoptosis13 and autophagy14.
Recent studies have confirmed that hydrogen has certain
protective effects for various tissues and organs including the
brain15, kidney16,17, heart18, diabetes19 and multiple organs
damage20. Hydrogen is expected to be  the 4th most
important gas signal molecule21 after nitric oxide (NO), carbon
monoxide (CO) and hydrogen sulfide (H2S). In the precious
study, the GSR-CAA-67 protein chip from RayBiotech was
used, the results of KEGG pathway enrichment analysis
demonstrate  that  the  JAK-STAT  pathway  may be involved
in  the  mechanism  of   action   of   hydrogen-rich   water. The

JAK-STAT signaling pathway has been studied in recent years
and it is widely involved in biological processes such as cell
proliferation22, differentiation23 and the inflammatory
response24. And the study has shown that hydrogen-rich water
can inhibit the apoptosis of myocardial tissue after the
ischemia-reperfusion and alleviate ischemia-reperfusion injury
by up regulating the expression of the JAK-STAT signaling
pathway25-30.

So far, no effective way has been found to reduce
myocardial ischemia-reperfusion injury. Compared with NO,
CO and H2S, hydrogen has smaller molecular weight and is
easier to enter the biological membrane. Hydrogen can also
be taken up  by  exogenous sources, independent of the
body's own production, which has the advantage of being
completely cytotoxic compared to other medical gases. In
summary, hydrogen has strong potential clinical value in
alleviate MIRI. In this review, we demonstrate the protective
mechanism of hydrogen in myocardial ischemia-reperfusion
injury and hydrogen's advantages compared with other three
gases. Thus, we hope that this review will impel scholars study
in this field to elucidate the specific target of hydrogen in MIRI
in order to put it into clinical application.

Mechanism of myocardial ischemia-reperfusion injury
Reactive oxygen species (ROS) production: Xanthine oxidase
(XO) and xanthine dehydrogenase (XD) are presented in the
cardiomyocytes. In the myocardial ischemic state, the body's
antioxidant defense system is damaged31. On the one hand,
the uptake of Ca2+ by myocardial cells is able to activate a Ca2+-
dependent proteolytic enzyme to convert XD into XO. On the
other hand, due to a decrease in oxygen partial pressure, ATP
is degraded into ADP, AMP and hypoxanthine, resulting in a
large amount of hypoxanthine accumulation in the ischemic
issue. During reperfusion, a large amount of molecular oxygen
enters the ischemic tissue with the blood and in the two-step
reaction of XO catalyzes the conversion of hypoxanthine to
xanthine and further catalyzes the conversion of jaundice into
uric acid, both molecular oxygen and electron acceptor are
simultaneously used, resulting in a significant increase in ROS
production, such as highly activated superoxide (O2G) and
highly destructive hydroxyl radicals (•OH)32. Increased
hydrogen peroxide (H2O2) is produced steadily, which leads to
direct damage of cell membranes and proteins and induces
lipid peroxidation33 to inhibit the normal function of
mitochondria. Cellular lipids, proteins and DNA react directly
with ROS to cause cell damage and even death, at the same
time, the NF-κB signaling pathway is also activated34.

Endothelial   cell    dysfunction   and   leukocyte   adhesion:
P-selectin, which is expressed on endothelial cells, initiates the
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procedure of leukocyte adhesion. P-selectin is mainly
responsible for mediating the foremost aggregation of
neutrophils (PMN) in myocardial microvessels. After
approximately 20 min, L-selectin becomes the primary
mediator of leukocyte rolling by binding with sialylated Lewis
antigens. The rolling neutrophils are more active and sturdier
when attached to the endothelium through protein
interactions of the integrin family, LFA-1 (CD11/18), with its
corresponding binding proteins ICAM-1 and 2 on endothelial
cells35.

In experimental I/R injury, neutrophils (PMN) are the key
leukocyte populations and their effects are mostly releasing
oxygen-derived cytotoxic products, superoxide anion and
hypochlorous acid as well as superactive  cytotoxic substance
and matrix metallopeptidase (MMP-9)36. I/R injury can cause
endothelial cell dysfunction, likely by oxidative damage to the
membrane, ion homeostasis and osmotic pressure. When the
function of endothelial cells is impaired, the neutrophils and
the damaged vascular endothelium will adhere and gather
together, which will aggravate the degree of tissue damage.
Therefore, in reperfusion injury, animal studies have revealed
a reduction in tissue injury after blocking PMN adhesion or
PMN consumption in the myocardium37, intestine38 and lung
tissue39.

