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Abstract

Background and Objective: Combination antiretroviral therapy (cART) has improved the survival of HIV infected patients significantly.
However, in some patients, survival is not guaranteed due to several factors that are either individual-based or cART based. This study
presents an HIV, AIDS, Death (HAD) model to analyse the survival of patients on cART. Materials and Methods: Continuous-time Markov
models are fitted based on the states occupied foran HIV, AIDS and Death (HAD) model. These states are based on CD4 cell count. Factors
that affect the survival of HIV-infected patients on cART are also analyzed. These, among others, include age, gender, routinely collected
viral load, time on treatment, non-adherence and peripheral neuropathy. Results: Patients with higher viral loads than expected are
11.1 times more likely to be at risk of HIV progression to the AIDS state and 1.1 times more likely to be at risk of mortality from a CD4 cell
count state above 200 cell/mm?3compared to patients with lower viral loads. Non-adherence to treatment increases the risk of transition
from CD4 cell count state above 200 cell/mm?3 to the AIDS state by 2.2 folds. Patients who were non-adherent to treatment are 3.8 times
more likely to transit from the CD4 state above 200 cell/mm?3 to death compared to patients who were adherent to treatment. Patients
are expected to recover from the AIDS state after one year of treatment. Conclusions: Recovery from AIDS state by HIV infected patients
on cART is likely to occur after one year of cART treatment. However, if the viral load remains higher than expected, this increases risks
of immune deterioration even after having achieved normal CD4 cell counts and consequently, mortality risks are increased.
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INTRODUCTION

The availability of new antiretroviral drugs and highly
active antiretroviral therapy (HAART) has led to a significant
reduction in HIV morbidity and mortality'. The
pharmacological activity of HAART has inhibitory effects on
human immunodeficiency virus (HIV) duplication and has
shown a significant reduction in acquired immunodeficiency
syndrome (AIDS) epidemics as well as deaths?. Inhibitory of
HIV duplication is generally associated with a steady increase
in the CD4 cell count and results in improved clinical
outcomes?. This increases the chances of survival for HIV
infected patients.

Sieleunou et a/3 used a retrospective cohort study of HIV
patients older than 15 years in a rural centre in the Far-North
Province of Cameroon to explore determinants of survival of
HIV patients on antiretroviral therapy (ART). They used
Kaplan-Meier analysis to estimate survival and Cox
proportional hazard models to explain survival. Their findings
show that CD4 cell count, gender and clinical stage at
enrolmentare the main predictors of mortality. A similar study
was conducted by Zhang et a/* in Liangshan Prefecture,
South-west of China using the same methods. Zhang et a/*
observed that male patients on ART were at a higher risk of
death from AIDS than their female counterparts and that a
CD4 baseline cell count below 350 cells/mm? results in a
higher risk of death for the patients than those with a CD4 cell
count of at least 350.

Seyoum et a/° carried out a retrospective cohort study
with collected data from clinical records of adult HIV patients
following (2006-2010) antiretroviral therapy (ART) in South-
western Ethiopia. Their findings reveal the main factors
associated with mortality as baseline age (below 35 years) and
low adherence to ART.

This study is carried out to explore the survival of HIV
patients on combination antiretroviral therapy (cART) using
retrospective data from a Wellness clinic in the northern part
of South Africa. A multi-state HIV, AIDS, Death (HAD) model is
developed and used to compare survival and mortality rates
of patients receiving cART. Factors associated with survival or
mortality of patients are analyzed using the continuous-time
Markov modelling approach. Some of the factors explored
include age at baseline, CD4 cell count at baseline, gender,
peripheral neuropathy (PN), non-adherence (NA), and an
orthogonal viral load residual covariate (RV).

In the next section, the methods used for the analysis of
data are explained. Descriptive statistics for the data that is
used for analysis are given. This is followed by a presentation
of results from the analysis. The last section discusses and
concludes the findings.

MATERIALS AND METHODS

Ethical considerations: The procedures used in this study
were as approved by the Research Ethics Committee of the
University of Venda, South Africa (Protocol number SMNS/13/
MBY/01/0625), following the 1964 Helsinki declaration and its
subsequent amendments. Additionally, permission to access
health facilities was obtained from the Limpopo Provincial
Department of Health, South Africa and the collaborating
health facilities. Informed consent was obtained from study
participants before theirinvolvement and data obtained were
stripped of personal identifiers to ensure the anonymity and
confidentiality of the participants.

