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Abstract
Background and Objective: Forage production in the tropics is generally asymmetrically distributed. Hence the need to use more
complex models, especially when multiple comparisons are made and there are very large deviations from normality. The objective of
this research is to fit a Generalized Additive Model for Location, Scale and Shape (GAMLSS) model on accumulated dry matter data from
Brachiaria  brizantha  using a model selection algorithm. Materials and Methods: A Box-Cox Power Exponential (BCPE) distribution was
adjusted on the dry matter from  Brachiaria  brizantha  data implementing GAMLSS in R (programming language). The accumulated dry
matter data for  B.  brizantha  were obtained from a study carried out on a farm in the state of Portuguesa, Venezuela. The explanatory
covariate x was the interval between cuts (21, 28, 35 and 42 days). Results: The dependent variable (dry matter) exhibited both skewness
and kurtosis. GAMLSS allowed flexible modeling of both the distribution of the dry matter yield from  B.  brizantha  and the dependence
of all the parameters of the distribution on intervals between cuttings. For the dry matter yield from B. brizantha, which exhibited
skewness and leptokurtosis, the BCPE distribution, provided the best fit. Conclusion: The interval between cuttings showed an effect that
is reflected in the average yield of dry matter from  B.  brizantha. The interval between cuts affected the skewness and the kurtosis of the
distribution.
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INTRODUCTION

In tropical livestock systems, poor grassland productivity
is one of the most important limitations due to the
adaptability and persistence in these environments. However,
new cultivars of the genus Brachiaria have been released to
the market as options to overcome the problems observed in
traditional forages, thus providing better fodder options1.
Brachiaria brizantha is one of the superior introducing grasses
that has been adapted and known by farmers. These grasses
are compatible with the tropical climate and are tolerant of
various types of soil, including acidic soils2. Knowledge of the
distribution of production and quality of forage during the
year is a tool to plan utilization3. Forage production in the
tropics is related to the distribution of rainfall, which is
generally asymmetrically distributed. This fact raises the need
to use more complex models, especially when multiple
comparisons are made and there are very large deviations
from normality, the risk of error increases4,5. 

Generalized Additive Models for Location, Scale and
Shape (GAMLSS) are semi-parametric regression type models.
They are parametric, in that they require a parametric
distribution assumption for the response variable and “semi”
in the sense that the modeling of the parameters of the
distribution, as functions of explanatory variables, may involve
using non-parametric smoothing functions. GAMLSS were
introduced by researchers6 as a way of overcoming some of
the limitations associated with the popular generalized linear
models, GLM and generalized additive models, GAM7,8. In
GAMLSS the exponential family distribution assumption for
the response variable (y) is relaxed and replaced by a general
distribution family, including highly skew and/or kurtotic
continuous and discrete distributions9. The systematic part of
the model is expanded to allow modeling not only of the
mean (or location) but other parameters of the distribution of
y as, linear and/or non-linear, parametric and/or additive non-
parametric functions of explanatory variables and/or random
effects6. Hence GAMLSS is especially suited to modeling a
response variable that does not follow an exponential family
distribution, (e.g., leptokurtic or platykurtic and/or positive or
negative skew response data, or over-dispersed counts) or
which exhibit heterogeneity, (e.g., where the scale or shape of
the distribution of the response variable changes with
explanatory variables(s))9.

In this paper, a GALMSS model for skewed data, where
the exponential family assumption is relaxed and replaced by
a very general distribution family is considered. Within this
new framework, the systematic part of the model is expanded
to allow not only the mean (or location) but all the  parameters

of the conditional distribution of y to be modeled as
parametric and/or additive nonparametric (smooth) functions
of explanatory variables and/or random-effects terms. The
objective of this research is to fit a GAMLSS model on
accumulated dry matter data from Brachiaria brizantha using
a model selection algorithm.

MATERIALS AND METHODS

Study area: The study was carried out at a farm in Portuguesa
state, Venezuela (Fig. 1) from November, 2016-October, 2017).
The farm is located between 1008020-1004802 West
Longitude and 425400-427420 North Latitude. The response
variable ‘y’ is the accumulated dry matter (kg haG1). The
explanatory variable ‘x’ is the interval between cutting (21, 28,
35 and 42 days).

Box-Cox power exponential distribution: The  Box-Cox
power exponential distribution (BCPE) is defined by (for details
see11).