Conclusive evidence has shown that proinflammatory
cytokines including tumor necrosis factor (TNF)-", interleukin-
1$ (IL-1$) and interleukin-6 (IL-6) are involved in postischemic
responses40. The decrease in IL-1$ and TNF-" signaling defect
was found to be associated with attenuation of chemokines
upregulation and neutrophil infiltration41.

IL-8, a member of the CXC chemokine family, has potent
chemotactic activity against neutrophils42. The results of a
focused study of the roles played by IL-8 receptors (CXC-R1
and -R2) are unclear as both active and defective CXC-R2 were
found to have protective effects on myocardium43,44. In
addition,  a  large  amount  of experimental research has
shown  that  IRI  leads  to  activation of the complement
system in some organs and that both activation pathways
(classical/substitution) are involved, moreover, 2 products of
complement activation, C5a and C5b-9 are considered to be
involved and mainly responsible for IRI45. C5a increases the
chemotaxis of neutrophils, the release of proteases and many
pro-inflammatory effects of oxygen free radical production,
C5a may also possibly through the production of TNF-",
interleukin-1, leukocyte-6 and MCP-1, further exacerbate the
inflammatory response46,47.  It has also been demonstrated
that   C5b-9   significantly   contributes   to    the     release    of

tissue-induced complement, the activation of the NF-κB
signaling pathway and the release of induced chemotactic
mediators (IL-8, MCP-1)48.

Ca2+ overload and the opening of MPTP: An important
feature of IRI is that an imbalance in cell ion homeostasis leads
to ischemic acidosis and calcium overload. The pivotal
mechanism of cell hydrogen ion concentration recovery is the
activation of the sodium (Na+)-hydrogen (H+)-exchanger
(NHE)49. The main function of the NHE as a pH-regulating
protein is  to  promote  excessive  proton  efflux combined
with sodium ions influx to maintain electrical neutrality.
Sodium-(Na+)-potassium (K+)-ATPase is effective in removing
sodium from the cytoplasm under physiological conditions,
however, it is inhibited during ischemia-induced ATP
depletion50. Consequently, the sodium (Na+)-calcium (Ca2+)-
exchanger is activated to avoid intracellular sodium
accumulation. By transferring sodium out of the cell,
extracellular calcium is transported into the cell and causes
intracellular calcium overload51. A sudden increase in
intracellular Ca2+ may result in cell death. During this period,
biofilms (cell membranes, mitochondrial membranes,
lysosomal membranes, especially mitochondrial membranes)
were damaged and their permeability was increased, which
aggravated cell dysfunction and structural damage.
Reperfusion opens the mitochondrial permeability transition
pore (MPTP), which can inhibit the mitochondrial respiratory
function and also cause the release of cytochrome c (Cyt c)
and activation of apoptosis protease and initiate apoptosis52,53.
Proton accumulation may also result in reduced efficiency of
contractile proteins, impairing recovery function during
reperfusion  and  reducing  cardiac  function  (heart
function/myocardial O2 consumption)54.

During tissue ischemia, when ATP resynthesis is blocked
and a large amount of energy is consumed when ATP is
sequentially degraded into ADP, AMP, adenosine and
eventually hypoxanthine, the internal metabolism changes. In
addition, a decrease in ATP in cells leads to mitochondrial
dysfunction and promotes the expression of Bax, the most
important apoptotic gene in the human body, from the cell
matrix to the mitochondrial outer membrane. This mechanism
leads to mitochondrial swelling and causes cytochrome c to
flow into the cell matrix via the open pores of the osmotic
transition pore, the cytochrome c-activated receptor protease
in the cell matrix is then activated, triggering apoptosis2.

