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Abstract
Background and Objective: Combination antiretroviral therapy (cART) has improved the survival of HIV infected patients significantly.
However, in some patients, survival is not guaranteed due to several factors that are either individual-based or cART based. This study
presents an HIV, AIDS, Death (HAD) model to analyse the survival of patients on cART. Materials and Methods:  Continuous-time Markov
models are fitted based on the states occupied for an HIV, AIDS and Death (HAD) model. These states are based on CD4 cell count. Factors
that affect the survival of HIV-infected patients on cART are also analyzed. These, among others, include age, gender, routinely collected
viral load, time on treatment, non-adherence and peripheral neuropathy. Results: Patients with higher viral  loads  than  expected  are
11.1 times more likely to be at risk of HIV progression to the AIDS state and 1.1 times more likely to be at risk of mortality from a CD4 cell
count state above 200 cell/mm3compared to patients with lower viral loads. Non-adherence to treatment increases the risk of transition
from CD4 cell count state above 200 cell/mm3 to the AIDS state by 2.2 folds. Patients who were non-adherent to treatment are 3.8 times
more likely to transit from the CD4 state above 200 cell/mm3 to death compared to patients who were adherent to treatment. Patients
are expected to recover from the AIDS state after one year of treatment. Conclusions: Recovery from AIDS state by HIV infected patients
on cART is likely to occur after one year of cART treatment. However, if the viral load remains higher than expected, this increases risks
of immune deterioration even after having achieved normal CD4 cell counts and consequently, mortality risks are increased.
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INTRODUCTION

The availability of new antiretroviral drugs and highly
active antiretroviral therapy (HAART) has led to a significant
reduction in HIV morbidity and mortality1. The
pharmacological activity of HAART has inhibitory effects on
human immunodeficiency virus (HIV) duplication and has
shown a significant reduction in acquired immunodeficiency
syndrome (AIDS) epidemics as well as deaths2. Inhibitory of
HIV duplication is generally associated with a steady increase
in the CD4 cell count and results in improved clinical
outcomes3. This increases the chances of survival for HIV
infected patients. 
Sieleunou et al.3 used a retrospective cohort study of HIV

patients older than 15 years in a rural centre in the Far-North
Province of Cameroon to explore determinants of survival of
HIV  patients  on  antiretroviral  therapy  (ART).  They  used
Kaplan-Meier analysis to estimate survival and Cox
proportional hazard models to explain survival. Their findings
show that CD4 cell count, gender and clinical stage at
enrolment are the main predictors of mortality. A similar study
was conducted by Zhang et al.4 in Liangshan Prefecture,
South-west of China using the same methods. Zhang et al.4

observed that male patients on ART were at a higher risk of
death from AIDS than their female counterparts and that a
CD4 baseline cell count below 350 cells/mm3 results in a
higher risk of death for the patients than those with a CD4 cell
count of at least 350. 
Seyoum et al.5 carried out a retrospective cohort study

with collected data from clinical records of adult HIV patients
following (2006-2010) antiretroviral therapy (ART) in South-
western Ethiopia. Their findings reveal the main factors
associated with mortality as baseline age (below 35 years) and
low adherence to ART.
This study is carried out to explore the survival of HIV

patients on combination antiretroviral therapy (cART) using
retrospective data from a Wellness clinic in the northern part
of South Africa. A multi-state HIV, AIDS, Death (HAD) model is
developed and used to compare survival and mortality rates
of patients receiving cART. Factors associated with survival or
mortality of patients are analyzed using the continuous-time
Markov modelling approach. Some of the factors explored
include age at baseline, CD4 cell count at baseline, gender,
peripheral neuropathy (PN), non-adherence (NA), and an
orthogonal viral load residual covariate (RV).
In the next section, the methods used for the analysis of

data are explained. Descriptive statistics for the data that is
used for analysis are given. This is followed by a presentation
of results from the analysis. The last section discusses and
concludes the findings.