Data: A retrospective cohort study was carried out at a
HIV Wellness Clinic Wellness clinic in the Limpopo Province of
South Africa on 320 patients living with HIV/AIDS who had
been attending ART follow-up care from 2005 to 2009. At
treatment commencement (time t = 0), there were
224 females and 96 males. About 50 and 65% of the female
and male deaths, respectively occurred during the first
6 months of treatment uptake. The interquartile range of
patient ages is (33, 48) years with a mean and median age of
40.62 and 41 years, respectively. The ages were negatively
skewed (skew = -0.08) confirming that there were more
younger patients than older patients in the cohort.

Time-homogeneous Markov jump model: A Markov jump
model on a finite or countable set, S, is a family of random
variables (Xc(t)).., ((right continuous), on a probability space
(Q, Fx), P). Fx, denote all the information pertaining to the
history of X, up to s<t and c represents the number of states.
According to the continuous-time homogeneous Markov
jump  process assumptions, individuals  transition
independently among states. This means we can assume that
the transition intensities are constant over time, that is, the
transition intensities are independent of t%7. Thus, for the
time-homogeneous Markov jump model we have:

Qt)=Q, vt

where, Q is a ¢ X ¢ transition rate matrix and becomes:

Ay 92 Qe
q= q:2] q:zz qzzc
Qo 92 " Yee
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Forsome constant matrix Q. Thisimplies that sojourn time
with a particular state, i, has an exponential distribution with
rate parameter:

Qi =M= El:j q;

where, g is the (i, j)th entry of Q. Thus, transition probabilities
only depend on the interval between times t, and t, and not
on t, itself.

For a continuous-time homogeneous model, the
transition probabilities satisfy the Chapman-Kolmogorov’s
equation?:

Vs,t20,Vi,j€ S: Py (t+s)=>" P, (OP;(s)

leS
According to Longini and Hudgens?®:

qAt+o(At); 1# ]
)=1]={1-LAt+0(At);1=j
(At), otherwise

P[X(t+At)=jIX(t

leads to the Kolmogorov's forward equation:
Py ()= s Py(Dq;=P(1) Q. foralli, je S

The Kolmogorov's forward differential equation is derived
as:

t + At Z (DP; (At)(Chapman - Kolmorov's equations)
leS
+ Z P, (t)P, (At)

=P,(t )(1+q”At+0 At))+> P,

1#j

(qUAt+0(At))

=" P, (t)g At +0(At) + P, (t)qAt + P (t) + o(At)

I#j

)+ 2Py ( (t)q;At+o(At)

I#j

Rearranging to derive the forward differential equation
gives:

P(t+At

ZPH q (At)

o At

Taking the limits as At-0 gives the desired result:

)

Z t)q, [smce lim

1#j
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This is the Kolmogorov forward equation for the process.
Inthe biology literature, this system of equations is termed the
chemical master equation'®.

The Kolmogorov backward equation is derived from

Chapman-Kolmogorov's equation by substituting s = At as
follows:

P, (At+1t)=>"P (At)P(1)

leS
Now, since:
P; (At) = gyAt+o (At), for 1#i

and:

P, (At)=1- P, (At)=1->q,At +0 (A1)

leS les

=1+q,At +0(At)

We have:

Py (At+t) =3P, (At)Py(t)

les

= Py (At)Py(t) + P, (A0 Py (1)

1#j

P, (At +t) = Atq,P; (t) +(1+ At )P, (t) + 0 (AD)

1#j

=P (t) + ZquPlJ

leS

(t)At+o (A1)

If we then take P; (t) term to the left-hand side, divide by
At and then taking limits.

As At-0, we obtain the differential equation:

P(At+t) (1)

=S, )+ 22

1#j

P\(t) =Y q,P;(t), forall i, je S

1#j

Model formulation: Consider the following HIV, AIDS, Death
(HAD) model with the given transition rates. The state space

is S ={H, A, D}. These states are based on CD4 cell counts as
follows:

H; CD4 =200 (HIV state)
A; CD4 <200 (AIDS state)
D; DEATH state

CD4 =
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qQur = O N
HIV (H AIDS (A
) Qua =P *
Qup = K Qap =V
Death (D)

Fig. 1: HIV, AIDS and Death (HAD) model for HIV-infected
patients on combination antiretroviral therapy

The CD4 state H represents CD4 cell counts above
200 cells mm=3, state A represents the AIDS-defining state,
which is characterised by CD4 cell counts below
200 cells mm™ and state D is the DEATH state that can be
reached from either state H or state A. At each stage, an
individual is expected to be in either state A, state H or state D.
The states H, A and D are mutually exclusive. States H, A and
D are defined for patients receiving antiretroviral therapy, such
that the transitions between states are bi-directional due to
adherence or non-adherence to treatment as shown in Fig. 1.