Let Y be a positive random variable having a Box-Cox
power exponential distribution, denoted by , defined through
the transformed random variable Z given by:

(1)

1 Y 1
µ

Z if 0
1 Ylog if 0

µ

              
  

      

for  0<Y<4 where  y  and where the random variable Z is
assumed to follow a standard power exponential distribution
with power parameter, τ>0, treated as a continuous parameter
(Parameterization (1) assumes a standard normal distribution
for Z)11.

The probability density function of Z, a standard power
exponential variable, is given by:

(2) Z t1
t

f (z) exp 0,5 | z / c |
c2 (1 / )


  
 


 

 

for  -4<z<4 y τ>0, where c2 = 2G2/τ'(1/τ)['(3/τ)]G1. This
parameterization ensures that Z has mean 0 and standard
deviation 1 for all τ>0. Note that τ = 1 and 2 correspond to the
Laplace (i.e., two-sided exponential) and normal distributions
respectively, while the uniform distribution is the limiting
distribution as τ6412. 
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Fig. 1: Relative location of the Portuguese state, Venezuela
Source: Seijas10

From 2, the probability density function of Y, a BCPE (µ, F,
υ, τ), random variable, is given by:

(3)
v 1

Y Z Z
dz yf (y) f (z) | | f (z)
dy µ



 


Modeled data using GAMLSS: Let yT = (y1, y2,..., yn) be the
vector   of   the   response   variable   observations.   Also,    for
k = 1,2,..., p, let gk(.) be a known monotonic link function
relating  2k to explanatory variables and random effects
through an additive model given by:

(4)k(J )
k k k k k ( j 1) jk jkg ( ) X Z      

where, 2k and 0k are vectors of length n, e.g., 2Tk = (21k, 22k,...,
2nk), $Tk = ($1k, $2k,..., $j’kk) is a parameter vector of length J’k, Xk
is a known design matrix of order n×J’k, Zjk is a fixed known 
n×qjk design matrix and γjk is a qjk-dimensional random
variable. Model (4) is called the GAMLSS.

The vectors γjk for j = 1,2,..., jk  could be combined into a
single vector  with a single design matrix Zk.

If, for k = 1,2,..., p, Jk = 0 then model (4) reduces to a fully
parametric model given by:

gk (θk) = ηk = Xkβk (5)

If Zjk = In, where In is an n×n identity matrix and γjk = hjk = hjk
(xjk) for  all  combinations  of  j  and  k  in  a  model  (4), this
gives:

(6)kJ
k k k k k j 1 jk jkg h ( )) X x(      

where, xjk for j = 1,2,..., Jk and k = 1,2,..., p are vectors of length
n. The function hjk is an unknown function of the explanatory
variable xjk  and  hjk = hjk (xjk) is the vector that evaluates the
function  hjk at xjk. The explanatory vectors  are assumed to be
known. We call the model in equation (5) the semiparametric
GAMLSS. Model (6) is an important special case of model (4).
If Zjk = In and γjk = hjk = hjk (xjk)  for specific combinations of j
and k in a model (4), then the resulting model contains
parametric, nonparametric and random-effects terms.

The first two population parameters  21  and 22  in a model
(4) is usually characterized as location and scale parameters,
denoted here by µ and F, whereas the remaining parameter(s),
if any, are characterized as shape parameters, although the
model may be applied more generally to the parameters of
any population distribution.
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For many families of population distributions a maximum
of two shape parameters ν (=) and τ (=23) suffice, giving the
model:

1J

1 1 1 1 j j1
j 1

g (µ) X Z 1


    

2J

1 2 2 2 j2 j2
j 1

g ( ) X Z


     

(7)
3J

3 j3 j3
j 1

3 3 3g ( ) X Z


     

4J

4 j4 j4
j 1

4 4 4g ( ) X Z


     

The GAMLSS model (4) is more general in that the
distribution of the dependent variable is not limited to the
exponential family and all parameters (not just the mean) are
modeled in terms of both fixed and random effects, for details
see Rigby and Stasinopoulos11.