MATERIALS AND METHODS

Ethical considerations: The procedures used in this study
were as approved by the Research Ethics Committee of the
University of Venda, South Africa (Protocol number SMNS/13/
MBY/01/0625), following the 1964 Helsinki declaration and its
subsequent amendments. Additionally, permission to access
health facilities was obtained from the Limpopo Provincial
Department of Health, South Africa and the collaborating
health facilities. Informed consent was obtained from study
participants before their involvement and data obtained were
stripped of personal identifiers to ensure the anonymity and
confidentiality of the participants.

Data:  A  retrospective  cohort  study  was  carried  out  at  a
HIV Wellness Clinic Wellness clinic in the Limpopo Province of
South Africa on 320 patients living with HIV/AIDS who had
been attending ART follow-up care from 2005 to 2009. At
treatment    commencement    (time    t    =    0),    there    were
224 females and 96 males. About 50 and 65% of the female
and   male   deaths,   respectively   occurred   during   the   first
6 months of treatment uptake. The interquartile range of
patient ages is (33, 48) years with a mean and median age of
40.62 and 41 years, respectively. The ages were negatively
skewed (skew = -0.08) confirming that there were more
younger patients than older patients in the cohort.

Time-homogeneous Markov jump model: A Markov jump
model on a finite or countable set, S, is a family of random
variables (Xc(t))t$0 ((right continuous), on a probability space
(S, Fxc(s), P). Fxc(s), denote all the information pertaining to the
history of Xc up to s<t and c represents the number of states.
According to the continuous-time homogeneous Markov
jump   process   assumptions,   individuals   transition
independently among states. This means we can assume that
the transition intensities are constant over time, that is, the
transition  intensities  are  independent  of  t6,7.  Thus,  for  the
time-homogeneous Markov jump model we have:

Q(t) = Q, œt

where, Q is a c×c transition rate matrix and becomes:
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For some constant matrix Q. This implies that sojourn time
with a particular state, i, has an exponential distribution with
rate parameter:

-qii = λi = Σi…j qij

where, qij is the (i, j)th entry of Q. Thus, transition probabilities
only depend on the interval between times t1 and t2 and not
on t1 itself.
For a continuous-time homogeneous model, the

transition probabilities satisfy the Chapman-Kolmogorov’s
equation8:

 ij il lj
l S

s, t 0, i, j S: P t s  P (t)P (s)


     

According to Longini and Hudgens9:
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leads to the Kolmogorov’s forward equation:

ij l S il ljP ' (t) P (t)q P(t) Q, for all i, j S  

The Kolmogorov’s forward differential equation is derived
as:
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Rearranging to derive the forward differential equation
gives:

       ij ij
il lj

l j

P t Δt P t o Δt
P t q

Δt Δt

 
 

Taking the limits as )t60 gives the desired result:

     '
ij il lj t 0

l j

o t
P t P t q since lim 0

t 


 
   


This is the Kolmogorov forward equation for the process.
In the biology literature, this system of equations is termed the
chemical master equation10.

The Kolmogorov backward equation is derived from
Chapman-Kolmogorov’s equation by substituting s = )t as
follows:

   ij il lj
l S

P t + t = P t P (t)


 

Now, since:

Pil (Δt) = qilΔt+o (Δt), for l…i

and:

   
 

il il lj
l S l S
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We have:

     ij il lj
l S

P t + t = P t P t
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l j

= P t P t + P ( t) P (t)


 

       ij il ij ii ij
l j

P t + t = tq P t + 1+ tq P t + o ( t)


   

   ij il lj
l S

= P t + q P t t + o ( t)


 

If we then take Pij (t) term to the left-hand side, divide by
)t and then taking limits.
As )t60, we obtain the differential equation:

       ij ij
il lj

l j

P t + t - P t o t
= q P t +

t t

 
 