The transition rate from the AIDS state to the DEATH state
is denoted by v. Life may be in the HIV state or the AIDS state
on several separate occasions before making the one-way
transition to the death state. Alternatively, life may pass from
the HIV state to the DEATH state without ever having been in
the AIDS state.

Using the notations of the HAD model, the expression for
Qs A Grars Aror Aaos Gan @Nd gpp €an be given as follows:

Qan = P G = ~(0+H) = -Ay dpp = Ap =0,
Qua =0, Qip = M, Qap =V, Gpa = -(p+V) = -,

The generator matrix for the HAD model is:

Qun
Q=|quu
Qpn

LIS
daa
qDA

Qup
qAD
qDD

o-p
p
0

where, the order of the states has been taken to be H, A

then D.
Kolmogorov’s forward equation: For the HAD model, the
differential equation for Py, (t) can be defined by the general

forward equation as a template. This gives:

P ()= Py (t)qyy,. for L=H,A,D
LeS

= Py (O) qurtPua (V) QantPup (1) Qo
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Now substituting it for transition rates, we have:
P’y (t) = -Pyy () (6+p)+Py, (1) p = -Pyy (1) AgtPyy (D) p

The Kolmogorov's forward equation for the transition
probability Py, (t) is:

Pa () =X Py (t)qys. for L=H,A,D
LeS

= Pyyy () quatPra (1) Qaa™Pup (V) dpa
=Py (1) 0-Pys (O (pHV)
=Py () 6-Pyy (D 2y

Kolmogorov's backward equation: For the HAD model, the
Kolmogorov's backward differential equation for P, (t) can be
obtained using the general backward equation as a template.
This gives:

P (t) :g;qHLPLH (t), for L=H,A,D

= qun P (07 Gua Pan (D qup Ppy (1)
Now substituting in the transition rates, we have:
P’y (t) = -(o+1) Pyy ()+0Py (1) = -Ay Py (D)+0P,y (1)

The backward equation for the transition probability
Pua (©) is given by:

P’ua() = Qu Pua(©+dua Paa(®+dup Poa(®)
P’ya(t) = -(0T)Pyu (0P, (1) = -AyPya(D) 0Py, (1)

Maximum likelihood estimators: From the HAD model

defined:
Let:
T, = Waiting time of the ith life in the HIV state
T, = Waiting time of the ith life in the AIDS state
Si = Number of transitions HIV—>AIDS by the ith life
Ri = Number of transitions AIDS—HIV by the ith life
D. = Number of transitions HIV—Death by the ith life
Ui = Number of transitions AIDS—Death by the ith life
We also need to define totals:
T, = iTHl, T, = iTm, S isl, R= iRl, D:iD” U= iUl
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Using the lower case symbols for the observed samples,
it can be shown that the likelihood for the parameters, 4, v, 5,
p for the HAD model is given by:

N
L(u,v, o, P) - He*(uﬂf)Tu, e*(\*mTA.“d.VU.GS.pr.
i=1
_ e'-wzn,,e«wmzn.uza.vzu. 0

*(H*G)Tue’(v"P)TA d o u_s 1

=e uvic'p

Where:

d=z:di,u=z“ui,s=Zsi,r=z:ri
The likelihood function L (y, v, o, p) for the ith life reflects:

Probability of the life remaining in the HIV state for total
time Ty and in the AIDS state for time Ty, giving the
factors ¢ and ¢ ™ respectively

Probability of life making the relevant number of
transitions between states giving the factors p%,v*,c"
and p°

The likelihood factorises into functions of each parameter
of the form e*%p? :

dou s 1

L(pv,0,p)=c" p'vis’p
BN

W)y o= (vHP)Ty

So the log-likelihood is:
log L = - (u+0)T}-(v+p)T,+d log ptu log v+s log o+r log p

