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Abstract
Background and Objective: Urinary tract infections believe to be one  of  the  main  acquainted  infections  by  Escherichia  coli   in
hospitals  with  an  excessive  incidence  of  illness. This study aimed to analyze the antibiotic resistance profile and molecular
characteristics  of  E.  coli   isolates recovered from patients with urinary tract infection at different hospitals in Taif Governorate, Saudi
Arabia. Materials and Methods: Out of 143 isolates collected for 11 months, from February-December 2019, 24 isolates were identified
as E. coli   by API system and 16S rRNA sequences techniques. An antibiotic sensitivity test was performed using the disk diffusion method.
Besides, the repetitive sequence repeat-PCR (Rep-PCR) technique was used for genotyping the 24 isolates. Results: Almost all isolates
were resistant to most tested antibiotics such as ampicillin, ceftazidime, cefepime, trimethoprim/sulfamethoxazole, amox/clavulanic. The
PCR results show that virulence  genes  kpsII  and  yaiO  were  detected in  all  E.  coli   isolates. Stx1, fimH, hly  and uidA  were moderate
detected in all isolates. Conclusion: The high frequencies of antibiotic-resistant E. coli  isolates in patients with urinary tract infections in
the current study suggest that continuous surveillance of the use of appropriate antibiotics is required and that control of infections is
necessary.
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INTRODUCTION

Urinary Tract Infections (UTIs) are described as bacteriuria
with urinary1. UTIs, consider as one of the main familiar
infections in hospitals with a great frequency of morbidity1.
UTIs may affect half of all people during their lifetime2,3. The
factors that cause UTI differ from one place to another and
even differ in their patterns of susceptibility to resistance.
Several types of microbial pathogens can cause UTIs3,4. These
pathogens included Escherichia coli, Klebsiella pneumoniae
Staphylococcus aureus, Pseudomonas aeruginosa, Proteus  sp.
and Enterococci spp3,5,6. E. coli has been stated as the most
prevalent pathogen that causes UTI and is a very common
cause for consultation and prescription of antibiotics in
current practice2,7. Many strains of E. coli have adapted to
become opportunistic and commensal pathogens5. Huge and
improper use of antibiotics to treat UTI generates selective
pressure followed by rapid onset and spread of multidrug-
resistant bacterial strains2,8. Undesirably, numerous bacterial
isolates have developed and become resistant to antibiotics
over the last several decades4. Several international health
institutions like WHO or the United States Institute of Medicine
officially stated anxiety against antibiotic-resistant bacteria
that represent health and economical risks9,10.

It  was  published  that E.  coli  strains   are   divided   into
4 categories: A, B1, B2 and D. The low pathogenic strains are
located in Group A and B11. Extraintestinal pathogenic strains
mainly belong to B2 and D groups and intestinal pathogenic
strains belong to groups A, B1 and D. Based on the virulence
gene profiles, E. coli  has  been  classified   into   four  clusters
(I-IV)11,12. These E coli strains have been reported to produce
two types of Shiga toxins (Stx), Stx1 and Stx2, which can cause
severe diarrhea and hemolytic uremic syndrome13,14. The main
virulence factors include the Shiga Toxin-producing
Escherichia coli (STEC) hlyA  gene, which is often associated
with severe clinical disease in humans. Also, the intimin, the
product of eaeA gene, is involved in bacterial attachment and
effacing adherence7,12. STEC as a virulence factor is a major
cause of food-borne infections and is thus a major public
health concern2. The virulence factors also include certain
capsular antigens (kpsII and K1), which have been recognized
as uropathogenic genes and FimH, a major determinant that
facilitates colonization and survival in host cells and has a high
tropism for urinary tract receptors14. Multiplex PCR has been
used elsewhere to detect virulence genes in E. coli, particularly
uidA, stx1, stx2, eaeA, fimH  and hlyA6,13.

The main objective of this study was to identify the
virulence genes in E. coli isolates obtained from UTI patients.
Besides, the repetitive sequence repeat (Rep-PCR) technique
was used for genotyping the E. coli  isolates.