 '
ij il lj

l j
P (t) = q P t , for all i, j S 





Model  formulation:  Consider  the  following HIV, AIDS, Death
(HAD) model with the given transition rates. The state space
is S = {H, A, D}. These states are based on CD4 cell counts as
follows:

H; CD4 200 (HIV state)
CD4 = A; CD4 < 200 (AIDS state)

D; DEATH state 
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HIV (H) AIDS (A)

q  = HA 

Death (D)

q  = HA 

q  = AD q  = µHD

Fig. 1: HIV, AIDS and Death (HAD) model for HIV-infected
patients on combination antiretroviral therapy

The  CD4  state  H  represents  CD4  cell  counts   above
200 cells mmG3, state A represents the AIDS-defining state,
which    is    characterised    by    CD4    cell    counts    below
200 cells mmG3 and state D is the DEATH state that can be
reached from either state H or state A. At each stage, an
individual is expected to be in either state A, state H or state D.
The states H, A and D are mutually exclusive. States H, A and
D are defined for patients receiving antiretroviral therapy, such
that the transitions between states are bi-directional due to
adherence or non-adherence to treatment as shown in Fig. 1.
The transition rate from the AIDS state to the DEATH state

is denoted by <. Life may be in the HIV state or the AIDS state
on several separate occasions before making the one-way
transition to the death state. Alternatively, life may pass from
the HIV state to the DEATH state without ever having been in
the AIDS state.
Using the notations of the HAD model, the expression for

qAH, qHH, qHA, qHD, qAD, qAA and qDD can be given as follows:

qAH = D, qHH = -(F+µ) = -8H qDD = 8D = 0,
qHA = F, qHD = µ, qAD = <, qAA = -(D+<) = -8A

The generator matrix for the HAD model is:

HH HA HD

AH AA AD

DH DA DD

q q q -σ - μ σ μ
Q = q q q = ρ -ρ - ν ν

q q q 0 0 0

   
   
   
   
   

where,  the  order  of  the  states  has  been  taken  to  be  H,  A
then D.

Kolmogorov’s forward equation: For the HAD model, the
differential equation for PHH (t) can be defined by the general
forward equation as a template. This gives:

   '
HH HL LH

L S
P t = P t q , for L = H,A,D




= PHH (t) qHH+PHA (t) qAH+PHD (t) qDH

Now substituting it for transition rates, we have:

P’HH (t) = -PHH (t) (σ+µ)+PHA (t) ρ = -PHH (t) λH+PHA (t) ρ

The Kolmogorov’s forward equation for the transition
probability PHA (t) is:

   '
HA HL LA

L S
P t = P t q , for L = H,A,D




= PHH (t) qHA+PHA (t) qAA+PHD (t) qDA

= PHH (t) σ-PHA (t) (ρ+ν)

= PHH (t) σ-PHA (t) λA

Kolmogorov’s backward equation: For the HAD model, the
Kolmogorov’s backward differential equation for PHH (t) can be
obtained using the general backward equation as a template.
This gives:

   '
HH HL LH

L S
P t = q P t , for L = H,A,D 




= qHH PHH (t)+qHA PAH (t)+qHD PDH (t)

Now substituting in the transition rates, we have:

P’HH (t) = -(σ+µ) PHH (t)+σPAH (t) = -λH PHA (t)+σPAH (t)

The  backward  equation  for  the  transition  probability
PHA (t) is given by:

P’HA(t) = qHH PHA(t)+qHA PAA(t)+qHD PDA(t)

P’HA(t) = -(σ+µ)PHA(t)+σPAA(t) = -λHPHA(t)+σPAA(t)

Maximum likelihood estimators: From the HAD model
defined:
Let:

Thi = Waiting time of the ith life in the HIV state
Tai = Waiting time of the ith life in the AIDS state
Si = Number of transitions HIV÷AIDS by the ith life
Ri = Number of transitions AIDS÷HIV by the ith life
Di = Number of transitions HIV÷Death by the ith life
Ui = Number of transitions AIDS÷Death by the ith life