Model for the four parameters of the Box-Cox power
exponential distribution: The parameters (µ, F, ν, τ) of the
Box-Cox power exponential distribution may be modeled as
functions of many explanatory variables using the generalized
additive model for location, scale and shape (denoted by
GAMLSS) of Rigby and Stasinopoulos11. Here we consider a
special case of the GAMLSS model where there is a single
explanatory variate X. Given X = x; Y is modeled by a Box-Cox
power exponential variable, BCPE (µ, F, ν, τ), with probability
density function fY(y), defined by (4) where the parameters  µ,
F, ν and τ  are modeled as smooth non-parametric functions
of x, i.e.  Y-BCPE (µ, F, ν, τ) where:

g1(µ) = h1(x)

g2(σ) = h2(x)

g3(ν) = h3(x)

g4(τ) = h4(x) (8)

and for k = 1, 2, 3, 4, gk(.) are known monotonic link functions,
usually  the  identity  for  µ  and ν and the log for F and τ  and
hk (x) are smooth non-parametric functions of x. 

For i = 1,2,..., n, given X = xi, observations Yi are assumed
to be independent BCPE (µi, Fi, νi, τi)  variables with probability
density   functions   fYi(yi)   obtained   from  (3)  and  parameters

obtained from (8). This model is appropriate for independent
observations of Y (e.g. cross-sectional data) rather than
correlated observations (e.g. longitudinal data), for details see
Rigby and Stasinopoulos11.

Model estimation and selection: The non-parametric
functions hk for k = 1, 2, 3, 4 are estimated by maximizing the
penalized log-likelihood function lp defined by:

(9) 4
p d k 1 k

2
k

1l l (u
2

h" ) du





   

where, h”k(u) is the second derivative of hk(u)  to u and k
i

n
i 1 l

is the log-likelihood function of the data and li is the log-
likelihood function of observation yi  from a Box-Cox power
exponential distribution, BCPE (µi, Fi, νi, τi), obtained from (4).

The penalized log-likelihood function (9) is maximized
iteratively using either the RS or CG algorithm of Rigby and
Stasinopoulos11, which in turn uses a back-fitting algorithm to
perform each step of the Fisher scoring procedure, requiring
the log-likelihood of the data, Id  and first and expected second
derivatives to µ, F, ν and τ.

A general criterion for model selection is the generalized
Akaike Information Criterion (GAIC), obtained by adding to the
fitted deviance a fixed penalty # for each effective degree of
freedom used in a model, i.e. GAIC (#) =  where dfD̂ #.df ,

denotes the total effective degrees of freedom used in the
model,  denotes the fitted deviance and denotes theˆD̂ 2l 

fitted log-likelihood.
The total effective degrees of freedom df combines the

effective degrees of freedom used in the smooth functions h1
(x) to h4 (x) in (8), for modeling µ, F, ν and τ, denoted by dfµ, dfF,
dfν and dfτ, respectively. Each effective degrees of freedom
(e.g. dfµ) is defined by the trace of the corresponding
smoothing matrix in the fitting algorithm, which is in turn
directly related to the corresponding smoothing parameter
(e.g. λ1), see Rigby and Stasinopoulos11 for more details. The
model with the smallest value of the criterion GAIC (#) is then
selected. The Akaike information criterion (AIC) and the
Schwartz Bayesian criterion (SBC) are special cases of the GAIC
(#) criterion corresponding to # = 2 and # = log (n),
respectively. Let BCPE (dfµ, dfF, dfν, dfτ, λ) represent the BCPE
model (8), where the first four values inside the brackets
denote the total effective degrees of freedom used in the
smooth non-parametric functions h1 (x) to h4 (x) for modeling
µ, F, ν and τ, respectively and the fifth value λ denotes the
power transform parameter in the transform x = x varλ, where
xvar is the explanatory variate recorded in the data set.
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For cumulated dry matter data set the three-step
procedure for selecting a model of form (8) proposed by Rigby
and Stasinopoulos11 is used:

Initial choices:

C Choose link functions gk (.) For k = 1, 2, 3, 4  in (4)
C Choose an initial parameter value λ0 for λ in the

transformation x = x varλ, assuming x var>0 for all
observations. The initial value λ0 is chosen to provide an
approximate constant absolute gradient between y and
x. (A shifted (or offset) power transformation of x var, i.e.,
x = (x var+δ)λ could be considered if x var takes negative
values)

C Choose a single penalty # for each effective degree of
freedom used in the models for µ, F, ν and τ

Model selection:

C From model BCPE (1, 1, 1, 1; λ0) (where the first four values
dfµ = dfF = dfν = dfτ = 1  indicate fitting a constant for
parameters ), apply forward selection of  to give the
chosen value which minimizes criterion GAIC (#)

C In model BCPE (dfµ1, 1, 1, 1, λ), estimate λ, (e.g. using a grid
search over values of λ) to give the value λ1 which
minimizes GAIC (#)