MATERIAL AND METHODS

Sampling: The current study was carried out at Department of
Biology, College of Science, Taif University, Saudi Arabia from
February-December, 2019. Out of 143 isolates collected from
UTI patients, 24 were identified as E. coli. Eighty percent of the
patients were females. The urine samples were collected in a
clean and sterile tube. The ethics committee of Obstetrics
Hospital in the King Faisal Complex, Taif, Saudi Arabia,
approved the study experiment.

Isolation of bacterial strains: Urine samples were cultured on
MacConckey  agar  media  and  then were incubated for at
least 24 hrs in positive cases (>105 CFU mLG1) or 48 hrs in
negative cases. E. coli isolates were identified using standard
biochemical tests and the results were confirmed using the
API 20E system (Biomerieux, Inc., Missouri, USA).

Antibacterial susceptibility test: Antibiotic susceptibility of
E. coli  was achieved by the roles of the National Committee
for Clinical Laboratory Standards using the disk diffusion
method as previously reported5. All bacterial strains were
cultured on nutrient agar at 37EC for overnight. The E. coli
ATCC 25922 was used as Extended Spectrum Beta Lactamase
(ESBL)-negative control. Antibiotic discs that used in the
present experiment were: Piperacillin-tazobactam (100 µg),
amoxicillin/clavulanic  acid,  Cefoxitin,  Cefepime, cefalotin,
Nitrofurantoin, Trimethoprim-Sulfamethoxazole, piperacillin/
tazobactam, Ceftazidime (30 µg), Gentamicin (10 µg),
Ceftriaxone  (30   µg),   Ciprofloxacin   (5   µg) and Imipenem
(10 µg).

DNA extraction: E. coli isolates were grown in Luria Bertani
broth at 37EC overnight. Bacteria were then harvested from
the broth, resuspended in  sterile  distilled  water and genomic
DNA  was  extracted  for  each  isolate  using a DNA extraction
kit (Promega, German) according to the manufacturer’s
instructions. The DNA template was stored at -20EC until used
for PCR.

Sequencing of 16S rRNA gene of E. coli isolates: Two PCR
primers were designed (Macrogen, Inc., Seoul, South Korea) to
amplify approximately 1465 bp of a consensus 16S rRNA gene
as described  previously15,  including  forwarding  primer 27f
(5-AGAGTTTGATCMTGGCTCA-3)  and  reverse  primer  1492r
(5-TACGGYTACCTTGTTACGACTT-3). PCR amplicons of the 16S
rRNA gene were purified from gel bands using a QIAquick PCR
Purification Kit (QIAGEN) and were sequenced commercially.
Raw sequences were edited and assembled using MEGA 5.2.
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The sequences were deposited in GenBank under accession
numbers KY780336-KY780359. The nucleotide sequences of
the 16S rRNA genes obtained in the present study and from
GenBank were aligned, sequence identities were calculated
and a phylogenetic tree was generated as previously
described14.

Virulence genes PCR amplification: E. coli isolates were
examined through duplex PCR using specific primers to
determine  the  presence  of  stx1  and  sxt2  genes according
to Alsanie  et  al.16  Samples  were  also  tested  for the
presence of uidA,  yaiO,  eaeA,  hlyA,  fimH  and kpsII according
to Moyo et al.17.

Repetitive  sequence  repeat-PCR  (Rep-PCR):  Rep-PCR
conditions were standardized according to Hassan and Belal16.
Thirty repetitive sequence primers were tested. Among them,
six primers that presented the strongest band resolution were
chosen for this study (Rep1-6). PCR conditions and DNA
amplicons resolution was accomplished according to Hassan
and Belal14.