Differentiating with respect to each of the four parameters
gives:

alogL:_TH+£’alogL:_A+£
ou VRGN v
alogL:_TH+ijalogLi_TH+i
do 6 dp p

Setting each of the derivatives to 0 and solving the
resulting equations, we see that:

T

i o= =2 p=L
TA TH TA

::'_]lo‘

When there is more than one parameter to be estimated,
the second-order condition to check for maxima is that the
Hessian matrix is negative definite, or equivalently, the
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eigenvalues of the Hessian matrix are all negative. The Hessian
matrix is the matrix of the second derivatives. So, in this case,
we consider the matrix:

—x 0 00
0 = 0 0
N 0
o0 =
o 0 ¢ -—
0

Since this is a negative definite matrix, the maximum
likelihood estimates of i, v, 5, p are:

T

== v=" 5= p=L
TA TH TA

e

Therefore, the maximum likelihood estimators are as
given:

ioD G U8 R
TH, T/\’ TH, TA

Coding of covariates: The effects of covariates on estimated
transition intensities are analysed. This helps in determining
variables that have a strong influence on the survival of HIV
patients receiving antiretroviral therapy. These variables
include age, peripheral neuropathy (PN), non-adherence (NA),
gender, an orthogonal viral load residual covariate (RV). As
proposed by Shoko et a/™" the effect of the orthogonal viral
load variable is included in the continuous-time Markov
model. The variables are coded as follows:

1, male

_ J1, £45 years _
Age= { PN = {0, female’

1, Yes _
0,> 45 years’ { NA

0. No {1’ Yes Gender =

0, No’

1, if positive

Orthogonal viral load residual (RV) = {0 if negative

The residuals are obtained from a linear regression model
of viral load on CD4 cell count. The residual covariate is
independent of the CD4 count covariate correcting for
collinearity effects. For more details on the collinearity
argument, see Shoko et a/''. The effects of the covariates on
transition intensities, gy, for a patient h is given by the model:

qVexp (B

Age, + Bg_iPN)PNh
. +
qu B(Gcndcr)

ij

Gender, + ﬁijA)NAh + BEJ.RV)RV}‘)
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For this model, the baseline transition intensities, q”,
refer to a patient with age category 0 (over 45 years old), no
LA, no PN, Gender =0 (female), no NA and RV =0 means lower
viral load than expected. The transition intensities, g, are
presented in rates per year. g; are the elements of a 3X3
transition intensity matrix Q from a continuous
time-homogeneous Markov process.

RESULTS

This section gives the results from the analysis of the data
based on the HAD model given earlier in Fig. 1 of the methods
section. Three states are defined namely: state H-HIV state
marked by CD4 cell count greater than 200 cell mm=3,
state A-the AIDS-defining state, marked by CD4 cell count
below 200 cells/mm? and state D-Death. We start off by
computing the transition counts. The transition counts are
shown in Table 1.

Results from Table 1 above show fewer deaths recorded
from CD4 cell count greater or equal to 200 (3.1%) than from
the AIDS-defining state (15.6%). Once a patient has achieved
a CD4 cell count greater or equal 200 (state H), there is a
possibility of reverting to the AIDS state.

Next, the maximum likelihood estimators for the HAD
model are computed using the continuous-time
homogeneous Markov model.

Continuous-time homogeneous Markov model for the HAD
model: In this subsection, we give estimates of the transition
intensity matrix given by Q;, probability of each state being
next, given by:

q; QG . ...
p,==——=—-fori#]
' zitjqi.l Xi
For example, in Table 2:
Qin 0.2273

=0.9188

P g 02273+ 0.0201

The results are shown in Table 2.

Results from Table 2 show higher risks of death from the
AIDS state (state A) than from state H where the CD4 cell
count is above 200. The results also showed that for patients
on antiretroviral therapy and in the AIDS-defining state, there
are higher rates of recovery to a state of CD4 cell count above
200 cell mm-3 compared to rates of transitions to the death
state. Thus, confirmation that antiretroviral therapy improves
the survival of HIV infected patients.
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Next, we compute the total time spent in each state and
the mean sojourn time for the HAD model as shown in
Table 3.

The total times spent in each state reveal higher survival
chances once the HIV-infected patient is alive and has
transitioned out of the AIDS-defining state. Results from
Table 3 show that patients with CD4 cell count above 200 and
on cART can spend approximately 17 years before absorption
into the death state. HIV-infected patients can also spend an
average of about 4 years in state H before the transition to
other states.