We also need to define totals:

N N N N N N

H Hi A Ai i i i i
i 1 i 1 i 1 i 1 i 1 i 1

T = T , T = T , S = S , R = R , D = D , U = U
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Using the lower case symbols for the observed samples,
it can be shown that the likelihood for the parameters, µ, ν, σ,
ρ for the HAD model is given by:

  Hi Ai i i i i

Hi Ai

H

i

A

i i i

N
(μ+σ)T (ν+ρ)T d u s r

i 1
-(μ+ d uσ) T (ν+ρ) T

(μ+σ)T (ν+ρ)T d u

s

r

r

s

L μ, ν, σ, ρ = e e μ ν σ ρ

= e e
= e e μ ν σ ρ

µ

 

 


     



Where:

i i i id = d , u = u , s = s , r = r   

The likelihood function L (µ, ν, σ, ρ) for the ith life reflects:

C Probability of the life remaining in the HIV state for total
time THi and in the AIDS state for time TAi, giving the
factors  and  respectivelyHi(μ+σ)Te Ai( + )Te  

C Probability of life making the relevant number of
transitions between states giving the factors  i i id u sµ , , 
and ir

The likelihood factorises into functions of each parameter
of the form :AμT de μ

 
       

H A

H H A A

(μ+σ)T (ν+ρ)T d u s r

μT σT νT ρTd s u r

L μ, ν, σ, ρ = e e μ ν σ ρ
= e μ × e σ × e ν × e ρ

 

   

So the log-likelihood is:

log L = - (µ+σ)TH-(ν+ρ)TA+d log µ+u log υ+s log σ+r log ρ

Differentiating with respect to each of the four parameters
gives:

H A
logL d logL u= T + ,  = T +

μ μ υ υ
  
 

H H
logL s logL r= T + , = T +

σ σ ρ ρ
  
 

Setting each of the derivatives to 0 and solving the
resulting equations, we see that:

H A H A

d u s rˆ ˆˆ ˆµ , , ,
T T T T

      

When there is more than one parameter to be estimated,
the second-order condition to check for maxima is that the
Hessian   matrix   is   negative   definite,   or   equivalently,   the

eigenvalues of the Hessian matrix are all negative. The Hessian
matrix is the matrix of the second derivatives. So, in this case,
we consider the matrix:

2

2

2
2

d 0 0  0
μ

u0 0  0
ν

0s0 0 rσ0 0 0 ρ

 
 
 
 
 
 
 

 
 

 

Since this is a negative definite matrix, the maximum
likelihood estimates of µ, ν, σ, ρ  are:

H A H A

d u s rˆ ˆˆ ˆµ , , ,
T T T T

      

Therefore, the maximum likelihood estimators are as
given:

H A H A

D U S Rˆ ˆˆ ˆµ , , ,
T T T T

      

Coding of covariates: The effects of covariates on estimated
transition intensities are analysed. This helps in determining
variables that have a strong influence on the survival of HIV
patients receiving antiretroviral therapy. These variables
include age, peripheral neuropathy (PN), non-adherence (NA),
gender, an orthogonal viral load residual covariate (RV). As
proposed by Shoko et al.11 the effect of the orthogonal viral
load variable is included in the continuous-time Markov
model. The variables are coded as follows:

   1, 45 years 1, Yes 1, Yes 1, maleAge = , PN = , NA = , Gender = ,0, No 0, No 0, female0, > 45 years


  Orthogonal viral load residual RV  1, if positive 
0, if nega  tive 

The residuals are obtained from a linear regression model
of viral load on CD4 cell count. The residual covariate is
independent  of  the CD4 count covariate correcting for
collinearity effects. For more details on the collinearity
argument, see Shoko et al.11. The effects of the covariates on
transition intensities, qij, for a patient h is given by the model:

   

     

Age PN(0)
ij ij h ij h

ij
Gender NA RV

ij h ij h ij h

q exp (β Age + β PN
+q =

β Gender + β NA + β RV )
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For this model, the baseline transition intensities, (0)
ijq ,

refer to a patient with age category 0 (over 45 years old), no
LA, no PN, Gender = 0 (female), no NA and RV = 0 means lower
viral load than expected. The transition intensities, qij, are
presented in rates per year. qij are the elements of a 3×3
transition     intensity     matrix     Q     from     a     continuous
time-homogeneous Markov process.

RESULTS

This section gives the results from the analysis of the data
based on the HAD model given earlier in Fig. 1 of the methods
section. Three states are defined namely: state H-HIV state
marked  by  CD4  cell  count  greater  than  200  cell  mmG3,
state A-the  AIDS-defining  state,  marked  by  CD4 cell count
below 200 cells/mm3 and state D-Death. We start off by
computing the transition counts. The  transition counts are
shown in Table 1.
Results from Table 1 above show fewer deaths recorded

from CD4 cell count greater or equal to 200 (3.1%) than from
the AIDS-defining state (15.6%). Once a patient has achieved
a CD4 cell count greater or equal 200 (state H), there is a
possibility of reverting to the AIDS state.
Next, the maximum likelihood estimators for the HAD

model are computed using the continuous-time
homogeneous Markov model.

Continuous-time homogeneous Markov model for the HAD
model: In this subsection, we give estimates of the transition
intensity matrix given by Qij, probability of each state being
next, given by:

ij ij
ij

ij ii j

q q
p for i j

q λ


  


For example, in Table 2:

HA
HA

HA HD

q 0.2273p 0.9188
q q 0.2273 0.0201

  
 

The results are shown in Table 2.
Results from Table 2 show higher risks of death from the

AIDS state (state A) than from state H where the CD4 cell
count is above 200. The results also showed that for patients
on antiretroviral therapy and in the AIDS-defining state, there
are higher rates of recovery to a state of CD4 cell count above
200 cell mm!3 compared to rates of transitions to the death
state. Thus, confirmation that antiretroviral therapy improves
the survival of HIV infected patients. 

Next, we compute the total time spent in each state and
the  mean  sojourn  time  for  the  HAD   model  as  shown  in
Table 3.
The total times spent in each state reveal higher survival

chances once the HIV-infected patient is alive and has
transitioned out of the AIDS-defining  state.  Results  from
Table 3 show that patients with CD4 cell count above 200 and 
on cART can spend approximately 17 years before absorption
into the death state. HIV-infected patients can also spend an
average of about 4 years in state H before the transition to
other states.
For the continuous-time homogeneous model with

parameters estimated above, we plot the percentage
prevalence in each of the states indicated in the HAD model
for HIV-infected patients on combination antiretroviral
therapy.
The prevalence plots from Fig. 2 show that the fitted

model overestimates observed percentage prevalence in state
1 (state H). The fitted model gives a better fit of the observed
patients in the AIDS-defining state 2 (state A). Observed death
prevalence is underestimated by the fitted model. This
suggests   that   transition   intensities   may  not  be  constant
throughout the whole study period. Hence, the need to fit a
continuous-time nonhomogeneous Markov model. This is
done below.

Table 1: Transition counts for the HAD model
To
-----------------------------------------------------------------------

From H A D
H 721 67 10
A 230 851 50
D 0 0 0

Table 2: Maximum likelihood estimates of the transition intensities, probability
of each state being next and transition probabilities for the HAD model
(95% CI are given in brackets)