C From model BCPE (1, 1, 1, 1; λ1), apply forward selection of
dfF  to give chosen value dfF1 which minimizes GAIC (#)

C From model BCPE (dfµ1, dfF1, 1, 1, λ1) create a two-way
table of values of GAIC (#) for combinations (dfν,  dfτ ) and
search for the combination (dfν1,  dfτ1) which minimizes
GAIC (#)

Fine-tuning of model BCPE (dfµ1, dfF1, df<1,  dfJ1 81): 

C Fine-tuning of  dfF,  by changing dfF1, in steps of 1, if the
value of GAIC (#) decreases

C Similar _ne tuning of dfµ 
C Fine-tuning of λ by re-estimating λ as in step 2 (b)

The R code to use the algorithm described above is
shown in the Appendix.

RESULTS AND DISCUSSION

Dry matter of  Brachiaria  brizantha: In Fig. 2a, the
distribution of the dependent variable (accumulated dry
matter) of B. brizantha showed asymmetry and  kurtosis.
Figure 2b the box plots show an asymmetric distribution of
the accumulated dry matter data for intervals between cuts of
35 and 42 days. Figure 2c the densities associated with the
accumulated  dry  matter data of B. brizantha show leptokurtic

Appendix: R code to fit a GAMLSS model on dry matter data in Brachiaria brizantha
dataa
min(KGMS)
max(KGMS)
library(gamlss.dist)
library(gamlss.data)
library(tidyverse)
library(ggpubr)
library(ggforce)
p3 <- ggplot(data = datos, aes(x = edad))+ geom_density(alpha = 0.7, fill = "gray20") + labs(title = "Distribución KGMS") + theme_bw()
##
library(gamlss)
distribuciones<-fitDist(y = edad,k = log(length(edad)),type = "realplus",trace = FALSE,try.gamlss = TRUE,parallel = "multicore",ncpus = 3L)
##
distribuciones$fits %>% enframe(name = "distribucion", value = "GAIC") %>% arrange(GAIC)
summary(distribuciones)
modelo <- gamlss(formula = KGMS ~ pb(edad),sigma.formula = ~ pb(edad),nu.formula = ~ pb(edad),family = BCPE,data = datos,control = gamlss.control(trace = FALSE)
)
##
summary(modelo)
##
grid_predictor.1<-edad
grid_predictor.1
predicciones <- predictAll( modelo, newdata = data.frame(edad= grid_predictor.1), type = "response")
##
predicciones <- as.data.frame(predicciones)
predicciones <- bind_cols(data.frame(edad = grid_predictor.1), predicciones)
predicciones %>% head()
predicciones
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Fig. 2(a-c): Dry matter distribution of Brachiaria brizantha
(a) Histogram, (b) Box-plot and (c) Density at four intervals
between cutting

distributions for the 4 intervals between cuts. The data of
Table 1 shows how the accumulated dry matter of B. brizantha
increases as the interval between  cuts  increases.  The  data of

Fig. 3: Box-Cox Power Exponential Distribution (BCPE) fitted
on Brachiaria  brizantha  dry matter data at four
intervals between cuttings

Table 1: Yield (kg) of dry matter of  Brachiaria  brizantha  at four intervals
between cuttings

Intervals between cutting (days)
-------------------------------------------------------------------------

Statistics 21 28 35 42
Mean 467.17 546.3935 569.453 623.185
Median 456.01 514.18 611.25 674.32
Standard deviation 294.4591 320.8447 314.3087 308.0972

Table 2: Assumptions on dry matter data from Brachiaria brizantha at four
intervals between cutting

Assumption Test p-value
Normality Wilk-Shapiro 0.002337
Homogeneity of variances Levene 0.9773
Autocorrelation Durbin-Watson <0.0000

Table 3: GAMLSS model adjusted on dry matter data of Brachiaria brizantha at
four intervals between cutting

Fit distribution GAIC
BCPE 865
BCPEo 962
GG 968
GB2 987
BCCG 993
BCCGo 993
BCT 997
BCTo 997
exGAUS 1006
WEI2 1006

