http://www.pjbs.org

ISSN 1028-8880

Pakistan Journal of Biological Sciences

Asian Network for Scientific Information 308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

ISSN 1028-8880 DOI: 10.3923/pjbs.2021.997.1014

Research Article

Molecular Evaluation and Identification of Some Barley Hybrids Tolerant to Salt Stress

¹Ismael A. Khatab, ²Almoataz Bellah Ali El-Mouhamady, ³Samah A. Mariey,

Abstract

Background and Objective: Barley is considering one of the most important cereal crops at the local and global levels. It is ranked second in terms of nutritional importance after wheat and its flour contributes significantly to bridging the large nutritional gap in the production of Egyptian bread. The aim of this study concentrated on knowing and testing the genetic behaviour responsible for salinity stress tolerance in barley as trying to improve barley crop and increase its ability for abiotic stress resistance under Egyptian conditions. **Materials and Methods:** Twenty-one crosses and ten parents of barley with different responses to salinity tolerance were evaluated in this investigation under normal and salinity conditions. Yield and its components and some physiological traits related to salt stress tolerance were the most important studied attributes evaluated in this regard under both conditions. Moreover, SSR markers were used to evaluate and identified associated markers for salinity tolerance in selected hybrids and comparing among the ten barley parents. **Results:** The final results confirmed that the three testers; Giza 123, Giza 126 and Giza 2000 besides; the crosses; Line 1XTester 1 (Giza 125XGiza 123), Line 2XTester 1 (Giza 133XGiza 123), Line 1XTester 2 (Giza 125XGiza 126), Line 2XTester 2 (Giza 133XGiza 126) and Line 1XTester 3 (Giza 125XGiza 2000) exhibited highly salinity tolerance under saline stress treatment compared with the control experiment. Among 15 analyzed barley entries, the chosen set of 11 markers amplified 20 alleles with an average of 1.81, with a range from 1-4 alleles. **Conclusion:** The results of SSR analysis and the data on valued agricultural trait loci determined the genetic distance among parents and their hybrids, which is of an unlimited rate for breeders.

Key words: Barley, salinity tolerance indices, lineXtester, physiological traits, PCASSR, hydraulic conductivity

Citation: Khatab, I.A., A.B.A. El-Mouhamady, S.A. Mariey, M.M. El-Hawary and M.A. FargHabouh, 2021. Molecular evaluation and identification of some barley hybrids tolerant to salt stress. Pak. J. Biol. Sci., 24: 997-1014.

Corresponding Author: Almoataz Bellah Ali El-Mouhamady, Department of Genetics and Cytology,
Genetic Engineering and Biotechnology Research Division, National Research Centre, 33 El Buhouth ST., 12622, Dokki, Giza, Egypt Tel: +201029336360

Copyright: © 2021 1Ismael A. Khatab *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

⁴Mohammed Mohammed El-Hawary and ⁵Mohamed Ali Farg Habouh

¹Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, 33516, Egypt

²Department of Genetics and Cytology, Genetic Engineering and Biotechnology Research Division, National Research Centre, 33 El Buhouth ST., 12622, Dokki, Giza, Egypt

³Department of Barley Research Filed Crop Research Institute, Agricultural Research Center (ARC), Egypt

⁴Department of Crop Physiology Research, Field Crops Research Institute, ARC, Giza, 12619, Egypt

⁵Department of Agronomy, Faculty of Agriculture and Natural Resources, Aswan, University, Aswan 81528, Egypt