Transitions qij pij Pij (t)
State H to H -0.2474 (-0.3104, -0.1972) 0 0.8292
State H to A 0.2273 (0.1781, 0.2902) 0.9188 (0.7978, 0.9703) 0.1420
State A to H 0.6364 (0.5577, 0.7261) 0.8319 (0.7851, 0.8721) 0.3973
State A to A -0.7650 (-0.8619, -0.6789) 0 0.5062
State H to D 0.0201 (0.0075, 0.0541) 0.0812 (0.0297, 0.2022) 0.0288
State A to D 0.1286 (0.0957, 0.1727) 0.1681 (0.1279, 0.2149) 0.0965
-2* log-likelihood = 1977.895

Table 3: Estimates  of  the  total  time  spent  in  each  state  and  sojourn  times
(95% CI are given in brackets)

Transitions Total time spent (h) in each state Sojourn time (h)
State H 17.1557 4.0416 (3.2211, 5.0711)
State A    5.0986 1.3073 (1.1602, 1.4730)
State D Infinity
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Table 4: Maximum likelihood estimates for the baseline transition intensities and hazard ratios for each time interval (95% CI are given in brackets)
Transitions HR (0.5, 1 year) HR (1, Infinity years)(0)

ijq
State H to A 0.2722 (0.2049, 0.3616) 0.6142 (0.2336, 1.6145) 0.4359 (0.2046, 0.9286)
State A to H 0.6725  (0.5856, 0.7721) 0.6994 (0.4538, 1.0779) 1.0304 (0.7486, 1.4184)
State H to D 0.0470 (0.0207, 0.1070) 0.3199 (0.0347, 2.9479) 0.0730 (0.0102, 0.5207)
State A to D 0.0892 (0.0569, 0.1396) 0.1836 (0.0382, 0.8832) 0.2750 (0.1186, 0.6373)
-2* log-likelihood = 1935.603

Fig. 2(a-c): Prevalence  for  the  continuous-time
homogeneous Markov plots for the HAD model
(a) State 1, (b) State 2 and (c) State 3

Next, we fit a continuous-time inhomogeneous Markov
model to assess the interval in which immune deterioration is
experienced after patients have achieved an improvement in
the immune system.

Results from Table 4 showed the maximum likelihood
estimates for the baseline transition intensities and hazard
ratios for the effects of time on transition intensities. The
results show that in the second 0.5 years of treatment uptake,
there is a  reduction  in  the  rates  of  immune suppression.
The  second  0.5 years of treatment uptake is also
characterised by a reduction in deaths particularly from the
AIDS-defining  state.  From 1 year of treatment uptake
onwards, there is a significant increase in the rates of immune
recovery from the AIDS-defining state. However, there is a
slight increase in the rate of occurrences of deaths after 1 year
of treatment compared to the 0.5 years to 1-year interval.
There is a further reduction in deaths for patients with CD4 cell
count above 200, 1-year post-treatment uptake compared to
the 0.5 years to 1-year interval. This means that chances of
survival for HIV-infected patients increase once their CD4 cell
count is above 200 and the effect of time for this to happen is
crucial.
We now plot percentage prevalence for each of the states

in the continuous-time non-homogeneous model. The plots
are shown in Fig. 3.
Results in Fig. 3 show a great improvement in fitting a

non-homogeneous model compared to the homogeneous
model. The fitted model in Fig. 3 now gives an almost perfect
fit of the observed percentage prevalence. In the next section,
we analyse factors that contribute to the survival of HIV-
infected patients on combination antiretroviral therapy.

Covariates that contribute to the survival of HIV-infected
patients on cART: In this subsection, we analyse the effects of
routinely collected viral load (an orthogonal viral load
covariate (RV)), age, gender, peripheral neuropathy (PN) and
non-adherence to treatment (NA) on the survival of HIV-
infected patients on cART.
Results from Table 5 show that risks of immune

suppression from CD4 cell count above 200 to the AIDS-
defining state is attributed to non-adherence to treatment and
having higher viral load than expected. Patients below the age
of 40 years had significantly higher rates of immune recovery
than  their  older  counterparts.  Results  also  show that male
patients, patients below the age of 40 years, patients with a
higher viral load than expected and non-adherent patients are
at higher risk of death from the CD4 cell count level above 200.
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Fig. 3(a-c): Prevalence      (%)      for      the      continuous-time
non-homogeneous Markov model for the HAD
model (a) State 1, (b) State 2 and (c) State 3