Table 2 shows the non-normality or asymmetry (p<0.05) of the
accumulated dry matter distribution and serial autocorrelation
of  errors  (p<0.05).  From  Fig.  3  and Table 3, the chosen BCPE
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Table 4: Box-Cox power exponential distribution (BCPE) fitted on  Brachiaria  brizantha  dry matter data at four intervals between cutting
µ model Estimation Standard error p-value
Intercept 430.39159 0.35389 <0.0000
Intervals between cuttings 5.02916 0.01091 <0.0000
Log(F) model Estimation Standard error p-value
Intercept -0,3453 0,0008818 <0.0000
Intervals between cuttings -0,01066 0,00002717 <0.0000
Log(ν)  model Estimation Standard error p-value
Intercept 0,7739 0,001938 <0.0000
Intervals between cuttings 0,003976 0,00006215 <0.0000
τ model Estimation Standard error p-value
Intercept 12,60 12,79 0.328

Fig. 4(a-c): Fitted values for the parameters (a) µ,(b) F and (c)
ν in the final chosen BCPE model on dry matter
data in Brachiaria  brizantha

model provides a substantially better fit than the previous
models both in terms of the  GAIC  (865).  The  fitted  models
for  the  :,  F  and   in  the  chosen BCPE model have plotted in

Fig. 4a-c, respectively. The estimated parameters for Box-Cox
power exponential distribution (BCPE) fitted on Brachiaria
brizantha  dry matter data at four intervals between cuttings
are shown in Table 4. The parameters :, σ, ν and τ of the BCPE
distribution may be interpreted as relating to the location
(median), scale (coefficient of variation), skewness (power
transformation to the symmetry) and kurtosis, respectively9.
The fitted value  for τ  in Equation (13) indicates leptokurtosis
as τ>3. From Table 5 for the different intervals between
cutting, the distribution of dry matter from B. brizantha is
asymmetric as vi>0. From Eq. 10 and Fig. 4a, it is observed that
the longer the interval between cuts, the average yield of dry
matter increases. Similar results are reported by Hare et al.13 in
a study on the effect of cutting interval on yield and quality of
three brachiaria hybrids in Thailand. From Fig. 4b it is observed
that the longer the interval between cuts, the variability in the
dry matter yield decreases and from Fig. 4c it is observed that
for intervals between the cutting of 21-28 days  the
asymmetry of the distribution of dry matter yield decreases,
while for intervals between the cutting of 35-42 days it
increases.

This indicates that cutting stimulates regrowth of the
plant and consequently its dry matter production since a
significant increase in dry matter is observed when going from
the first to the third cut. There is enough information in the
literature to explain the effect of the cutting stimulus13 or
grazing1,14 in the dry matter production of pastures. These
variations in the average dry matter production between cuts
of the genotypes as a whole were the product of the
environmental effect (heterogeneous distribution of rainfall
within the same dry season), rather than by effects of the
genotype itself (p>0.05). In this regard, some studies show
that environmental effects are often more important than the
effects of the genotype on the productive traits of forage
plants15,16. In this way, the modeling of the accumulated dry
matter using the BCPE distribution allows to show the effect
of the interval between cut on the accumulated dry matter
and to make decisions in the management of this species that
allow better yields.
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Table 5: Estimated parameters from the GAMLSS model on the accumulated dry matter from B. brizantha at four intervals between cuttings
Interval between 
cutting (days) Mean µ̂i Standard deviation σ̂i = eLog(σ̂i) Skewness ν̂  i = eLog(ν̂ i) Kurtosis τ̂ i
21 536.0040 0.5660 2.3570 12.6
28 571.2081 0.5253 2.4235 12.6
35 606.4122 0.4875 2.4919 12.6
42 641.6163 0.4524 2.5622 12.6

In the parameterization of the Box-Cox  Power
Exponential Distribution (BCPE) fitted on Brachiaria brizantha
dry matter data at four intervals between cutting with
parameters  used in the  GAMLSS  methodology,  its 
expectation  is  given  by:  E[Y]  =  µ  and   its   variance   by
Var[Y] = F2µ2:

µ̂ = 430,39159+5,02916 (interval between cutting) (10)

Log (σ̂) = -0,3453-0,01066 (interval between cutting) (11)

Log (ν̂) = 0,7739+0,003976 (interval between cutting) (12)

τ̂ = 12,6 (13)

CONCLUSION

GAMLSS allowed flexible modeling of both the
distribution of the dry matter yield of B. brizantha and the
dependence of all the parameters of the distribution on
intervals between cutting. The BCPE distribution provides a
flexible model for the dry matter yield of B. brizantha,
exhibiting both skewness and leptokurtosis. For the dry matter
yield from Brachiaria brizantha, exhibiting skewness and
platykurtosis, the BCPE distribution, provided the best fit.
Finally, the results of this research suggested that the interval
between cutting has an effect that is reflected in the average
yield of dry matter of B. brizantha, that is, the yield of dry
matter increases as the interval between cutting increases. .
Similarly, the interval between cuts affects the skewness and
the kurtosis of the distribution.