Association between Rep-PCR markers, antibiotic resistance
and virulence genes: All  genotypic   data   obtained  from
Rep-PCR primers for all isolates were converted to the
presence (1) or absence (0). For analysis purposes, antibiotic
sensitivity was converted to numerical values, where 1
represented sensitive (S), 2 represented resistant (R) and 3
represented Immune (I). Besides, virulence gene responses
were also converted to the presence (1) or absence (0). We
tested associations between individual pairs of Rep markers
and both antibiotic and virulence genes by assessing the
nonparametric Kendall’s tau-b (τ) correlation18, to determine
the relationship between genotypic and phenotypic patterns.
Following data conversion, Kendall’s tau-b (J) correlation was
conducted as described in XLSTAT19. The correlation was
analyzed to  determine  the  relationship  between Rep
markers and both antibiotic and virulence genes. Besides, the
correlation between antibiotic resistance and virulence genes
was also assessed to determine whether there was any
association between both variables. The significance of the
correlations was determined at p = 0.001 using Kendall’s rank
correlation critical values19.

Data analysis: To identify the genetic relationship among the
24 E. coli  isolates, the Rep-PCR banding pattern was
converted to the presence (1) or absence (0). Following data
conversion,  NTSYS-pc  2.1e  software20  was  used  to perform

cluster analysis based on Nei’s genetic distance20, by the
Unweighted Pair Group Method with Arithmetic mean
(UPGMA).

RESULTS AND DISCUSSION

Antibiotic resistance: The 24 isolates identified
microbiologically by the Application Programming Interface
(API) system as E. coli were surveyed for the presence of
multidrug resistance using the combination disk diffusion
examination21. All 24 isolates were resistant to one or more
antimicrobial agents except for isolates TU-19 and TU-23,
which were sensitive to all tested antibiotics (Table 1). Overall,
22 (91.6%) of the isolates were  resistant  to  ampicillin   and 
18 (75%) were resistant to ceftazidime and cefepime. In
contrast, all E. coli  isolates appeared to be completely
sensitive to imipenem, meropenem, amikacin and tigecycline.
The proportions of isolates resistant to trimethoprim/
sulfamethoxazole, ciprofloxacin, cefoxitin and piperacillin/
tazobactam were 50 (12/24), 45.8 (11/24), 29.2 (7/24) and
16.7% (4/24), respectively.  The   antimicrobial   resistance   of
E.  coli  is an extraordinary concern around the world due to
the   increasing    resistance    of    this    bacterium   to  several

Table 1: Distribution of antibiotic resistance genes among E. coli and other
isolates

Bacterial isolates Antibiotic resistance profile
TU-1 Amp-Am/Cla-Cefo-Cefta-Cefe-Cip-Tri/Sulf
TU-2 Amp-Am/Cla-Cefo-Cefta-Cefe-Cip-Tri/Sulf
TU-3 Amp-pip/taz-Cefta-Cefe-Cip-Tri/Sulf
TU-4 Amp-Cefta-Cefe-Cip-Tri/Sulf
TU-5 Amp-pip/taz-Cefta-Cefe-Gen-Cip-Tri/Sulf
TU-6 Amp-Cefta-Cefe
TU-7 Amp-Cefta-Cefe-Cip-Nit -Tri/Sulf
TU-8 Amp-Cefta-Cefe-Gen-Tri/Sulf
TU-9 Amp-Cefo-Cefta-Cefe-Cip
TU-10 Amp-Cefta-Cefe-Gen-Tri/Sulf
TU-11 Amp-pip/taz-Cefta-Cefe-Cip-Nit
TU-12 Amp-Cefta-Cefe-Tri/Sulf
TU-13 Amp-Cefta-Cefe-Tri/Sulf
TU-14 Amp-Cefta-Cefe-Cip-Tri/Sulf
TU-15 Amp-Cefo-Cefta-Cefe
TU-16 Amp-Cefo-Cefta-Cefe-Gen
TU-17 Amp-Cefo-Cefta-Cefe-Cip
TU-18 Amp-Am/Cla-pip/taz-Cefo-Cefta-Cefe-Gen-Cip-Tri/Sulf
TU-19 -
TU-20 Amp
TU-21 Amp-Tri/Sulf
TU-22 Amp-Tri/Sulf
TU-23 -
TU-24 Amp
Amp (ampicillin),  Am/Cla (amox/clavulin), Pip/Taz (piperacillin/tazobactam),
Cefa (cefalotin), Cefo  (cefoxitin),  Cefta  (ceftazidime),  Ceftr (ceftriaxone), Cefe
(cefepime),  Imi  (imipenem),  Gen  (gentamicin),  Cip  (ciprofloxacin), Nit
(nitrofurantoin) and Tri/Sulf (trimethoprim/sulfamethoxazole)
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Fig. 1: Neighbor-Joining phylogeny based on 16S rRNA gene sequences of bacterial isolates
Bacterial isolates TU1-TU24 are presented in blue colour, Number above branches represent bootstrap values. Brackets represent identified clusters