Source of hydrogen
Synthesis of endogenous hydrogen: Some intestinal bacteria,
such  as  E.  coli,   can   produce   large   amounts   of  hydrogen
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through the fermentation of undigested sugars in intestines55,
which can be detected in vivo  in animals. In addition, studies
have shown that the content of endogenous hydrogen must
be significantly higher than the lowest concentration of
exogenous hydrogen to exert antioxidant capacity56. However,
when oxidative stress or inflammation occurs in the body,
endogenous hydrogen no longer plays a significant role21. This
result may be because the endogenous hydrogen is cleared by
the colonic mucosa or other commensal bacteria in the
stomach, such as Helicobacter. Moreover, most mammals lack
an anabolic  enzyme and cannot reuse bacterial metabolites
to produce hydrogen. Furthermore, the hydrogen produced
by the fermentation of intestinal bacteria cannot be used by
the body and is discharged through feces or flatulence,
absorbed   by    methanogens   or   discharged  through the
lungs.  Therefore,  improvement  of  the  utilization of
endogenous  hydrogen  has  become a breakthrough in
clinical experiments, which encourages researchers and
clinical staff. For example, the production of endogenous
hydrogen can be promoted by ingesting certain foods such as
lactose and turmeric57. 

Exogenous hydrogen intake: Exogenous hydrogen is
acquired by hydrogen inhalation, drinking hydrogen-rich
water and injecting hydrogen rich saline solution58,59. Most
antioxidants do not reach the infarcted area in time before
reperfusion begins, while inhaled hydrogen works quickly and
does not affect the patient's hemodynamic parameters,
including heart rate and left ventricular blood pressure60.
Studies have shown that hydrogen can quickly spread to
hazardous areas even in the absence of blood flow. There are
also clinical studies indicating that inhalation of 3-4%
hydrogen has no effect on the physiological parameters of
patients with acute ischemic cerebrovascular disease61.
Drinking hydrogen-rich water in daily life is also a good
approach for exogenous hydrogen intake, especially for some
chronic diseases62. At room temperature, when the solubility
of hydrogen in water reaches 0.8 mmol LG1, the pH and other
properties of water are not affected. In a study conducted by
Nagatani63, it was found that intravenous injection of
hydrogen saline was safe and effective in 38 patients with
acute ischemic stroke. In addition, hydrogen eye drops or
external products that can generate hydrogen can be
absorbed into the blood through the skin, which it can be
regarded as a feasible method for treating diseases by using
hydrogen64. It can be seen that the intake of exogenous
hydrogen is more effective for the body.

Protective  mechanism  of  hydrogen in  myocardial
ischemia-reperfusion injury
Selective antioxidant effect: When myocardial tissue is
damaged by ischemia-reperfusion, free radicals are generated.
When excess free radicals cannot be eliminated by the body,
new free radicals are generated through multiple pathways
and the accumulation of free radicals will cause structural
damage to cell and dysfunction65. Ohsawa et al.66 found that
hydrogen can selectively reduce hydroxyl radicals and
cytotoxic ROS and effectively protect cells but hydrogen does
not reduce free radicals by interacting with excess reactive
oxygen species. This finding provides a new idea for the study
of myocardial IRI and clinical treatment66. In recent years, it has
Nrf2-ARE pathway has been shown to be one of the most
important signaling pathways in the endogenous antioxidant
response mechanism67.