SIGNIFICANCE STATEMENT

This  study  uncovers  the potential uses of GAMLSS
models  in   the  dynamics  of  dry   matter  production  that
may be beneficial to pasture and forage researchers. This
study   uncovers   the   potential   uses   of   GAMLSS    models
in the dynamics of dry matter  production that may be
beneficial   to   pasture   and   forage  researchers. This study
will help  the  pasture  and  forage researcher to uncover
critical areas of accumulated dry matter production of

Brachiaria brizantha that many researchers were unable to
explore.  Therefore,  a  new theory can be reached on
modeling the dynamics of accumulated dry matter production
of B. brizantha.

REFERENCES

1. Hernández-Garay,  A.,  L.E.   Sollenberger,   D.C.   McDonald,
G.J. Ruegsegger, R.S. Kalmbacher and P. Mislevy, 2004.
Nitrogen fertilization and stocking rate affect stargrass
pasture and cattle performance. Crop Sci., 44: 1348-1354.

2. Umami,  N.,  A.H.I.  Kusuma  and  C.T.  Noviandi,   2018.
Growth, production  and seed quality of Brachiaria brizantha
cv. Mg 5 under different planting  space.  Buletin  Peternak,
42: 210-214.

3. Gray, M.H., C.J. Korte and W.M. Christieson, 1987. Seasonal
distribution of pasture production in New Zealand XX.
Waerengaokuri (Gisborne). N. Z. J. Exp. Agric., 15: 397-404.

4. Dunnett, C.W., 1982. Robust multiple comparisons. Commun.
Stat.- Theory Methods, 11: 2611-2629.

5. Ringland, J.T., 1983. Robust multiple comparisons. J. Am. Stat.
Assoc., 78: 145-151.

6. Rigby, R.A. and D.M. Stasinopoulos, 2005. Generalized
additive models for location, scale and shape (with
discussion). Appl. Stat., 54: 507-554.

7. Hastie, T. and R.J. Tibshirani, 1990. Generalized Additive
Models. Chapman and Hall, London.

8. Nelder, J. and R.W.M. Wedderburn, 1972. Generalized linear
models. J. R. Stat. Soc. Ser. A: Gen., 135: 370-384.

9. Stasinopoulos, D.M. and R.A. Rigby, 2007. Generalized
additive models for location scale and shape (GAMLSS) in R.
J. Stat. Software, 23: 1-46.

10. Seijas, A.E., 2016. Regional differences in growth rates of
Orinoco crocodiles (Crocodylus intermedius) from the
Venezuelan Llanos. Herpetol. J., 26: 263-269.

11. Rigby, R.A. and D.M. Stasinopoulos, 2004. Smooth centile
curves for skew and kurtotic data modelled using the
Box‒Cox  power  exponential   distribution.   Statist.   Med.,
23: 3053-3076.

12. Nelson,   D.B.,   1991.   Conditional   heteroskedasticity   in
asset          returns:      A      new      approach.        Econometrica,
59: 347-370.

475



Pak. J. Biol. Sci., 24 (4): 468-476, 2021

13. Hare, M., S. Phengphet, T. Songsiri, N. Sutin and E. Stern, 2013.
Effect of cutting interval on yield and quality of three
brachiaria hybrids in Thailand. Trop. Grasslands, 1: 84-86.

14. Venuto,  B.C.,  B.L.  Burson,  M.A.   Hussey,   D.D.   Redfearn,
W.E. Wyatt and L.P. Brown, 2003. Forage yield, nutritive value,
and  grazing  tolerance  of  Dallisgrass  biotypes.  Crop  Sci.,
43: 295-301.

15. Bolanos-Aguilar,  E.D.,  C.  Huyghe,  C.  Ecalle, J. Hacquet and
B. Julier, 2002. Effect of cultivar and environment on seed
yield in alfalfa. Crop Sci., 42: 45-50.

16. Charmet, G., F. Balfourier, C. Ravel and J.B. Denis, 1993.
Genotype x environment interactions in a core collection of
French perennial ryegrass populations. Theoret. Appl.
Genetics, 86: 731-736.

476