commonly  prescribed  antibiotics18.  In the present research,
E. coli isolates fluctuated in their sensitivity to different
antibiotics (Table 1). These results are comparable to those of
other local and global studies19. The high levels of resistance
observed for certain antibiotics might be caused by the
impulsive and intense use of these antibiotics2,22. In contrast,
carbapenems  (imipenem  and  meropenem)  are stable
toward ESBL enzymes and efficient in the therapy of infections
due to the infection by ESBL-producing bacteria and the
management methods of these antibiotics (either intravenous
or intramuscular) limit their use by most patients18.

16S rRNA gene of E. coli  isolates: The 16S rRNA gene from
the 24 clinical bacterial  isolates  was  successfully amplified
and sequenced. Individual BLAST searches of the 16S rRNA
sequences confirmed 19/24 isolates as E. coli, whereas 3/24
isolates were found to be K. pneumoniae (TU-20, TU-22 and
TU-24) and 2/24 isolates were found to be Enterobacter (TU-19
and TU-21). All sequences in the current study were deposited
in GenBank under accession numbers KY780336-KY780359.
E. coli sequences were compared with the available 16S

rRNA genes of selected published strains of the genus

Escherichia  that available in the GenBank database, including
representative  strains  of  the A, B1, B2, C, D and E subtypes of
E. coli. The phylogenetic tree of different 16S rRNA sequences
was not able  to  differentiate between different E. coli
subtypes (Fig. 1). The phylogenetic relationships of the E. coli
strains revealed four main  clusters  (Ia, Ib, II, III and IV). TU-1,
TU-3, TU-4, TU-7, TU-14, TU-15, TU-16, TU-17 and TU-23 were
related  to  Ia cluster, whereas TU-5, TU-6, TU-8, TU-9, TU-10,
TU-12 and TU-18 were related to Ib cluster and TU-2, TU-11
and TU-13 were related to cluster III (Fig. 1). These results
agree with the previous studies7,16. Alsanie et al.17 reported
that the traditional identification of bacteria using phenotypic
characteristics is generally not as accurate as identification by
genotypic methods.

Detection of antimicrobial resistance genes in E. coli using
PCR: Using antibiotics accurately and distinguishing the
resistance genes of bacteria that separated from UTI patients
may assume a significant part in controlling the disease and its
dangerous consequences. Throughout the previous decades,
E. coli has been perceived as one of the main sources of
nosocomial  diseases  worldwide11.  On a fundamental level, a
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Table 2: Virulence gene patterns among pathogenic E. coli and other isolates
Bacterial isolates Present of virulence genes
TU-1 KpsII/fimH/YaiO
TU-2 KpsII/fimH/UidA /YaiO
TU-3 Hly/KpsII/fimH/YaiO
TU-4 Hly/KpsII/fimH/UidA/YaiO
TU-5 Stx1/KpsII/fimH/UidA/YaiO
TU-6 Hly/KpsII/fimH/UidA/YaiO
TU-7 KpsII/fimH/YaiO
TU-8 Stx1/KpsII/fimH/YaiO
TU-9 KpsII/fimH/UidA/YaiO
TU-10 hly /KpsII/fimH/UidA/YaiO
TU-11 Hly/KpsII/fimH/UidA/YaiO
TU-12 Hly/KpsII/fimH/UidA/YaiO
TU-13 Stx1/KpsII/fimH/YaiO
TU-14 KpsII/fimH/YaiO
TU-15 KpsII/fimH/YaiO
TU-16 Hly/KpsII/fimH/UidA/YaiO
TU-17 Hly/KpsII/fimH/UidA/YaiO
TU-18 Hly/KpsII/fimH/UidA/YaiO
TU-19 KpsII/fimH/UidA/YaiO
TU-20 KpsII/fimH/UidA/YaiO
TU-21 KpsII/fimH/UidA/YaiO
TU-22 KpsII/fimH/UidA/YaiO
TU-23 KpsII/fimH/UidA/YaiO
TU-24 KpsII/fimH/UidA/YaiO