Nuclear factor-related factor 2 (Nrf2) is a transcription
factor closely related to antioxidative stress. Normally, Nrf2 is
located in the cytoplasm and binds to its retinoic protein
cytoplasmic junction protein (Kelch-like ECH-associated
protein-1, Keap1). Nrf2, in conjunction with Keap1, is anchored
to the cytoskeleton68. Keap1 modulates Nrf2 ubiquitination
degradation to maintain, a normal level of Nrf2, thereby
inhibiting the expression of downstream genes. When an
organ or tissue is in an oxidative stress state, Nrf2 dissociates
from Keap1 and forms a heterodimer with other proteins,
recognizes and binds to the binding site on the antioxidant
response element ARE and up-regulates its downstream
antioxidant protein and NAD (P) H: quinone oxidoreductase 1
(NQO1) gene expression to reduce oxidative damage69, on the
other hand, oxidative stress accelerates Nrf2 mRNA
transcription and increases Nrf2 protein synthesis70. Thus, the
Nrf2-ARE pathway plays an important role in selective
antioxidant action. When myocardial IRI occurs, a large
number of cardiomyocytes undergo apoptosis, free radicals
are generated during reperfusion. This study indicated that
hydrogen can protect the myocardium  by  activating  the
Nrf2-ARE signaling pathway. H9c2 cardiomyocytes were
treated with serum and glucose deprivation (SGD) methods to
simulate ischemic conditions by Xie et al.71 and were cultured
in medium rich in H2 (purity 99.999%). The expression of Nrf2
protein was  detected  by  Western  blotting  and the level of
8-hydroxydeoxyguanosine (8-OHdG) was detected by
enzyme-linked immunosorbent assay (ELISA). The survival
time of H2-rich SGD cells was prolonged, the  production of
•OH radicals was decreased and the expression level of Nrf2
was significantly increased, indicating that hydrogen can
protect ischemic cardiomyocytes by eliminating •OH radicals
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and activating the Nrf2 pathway. This finding suggests that
hydrogen may also have a protective effect on myocardial IRI.
In addition, there are other signaling pathways involved in the
regulation of oxidative stress by hydrogen. For example, ROS
can activate the NF-κB signaling pathway and promote TNF-"
expression72, while TNF-" activates the expression of GAPDH
oxidase (NOX). This process will produce ROS73. Hydrogen
molecules can also reduce the inflammatory response by
inhibiting the activation of NF-κB74.

Anti-apoptotic effect: According to the literature apoptosis is
closely related to many pathophysiological processes and has
a great impact on the occurrence and development of disease.
Similarly, apoptosis plays an important role in myocardial IRI75.
During ischemia-reperfusion, oxygen free radicals, calcium
overload and MPTP opening cause mitochondrial swelling and
rupture, release apoptosis-inducing factors and apoptosis-
related proteins such as cytochrome c (Cyt c), further initiate
the Caspase cascade and induce programmed apoptosis76,77.
Recent studies have found that the PI3K/AKT pathway is
critical for cardiomyocyte apoptosis78. Phosphatidylinositol-3-
kinase (PI3K) is a class of protein with enzymatic activity and
is an important transduction signal. Protein kinase B (PKB), also
known as AKT, is a very important downstream target of the
PI3K signaling pathway. When the PI3K/AKT signaling pathway
is activated, AKT is transferred to p-AKT. This transfer regulates
downstream target proteins, such as the apoptosis-related
proteins Bcl-2 and Bax79 and the forkhead box O protein family
(FoxOs)80. In the heart of adults, FoxOs play an important role
in maintaining myocardial growth, contraction, metabolism,
cell cycle transition81, etc. The PI3K/AKT signaling pathway is
an upstream regulatory pathway that inhibits forkhead box
protein O. Generally, after the activation of forkhead box
protein O, G1/S cell cycle transition is blocked and expression
of the cycle-dependent kinase82 (CDK inhibitor) p27 and the
apoptotic factor Bim83 and apoptosis, aging, autophagy and
the  stress  response  are  promoted.  In  addition, forkhead
box protein O activation can downregulate peroxisome
proliferation activator receptor γ (PPAP-γ) expression levels,
inhibit the  formation  of  adipocytes   by  adipose-derived
stem cells, promote protein breakdown and inhibit the
development of myoblasts84. Therefore, hydrogen may
regulate the expression level of FoxO through the PI3K/AKT
signaling pathway and thereby exert its anti-apoptotic
function.

Anti-inflammatory effect: Experimental studies and clinical
observations have shown a significant increase in white blood