Figure 4 shows that the inclusion of the effects of
covariates  in  the  Markov  model  results  in  a  good  fit   of
the  observed  percentage  prevalence  for  each  of  the  states
in  the  HAD  model.  This  has  also  resulted  in  better
prediction of mortality (state 3). This is shown by death
prevalence that accumulated to slightly below 20% by the end
of the 4 years of treatment uptake. This gives the best
prediction of mortality since 60 deaths out of 320 patients
occurred during the study. This is approximately equal to
18.8%.

Fig. 4(a-c): Prevalence (%) for the continuous-time-
homogeneous Markov model with covariates (a)
State 1, (b) State 2 and (c) State 3

Assessment of the fitted models: In this section, we assess
the fitted models by performing a likelihood ratio test as well
as comparing the -2 *log-likelihood(-2LL) ratios for the fitted
models. The results are given in Table 6.
Results from Table 6 show that the likelihood ratio test for

the time-homogeneous model versus the time-homogeneous
model with covariates is in favour of a time-homogeneous
model with covariates. A comparison of the nonhomogeneous 
model with the homogeneous model with covariates is in
favour    of    the    homogeneous    model    with     covariates.
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Table 5: Maximum likelihood estimates for the baselines transition intensities with hazard ratios for each covariate (95% CI are given in brackets)
Transitions Baseline RV Age Gender PN NA
State H to A 0.1779 (0.1242, 0.2547) 11.147 (2.6110, 47.588) 0.8090 (0.4539, 1.442) 0.8162 (0.4516, 1.4749) 0.8334 (0.4101, 1.694) 2.2005 (1.050, 4.612)
State A to H 0.7076 (0.6143, 0.8152) 0.928 (0.6466, 1.332) 1.1476 (0.8383, 1.571) 0.6648 (0.4831, 0.9148) 0.6826 (0.4645, 1.003) 0.59583 (0.36840, 0.9638)
State H to D 0.0024 (0.0002, 0.2287) 1.091 (0.0914, 13.026) 34.562 (0.00001, 1756) 1.7609 (0.1488, 20.8415) 0.0650 (0.00005, 84142) 3.80314 (0.3184, 45.43)
State A to D 0.0012 (0.00007, 0.1909) 0.380 (0.0599, 2.411) 0.1001 (0.0062, 1.605) 0.0071 (0.00001, 278) 0.0145 (0.0002, 8519) 0.0319 (0.00005, 2119)
-2 * log-likelihood = 1391.64

Table 6: Likelihood ratio tests for the fitted models
Degree of

Models tested in pairs Preferred model -2 log LR freedom p-value
Homogeneous with no covariates and homogeneous with covariates) Homogeneous with covariates 586.2517 20 <0.0001
Non-homogeneous and homogeneous with no covariates Nonhomogeneous model 42.29228 8 <0.0001
Non-homogeneous and homogeneous with covariates Homogeneous with covariates 543.9594 12 <0.0001
Time-homogeneous model: -2LL = 1977.895, Time-nonhomogeneous model: -2LL = 1935.603, time-homogeneous model with covariates: -2LL = 1391.64

The time-homogeneous model with covariates also has the
lowest-2*log-likelihood compared to all the other fitted
models. This shows that the survival of patients on cART is best
explained by a time homogenous model with covariates
including the routinely collected viral load covariate.