few genes  situated  on  the extraordinary plasmids in certain
E. coli strains are viewed as being accountable for such
problems16,23.  Various  studies  have  investigated the
incidence of virulence genes in  E.  coli  strains isolated from
UTI patients.  A  study  from  Spain showed  that almost 70%
of the urinary strains carried at least one of  the  target
virulence genes2,8,23,24. The  classification  of  virulence genes
can enhance the present awareness of the pathogenesis of
diseases and reduce the resulting difficulties. All of the
bacterial strains in the current study contained  at  least  one 
virulence  gene,  among  which  4  (16.7%),  8 (33.3%), 9
(37.5%) and 16 (66.7%) were found to harbour stx1, fimH, hly
and uidA  virulence genes, respectively (Table 2). Moreover,
100%  of  the  tested  isolates  carried  kpsII  and  yaiO 
virulence  genes.  Conversely,  no  isolates carried the 
virulence   genes   stx2   or   eaeA.  The  associations among
different virulence  factors  in  E. coli isolates were
documented by Hassan et al.2. These genes were detected in
a high proportion of bacterial strains isolated from mono-
microbial  cultures.  Strains  containing  the  genes hly and
fimH  exhibit  an  interesting  relationship  with  uropathogenic
E. coli25. Intestinal or extraintestinal  isolates  of  clinical and
symbiont  E.  coli  separated  from  different patient’s areas
have been discovered  to  be  particularly varied in their
genetic makeup. After some time, this genetic variation has
been developed through selection and adaptation, such
pathogenic strains tend to become host-specific or hospital-
specific2,26.

Repetitive sequence repeat-PCR (Rep-PCR): Molecular
markers are efficient techniques for molecular classification via
DNA  fingerprinting.  Out  of thirty Rep-PCR primers, six were
chosen  to  investigate  the   genetic   similarities   within  the
24 isolates (Fig. 2). The average number of amplified bands
was 16 bands per primer. Over 60% of amplified bands were
polymorphic.  Primer Rep-1 produced 18 polymorphic loci
(Fig. 2a). Additionally, primer Rep-3 give 19 polymorphic loci
(Fig. 2b), while, primer Rep-6 produced ten polymorphic loci
(Fig. 2c). The Rep-PCR strategy has already been utilized for
the assessment  of  E.  coli  strains in several reports16,27,28.
Rashid et al.27 applied this technique to examine drug
resistance of ESBL strains and to distinguish extended-
spectrum  beta-lactamase  makers at the genotype level.
Korvin et al.28 analyzed E. coli strains separated from basic
sources of faecal contamination and examined genetic
relations of strains in each host unit using the Rep-PCR
molecular technique.
Seventy-three fragments from all Rep-PCR analysis were

appropriate  for  the  investigation of genetic similarities and
for designing the phylogenetic  tree  for E. coli isolates
analyzed in this study (Fig. 3). According to the dendrogram
constructed using UPGMA based on Jaccard's similarity
coefficients dependent on genetic similarity and intra-species
differentiation ranged from 0.17-0.80. Based on cluster
analysis, the 24 E. coli  isolates were grouped into four
different groups at a cutoff  of approximately 0.690 (Fig. 3).
The first group included isolates TU-1, 3,4, 8, 12, 13, 14, 15, 17
and 18, while the second group harboured isolates TU-5, 6, 7,
11, 16 and 23. The third group contained isolates TU-2, 9, 10,
20, 22 and 24, while the fourth group had only TU-19 and 21
(Fig. 3).
The clusters of isolated bacterial strains obtained using

the repetitive sequence fingerprinting method performed
through Rep-PCR (Fig. 3) were completely different in
comparison  to  those  obtained  based on 16S rRNA
sequences (Fig. 1). Although Rep-PCR is a powerful method for
genotyping method6,16, there is growing evidence regarding
the accuracy and reproducibility problems in this method28,29.
The current results indicate that the Rep-PCR fingerprint
clustering method could not be compared with 16S rRNA
sequencing clustering methods that are due to the greater
level of data obtained from the conservative 16S rRNA gene.
Additionally, the 16S rDNA gene is a conserved and fixed gene
that didn't change throw time. On other hand, the rep-PCR
profile could be changed by the environment that affects the
bacterial genome.
Nonparametric correlation analyses using Kendall’s tau-b