cells (especially neutrophils) in the presence of ischemia-
reperfusion85. Nuclear factor-κB is a generic term for proteins
that specifically  bind to the κB site of many gene promoters
to promote transcription86. Many cytokine and adhesion
molecule genes including those involved in inflammation and
the immune  response,  contain  a  κB site. At the same time,
in vitro and in vivo experiments have shown that NF-κB
activation is associated with overexpression of TNF-", IL-1$
and other factors87. Myocardial IRI is a complex process
involving neutrophil activation, multiple factors and adhesion
molecule over expression, accompanied by a variety of
inflammatory mediators and signal transduction molecule that
play an important role in myocardial IRI88. NF-κB undergoes
positive feedback regulation outside the cell: NF-κB activation
can enhance the transcription of TNF-" and IL-2 and with the
increase in cytokine release, NF-κB is further activated. The
increase in the production and release of pro-inflammatory
factors such as IL-8 leads to further amplification of the
inflammatory signal and aggravation of the damage to the
body89. At  the  same  time, negative feedback regulation of
NF-κB is also present inside and outside the cell. In addition to
the initiation of inflammatory mediator gene expression by
NF-κB activation, IKB", Bcl-3, p100 and p105 precursor
proteins are also up-regulates. These nascent inhibitory
proteins rapidly inactivate the activated NF-κB in the nucleus,
thereby terminating the transcription of inflammatory
mediators and limiting the progression of inflammation.
Simple IKB" synthesis is not regulated by NF-κB and thus, IKB"
phosphorylation causes long-term activation of NF-κB. NF-κB
competitively binds to the κB sequence and inhibits the
function of NF-κB. The cytokine IL-10 has an anti-inflammatory
effect and inhibits NF-κB activation. LPS, LNF and IL-1 can
stimulate IL-10 production, thereby limiting inflammation and
alleviating IRI90. In recent years, studies have shown that
hydrogen-rich water can significantly improve liver IRI. It was
found that the activity of myeloperoxidase (MPO) in liver
tissue was significantly decreased after intraperitoneal
injection of normal saline in rats91. Thus, it can be concluded
that hydrogen-rich water can inhibit neutrophil infiltration and
reduce inflammation after hepatic IRI via a mechanism closely
related to inhibition of the NF-κB signaling pathway.

Progress in the clinical application of hydrogen: Chen et al.92

reported that high concentrations of respiratory hydrogen
have protective effects on myocardial IRI in mice, which may
depend on the PI3K-Akt1 signaling pathway. Yue et al.93

reported that intraperitoneal injection of hydrogen-rich saline
may  protect  the  rat  heart  from  IRI  through  the Akt/GSK3$
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signaling pathway. Sun et al.94 and Zhang et al.95

demonstrated  that hydrogen-rich physiological saline
protects against myocardial IRI through antioxidation and
anti-inflammatory effects. Pan et al.96 established a model of
myocardial ischemia in aged rats and injected hydrogen-rich
water into the peritoneal cavity before reperfusion, showing
that hydrogen-rich water can alleviate myocardial IRI by
inhibiting the autophagy of cardiomyocytes. He et al.97 found
in a rat model that the load of hydrogen in the microsphere,
which is capable of releasing hydrogen at an effective
location, can be visually tracked by an ultra-micro imaging
system. Zhang et al.98 used hydrogen in combination with
lactic acid, in which hydrogen acts as an antioxidant and lactic
acid was shown to simulate tissue acidosis after ischemia.
Under these conditions, the body can be posttreated. This
finding suggested that the combination of lactic acid and
hydrogen exerts the same protection as tissue post treatment.
We found  that  hydrogen-rich  water  can  up-regulate the
JAK-STAT signaling pathway in  rats  with  myocardial
ischemia-reperfusion injury, inhibit cardiomyocyte apoptosis
and reduce ischemia-reperfusion injury99. Most of these
studies are based on animal models and are rarely used in
clinical practice. However, these studies and methods provide
a theoretical basis and new ideas for the clinical application of
hydrogen, laying a foundation for the clinical application of
hydrogen.

CONCLUSION

In recent years, the main clinical methods against
myocardial IRI have mainly targeted these mechanisms,
including drug treatment, pretreatment and post treatment.
However, these methods have not achieved desirable
therapeutic effects and new treatment methods are urgently
needed. Nowadays, hydrogen has been increasingly used in
animal experiments and has been shown to be associated
with ischemia-reperfusion, showing a certain therapeutic
effect. It is important and urgent to elucidate the specific
target of hydrogen in MIRI in order to put it into clinical
application.

SIGNIFICANCE STATEMENT

This  study  discovered  hydrogen  can protect
cardiomyocytes against MIRI. Hydrogen molecules are small in
mass and easily penetrate the cell membrane and blood-brain
barrier and it has effects on myocardial apoptosis,
inflammation and oxidative stress. This study will help the
researchers to uncover the critical areas of the specific target

of hydrogen in MIRI that many researchers were not able to
explore. Thus a new theory on the clinical application of
hydrogen may be arrived at. 
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