For the continuous-time homogeneous model with
parameters estimated above, we plot the percentage
prevalence in each of the states indicated in the HAD model
for HIV-infected patients on combination antiretroviral
therapy.

The prevalence plots from Fig. 2 show that the fitted
model overestimates observed percentage prevalencein state
1 (state H). The fitted model gives a better fit of the observed
patients in the AIDS-defining state 2 (state A). Observed death
prevalence is underestimated by the fitted model. This
suggests that transition intensities may not be constant
throughout the whole study period. Hence, the need to fit a
continuous-time nonhomogeneous Markov model. This is
done below.

Table 1: Transition counts for the HAD model

To
From H A D
H 721 67 10
A 230 851 50
D 0 0 0

Table 2: Maximum likelihood estimates of the transition intensities, probability
of each state being next and transition probabilities for the HAD model
(95% Cl are given in brackets)

Transitions o o P; (1)

State Hto H -0.2474 (-0.3104,-0.1972) 0 0.8292
StateHto A 0.2273(0.1781,0.2902)  0.9188(0.7978,0.9703) 0.1420
State AtoH 0.6364 (0.5577,0.7261)  0.8319(0.7851,0.8721) 03973
State Ato A -0.7650 (-0.8619,-0.6789) 0 0.5062
StateHtoD 0.0201(0.0075,0.0541) ~ 0.0812(0.0297,0.2022) 0.0288
StateAto D 0.1286 (0.0957,0.1727)  0.1681(0.1279,0.2149) 0.0965

-2* log-likelihood = 1977.895

Table 3: Estimates of the total time spent in each state and sojourn times
(95% Cl are given in brackets)

Transitions  Total time spent (h) in each state Sojourn time (h)

State H 17.1557 4.0416 (3.2211,5.0711)
State A 5.0986 1.3073 (1.1602, 1.4730)
State D Infinity
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Table 4: Maximum likelihood estimates for the baseline transition intensities and hazard ratios for each time interval (95% Cl are given in brackets)

Transitions quo’ HR (0.5, 1 year) HR (1, Infinity years)

StateHto A 0.2722 (0.2049, 0.3616) 0.6142 (0.2336, 1.6145) 0.4359 (0.2046, 0.9286)
State AtoH 0.6725 (0.5856,0.7721) 0.6994 (0.4538, 1.0779) 1.0304 (0.7486, 1.4184)
State Hto D 0.0470 (0.0207, 0.1070) 0.3199 (0.0347, 2.9479) 0.0730(0.0102, 0.5207)
State Ato D 0.0892 (0.0569, 0.1396) 0.1836 (0.0382, 0.8832) 0.2750 (0.1186, 0.6373)

-2* log-likelihood = 1935.603

100 4 @

Observed

——=—= Expected

Prevalence (%)

Prevalence (%)

100

60

Prevalence (%)

Times (years)

Fig. 2(a-c): Prevalence for the continuous-time
homogeneous Markov plots for the HAD model
(a) State 1, (b) State 2 and (c) State 3

Next, we fit a continuous-time inhomogeneous Markov
model to assess the interval in which immune deterioration is
experienced after patients have achieved an improvement in
the immune system.
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Results from Table 4 showed the maximum likelihood
estimates for the baseline transition intensities and hazard
ratios for the effects of time on transition intensities. The
results show that in the second 0.5 years of treatment uptake,
there is a reduction in the rates of immune suppression.
The second 0.5 years of treatment uptake is also
characterised by a reduction in deaths particularly from the
AIDS-defining state. From 1 year of treatment uptake
onwards, there is a significant increase in the rates ofimmune
recovery from the AIDS-defining state. However, there is a
slightincrease in the rate of occurrences of deaths after 1 year
of treatment compared to the 0.5 years to 1-year interval.
Thereisafurtherreduction in deaths for patients with CD4 cell
count above 200, 1-year post-treatment uptake compared to
the 0.5 years to 1-year interval. This means that chances of
survival for HIV-infected patients increase once their CD4 cell
count is above 200 and the effect of time for this to happen is
crucial.

We now plot percentage prevalence foreach of the states
in the continuous-time non-homogeneous model. The plots
are shown in Fig. 3.