(τ) were  carried  out  to  assess the association between each
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Fig. 2(a-c): Rep-PCR profiles of 24 antibiotic-resistant bacterial isolates
A: Using of Rep-1 primer; B: Rep-3 primer and C: Rep-6 primer, M: 100-bp DNA ladder

pair of rep-PCR markers, antibiotic resistance and virulence
genes (Fig. 4-6)16,19. The result of Fig. 4 shows the correlation
between Rep markers and antibiotic resistance. All correlation
coefficients were low but highly significant (p<0.001). The
lowest correlations were found between Rep4 and Nit
antibiotics as well as between Rep5 and Gen antibiotic, with
a correlation coefficient value of 0.11. The highest correlation
was between Rep4 and each of the Cefta and Cefe antibiotics,
with a correlation coefficient value of 0.33. Correlation

coefficients between Rep markers and virulence genes are
graphically presented in Fig. 5. Again, the correlation between
all pairs was low but significant (p<0.05). The lowest
correlations were found between Rep2 and each of the hly,
kpsII  and fimH  virulence genes, with a correlation coefficient
value of 0.02. The highest correlation was found between
Rep4 and each of the uidA and yaiO genes, with a correlation
coefficient value of 0.27. Correlation coefficients between
antibiotic  resistance   and   virulence   genes  are presented in
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Fig. 3: UPGMA dendrogram representing the genetic relationships among the 24 isolates based on Nei's genetic distance
Brackets represent identified clusters

Fig. 4: Correlation between antibiotic profile and rep-PCR profile in 24 UTI isolates

Fig. 6. Surprisingly, the pattern of correlations varied greatly
between pairs of antibiotic resistance and virulence genes.
That is, no correlation was found between Mar, Amk and Tig
antibiotics and all the 8 studied virulence genes. For the rest

of the pair combinations, the correlation ranged from low
negative correlation to moderate positive correlation.
However, all these correlation coefficients were highly
significant  (p<0.001).  The  lowest  negative   correlation  was 
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Fig. 5: Correlation between antibiotic resistance gene profile and rep-PCR profile in 24 UTI isolates

Fig. 6: Correlation between antibiotic resistance gene profile and antibiotic profile in 24 UTI isolates
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found between (-0.45) each of the Cefta and Cefe antibiotics
and hly, KpsII and himH virulence genes. The moderate
correlations found between Cefta and Cefe antibiotics and
each of the uidA and yaiO virulence genes were highly
significant. These results indicate that the same resistance
gene in different isolates is not always associated with the
same plasmid in these isolates25. Finally, the high frequencies
of antibiotic-resistant E. coli isolates in patients with urinary
tract infections in the current study recommend that
continuous investigation of the appropriate antibiotics is
required for treatment of UTI patients and that control of the
infections is essential. The limitations of this study can be
concluded in the small number of samples that the study was
conducted on as well as the focus of the study on one hospital
only.

CONCLUSION

According to this finding, E. coli UTI clinical isolates
showed high heterogenicity of resistance to antibiotics. PCR
genomic fingerprinting based on (GTG)5 and BOX repetitive
sequences and PCR detection for Stx1, fimH, hly and uidA
genes revealed high genetic diversity of the isolates. Thus,
these isolates can be circulating simultaneously. Genetic
variation of E. coli is an important barrier to control public
health risk associated with pathogen thereby this diversity
should be taken into consideration when designing strategies
for controlling E. coli  outbreaks. Correlation, detected for the
first time, between rep-PCR genotyping and antibiotic
resistance patterns of E. coli could be valuable in the
prediction of resistance patterns of E. coli
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