DISCUSSION

In this study, the survival of HIV-infected patients after
ART initiation is analysed. Continuous-time Markov models are
fitted based on the states from an HIV, AIDS and DEATH (HAD)
states model. These states are based on CD4 cell count.
Factors that affect the survival of HIV-infected patients on ART
were analysed. These, among others, include age, gender,
routinely collected viral load, non-adherence, peripheral
neuropathy and time on cART.
Results from Table 5 on estimated hazard ratios showed

that patients below the age of 40 years achieved a normal CD4
cell count 1.15 times faster than their older counterparts. This
is corroborated by findings from a previous study which
concluded lower mean CD4 increases for older patients than
younger patients12. However, these patients have higher risks
(Hazard ratio = 34.6, CI: (0.00001, 1756)) of mortality compared
to their older counterparts.
Time on treatment also had a significant effect on the

survival of patients. Thus, after one year of treatment uptake,
patients have accelerated transitions from the AIDS state to
the HIV state defined by CD4 cell count above 200 cell/mm3. 

Males have generally lower chances of survival than their
female counterparts. Results showed that males also have
slower   rates   of   immune   recovery   than   females.
Sieleunou et al.3 also concluded that gender is a predictor of
mortality for patients on antiretroviral therapy.
Non-adherence to treatment reduces the chances of

survival for patients on cART.  Non-adherence  accelerates 
(Hazard ratio  =  2.2)  transitions  from  CD4  cell   count  state
above 200 cell/mm3 to the AIDS state defined by a CD4 cell
count below 200 cells/mm3. Patients who were non-adherent

to treatment are 3.8 times more likely to transit from the CD4
state above 200 cell/mm3 to death compared to patients who
were adherent to treatment. This is corroborated by the
findings from Seyoum et al.5 who observed that low-
adherence to ART is associated with increased mortality.
Patients with higher viral loads than expected had higher

risks (Hazard ratios = 11.147, CI: (2.6110, 47.588)) of HIV
progression to the AIDS state and high risks (Hazard ratio =
1.091, CI: (0.0914, 13.026)) of mortality from a CD4 cell count
above 200 cell/mm3. Thus, due to the effects of treatment and
time spent on cART, patients are expected to have suppressed
viral loads (possibly undetectable viral load) leading to an
improved immune system. However, if the viral load remains
higher than expected, this increases risks of immune
deterioration even after achieving normal CD4 cell counts and
consequently, mortality risks are increased.
A continuous-time homogeneous model without

covariates, a continuous-time nonhomogeneous model and
a continuous-time homogeneous model with covariates were
fitted for the data. These models were assessed to  select  the
model that best predicts the survival of HIV-infected patients
on cART. Form both the continuous-time homogeneous
model and the nonhomogeneous model, cumulative deaths
by the end of four years of treatment uptake had increased to
close to 40%. For the model with covariates, cumulative
deaths prevalence had increased to below 20%. However,
from the data only 60 out of 320 deaths were recorded
throughout the whole study period which is approximately
equal   to   18.8%.   Therefore,   we   conclude   that   a
continuous-time homogeneous Markov model with the
effects of covariates, including the orthogonal viral load
covariate, gives the best prediction of survival of HIV-infected
patients on cART than the other two models. This corroborates
with the findings from studies by Shoko et al.11 who proposed
the inclusion of both viral load monitoring and CD4 cell count
in one model to account for the aspect of mortality which one
variable can fail to account for without the inclusion of the
other.
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CONCLUSION

Recovery from AIDS state by HIV infected patients on
cART is likely to occur after one year of cART treatment.
However, if the viral load remains higher than expected, this
increases risks of immune deterioration even after having
achieved normal CD4 cell counts and consequently, mortality
risks are increased.

SIGNIFICANCE STATEMENT

This study concludes that constant monitoring of an
HIV/AIDS patient’s viral load can be beneficial for reducing the
risks of immune deterioration and mortality. This study will
help the researchers to uncover the critical areas regarding
HIV/AIDS progression and causes of mortality that many
researchers were not able to explore. Thus, a new theory on
HIV, AIDS, Death (HAD) Markov model may be arrived at.
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