Results in Fig. 3 show a great improvement in fitting a
non-homogeneous model compared to the homogeneous
model. The fitted model in Fig. 3 now gives an almost perfect
fit of the observed percentage prevalence. In the next section,
we analyse factors that contribute to the survival of HIV-
infected patients on combination antiretroviral therapy.

Covariates that contribute to the survival of HIV-infected
patients on cART: In this subsection, we analyse the effects of
routinely collected viral load (an orthogonal viral load
covariate (RV)), age, gender, peripheral neuropathy (PN) and
non-adherence to treatment (NA) on the survival of HIV-
infected patients on cART.

Results from Table 5 show that risks of immune
suppression from CD4 cell count above 200 to the AIDS-
defining stateis attributed to non-adherence to treatment and
having higher viral load than expected. Patients below the age
of 40 years had significantly higher rates of immune recovery
than their older counterparts. Results also show that male
patients, patients below the age of 40 years, patients with a
higher viral load than expected and non-adherent patientsare
athigherrisk of death from the CD4 cell count level above 200.
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100 4 @

Observed

———=- Expected

Prevalence (%)

Prevalence (%)

20 A

100

Prevalence (%)

Times (years)

Fig. 3(a-c):Prevalence (%) for the continuous-time
non-homogeneous Markov model for the HAD

model (a) State 1, (b) State 2 and (c) State 3

Figure 4 shows that the inclusion of the effects of
covariates in the Markov model results in a good fit of
the observed percentage prevalence for each of the states
in the HAD model. This has also resulted in better
prediction of mortality (state 3). This is shown by death
prevalence thataccumulated to slightly below 20% by the end
of the 4 years of treatment uptake. This gives the best
prediction of mortality since 60 deaths out of 320 patients

occurred during the study. This is approximately equal to
18.8%.
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100 4 @

Observed

———=- Expected

Prevalence (%)

Prevalence (%)

100

Prevalence (%)

204

T T T T T
2
Times (years)

Fig.4(a-c): Prevalence (%) for the continuous-time-
homogeneous Markov model with covariates (a)

State 1, (b) State 2 and (c) State 3

Assessment of the fitted models: In this section, we assess
the fitted models by performing a likelihood ratio test as well
as comparing the -2 *log-likelihood(-2LL) ratios for the fitted
models. The results are given in Table 6.

Results from Table 6 show that the likelihood ratio test for
the time-homogeneous model versus the time-homogeneous
model with covariates is in favour of a time-homogeneous
model with covariates. Acomparison of the nonhomogeneous
model with the homogeneous model with covariates is in

favour of the homogeneous model with covariates.
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Table 5: Maximum likelihood estimates for the baselines transition intensities with hazard ratios for each covariate (95% Cl are given in brackets)

Transitions Baseline RV Age Gender PN NA

StateHto A 0.1779(0.1242,0.2547) 11.147 (2.6110, 47.588) 0.8090 (0.4539, 1.442) 0.8162 (0.4516, 1.4749) 0.8334(0.4101,1.694)  2.2005 (1.050, 4.612)
StateAtoH 0.7076 (0.6143,0.8152) 0.928 (0.6466, 1.332)  1.1476 (0.8383,1.571) 0.6648 (0.4831,0.9148) 0.6826 (0.4645,1.003)  0.59583 (0.36840, 0.9638)
State Hto D 0.0024 (0.0002,0.2287) 1.091(0.0914, 13.026) 34.562 (0.00001, 1756) 1.7609 (0.1488, 20.8415) 0.0650 (0.00005, 84142) 3.80314 (0.3184, 45.43)
State AtoD 0.0012 (0.00007, 0.1909) 0.380 (0.0599,2.411)  0.1001 (0.0062, 1.605) 0.0071 (0.00001,278)  0.0145(0.0002,8519)  0.0319 (0.00005, 2119)

-2 * log-likelihood = 1391.64

Table 6: Likelihood ratio tests for the fitted models

Degree of
Models tested in pairs Preferred model -2 log LR freedom p-value
Homogeneous with no covariates and homogeneous with covariates) Homogeneous with covariates 586.2517 20 <0.0001
Non-homogeneous and homogeneous with no covariates Nonhomogeneous model 42.29228 8 <0.0001
Non-homogeneous and homogeneous with covariates Homogeneous with covariates 543.9594 12 <0.0001

Time-homogeneous model: -2LL = 1977.895, Time-nonhomogeneous model: -2LL = 1935.603, time-homogeneous model with covariates: -2LL = 1391.64

The time-homogeneous model with covariates also has the
lowest-2*log-likelihood compared to all the other fitted
models. This shows that the survival of patients on cART is best
explained by a time homogenous model with covariates
including the routinely collected viral load covariate.

DISCUSSION

In this study, the survival of HIV-infected patients after
ART initiationis analysed. Continuous-time Markov models are
fitted based on the states from an HIV, AIDS and DEATH (HAD)
states model. These states are based on CD4 cell count.
Factors that affect the survival of HIV-infected patients on ART
were analysed. These, among others, include age, gender,
routinely collected viral load, non-adherence, peripheral
neuropathy and time on cART.

Results from Table 5 on estimated hazard ratios showed
that patients below the age of 40 years achieved anormal CD4
cell count 1.15 times faster than their older counterparts. This
is corroborated by findings from a previous study which
concluded lower mean CD4 increases for older patients than
younger patients'2. However, these patients have higher risks
(Hazard ratio=34.6, Cl:(0.00001, 1756)) of mortality compared
to their older counterparts.

Time on treatment also had a significant effect on the
survival of patients. Thus, after one year of treatment uptake,
patients have accelerated transitions from the AIDS state to
the HIV state defined by CD4 cell count above 200 cell/mm?.

Males have generally lower chances of survival than their
female counterparts. Results showed that males also have
slower rates of immune recovery than females.
Sieleunou et a/2 also concluded that gender is a predictor of
mortality for patients on antiretroviral therapy.

Non-adherence to treatment reduces the chances of
survival for patients on cART. Non-adherence accelerates
(Hazard ratio = 2.2) transitions from CD4 cell count state
above 200 cell/mm?3 to the AIDS state defined by a CD4 cell
count below 200 cells/mm?3. Patients who were non-adherent
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to treatment are 3.8 times more likely to transit from the CD4
state above 200 cell/mm? to death compared to patients who
were adherent to treatment. This is corroborated by the
findings from Seyoum et a/> who observed that low-
adherence to ART is associated with increased mortality.

Patients with higher viral loads than expected had higher
risks (Hazard ratios = 11.147, Cl: (2.6110, 47.588)) of HIV
progression to the AIDS state and high risks (Hazard ratio =
1.091, CI: (0.0914, 13.026)) of mortality from a CD4 cell count
above 200 cell/mm3.Thus, due to the effects of treatment and
time spent on cART, patients are expected to have suppressed
viral loads (possibly undetectable viral load) leading to an
improved immune system. However, if the viral load remains
higher than expected, this increases risks of immune
deterioration even after achieving normal CD4 cell counts and
consequently, mortality risks are increased.

A continuous-time homogeneous model without
covariates, a continuous-time nonhomogeneous model and
acontinuous-time homogeneous model with covariates were
fitted for the data. These models were assessed to select the
model that best predicts the survival of HIV-infected patients
on cART. Form both the continuous-time homogeneous
model and the nonhomogeneous model, cumulative deaths
by the end of four years of treatment uptake had increased to
close to 40%. For the model with covariates, cumulative
deaths prevalence had increased to below 20%. However,
from the data only 60 out of 320 deaths were recorded
throughout the whole study period which is approximately
equal to 18.8%. Therefore, we conclude that a
continuous-time homogeneous Markov model with the
effects of covariates, including the orthogonal viral load
covariate, gives the best prediction of survival of HIV-infected
patients on cART than the other two models. This corroborates
with the findings from studies by Shoko et a/' who proposed
the inclusion of both viral load monitoring and CD4 cell count
in one model to account for the aspect of mortality which one
variable can fail to account for without the inclusion of the
other.
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CONCLUSION

Recovery from AIDS state by HIV infected patients on
CART is likely to occur after one year of cART treatment.
However, if the viral load remains higher than expected, this
increases risks of immune deterioration even after having
achieved normal CD4 cell counts and consequently, mortality
risks are increased.

SIGNIFICANCE STATEMENT

This study concludes that constant monitoring of an
HIV/AIDS patient’s viral load can be beneficial for reducing the
risks of immune deterioration and mortality. This study will
help the researchers to uncover the critical areas regarding
HIV/AIDS progression and causes of mortality that many
researchers were not able to explore. Thus, a new theory on
HIV, AIDS, Death (HAD) Markov model may be arrived at.
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