INTRODUCTION

Barley (Hordeum vulgare L.) is considered one of the most cereal crops that fall within the food security of humans and animals. It comes after wheat as it is a strong participant in the production of flour used in the manufacture of bread after the mixing process in certain proportions in light of the crisis of the bread industry in Egypt. Also, it attempts to bridge the food gap in this industry, but it is noticeable in light of the changing environmental and biological challenges and constraints that the area of this important crop has begun to shrink globally. This is remarkable as well as it is very dangerous at the local and global levels. The problem of high salinity levels in soil and irrigation water comes on top of these environmental pressures that reducing barley cultivation and then the production of bread under Egyptian conditions. It suffices to know that the high salinity of areas nearing the sea coast and higher level of salinity in irrigation water in field crops destroy approximately 40-50% of the final yield especially crops sensitive to salinity such as barley. So, many papers and studies were launched for genetic improvement in barley to salinity tolerance using traditional and modern plant breeding methods such as biotechnology. The following will be presented an important summary of papers results carried out in this regard. Combining ability of salinity tolerance based on NaCl-induced K+ flux from roots of barley was determined by Chen et al.1 through using 6 barley genotypes in half diallel cross and detected that the tolerant genotypes CM72 and Numar recorded highly significant GCA effects for salinity tolerance (low limit of K+ lost under salinity stress). Decrease of hydraulic conductivity in salt-treated barley genotypes is very paramount for stomatal closure as well as lowered transpiration level is beneficial for salt tolerance at least at the seedling stage². Nevo and Chen³ revealed water stress and salinity tolerance in wild relatives for wheat and barley, salinity tolerance that has been extensively and virtually defined, evaluated and transferred to wheat entries with a demonstrated manifestation of bearing in experimental trials. The genetic improvement of salinity tolerance in barley was revealed by El-Mouhamady et al.4 who recommended that the genotypes Giza 123, Giza 2000, Giza 123XGiza 125, Giza 123XGiza 126 and Giza 2000XGiza 125 exhibited highly salinity tolerance under saline treatment compared to the control experiment in all studied traits. A spring barley collection of 192 entries from a large geographical limit was studied by Long et al.5 to classify

Quantitative Trait Loci (QTLs) for salinity stress tolerance traits using an association mapping approach through using a thousand SNP marker set. Salinity tolerance indices were able to expose the most tolerant barley entries under salinity stress⁶. Salinity stress due to the biggest increase in the traits; MDA, proline content, Na and Ca concentrations of the roots under salinity treatment compared with the control experiment and leaves in 47 barley wild barley entries⁷. Mwando et al.8 revealed new materials and important information to develop salinity tolerance at the germination stage in the future barley cultivars via genomic and marker-assisted selection. In addition, opening up many horizons for the genetically and functional characterization responsible for discovering tolerance genes for this matter. Recently, a massive number of molecular markers evidenced success in explaining the genetic variation of barley hybrids. Moreover, these markers are extremely effective in categorizing genes and selecting multi-genic traits and genes. Microsatellites (SSRs) are among the most important DNA markers and being used for investigation, genetic differentiation, genome and QTL mapping for different crops and barley9-12. It considered co-dominant, highly informative, multi-allelic, most used and reproducible markers¹³. Khatab and Mariey¹⁴ and Mariey *et al.*¹⁵ classify two barley groups; I: Salt tolerant (Giza 123, Rehan-03 and Saiko) and II: Sensitive (Line 1 and Line 2) appeared low viewing to identify salinity tolerance using 10 ISSR primers. While SSR primer HVM09 recorded a band with the molecular size of 125 bp which could be considered a positive molecular marker related to salinity tolerance in the same regard. The biggest variation for salinity tolerance between barley entries especially at the seedling stage was observed when 16 evaluated 280 barley genotypes for the ability of tolerance to this stress. Physiological studies and molecular markers analysis using 10-mer random primers may be very important stages linked to identify and classify salinity tolerance in various barley genotypes¹⁷. After the aforementioned fruitful information it could possible to briefly clarify the main objective of this investigation to calculating a set of stress indices using field data under non-saline and saline conditions and the coefficients of variation, it is possible to: (1) Determine barley salt tolerance, (2) Develop the most tolerant hybrid of barley under saline conditions and (3) To detect SSR identification of some barley hybrids tolerant to salt stress.

MATERIALS AND METHODS

Study area: The present study was conducted at the farm of the National Research Center in Nubaria city, Beheira Governorate, the farm of El-Sirw city, Damietta Governorate, Department of Genetics and Cytology in National research Centre and Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, Egypt during 2018/2019 and 2019/2020 seasons.

Materials: This investigation included ten Egyptian barley cultivars with the different responses for salt stress tolerance were shown in Table 1. The ten cultivars were sown in three planting dates with 7 days intervals to overcome the differences in flowering time among parents for crossing in season 2018/2019 as lineXtester analysis. All entries (ten parents and their 21 F1 crosses) were grown under normal and salinity conditions in a randomized complete block design with three replicates for each treatment in season 2019/2020. The two experiments were grown under field experiments conditions. Where, the normal experiment was conducted on the farm of the National Research Center in Nubaria city, Beheira Governorate. While, the salinity treatment was done in El-Sirw city, Damietta Governorate as a saline condition. All chemical analyses for the two experiments as shown in Table 2.

Soil analysis: Before conducting the two experiments, soil samples were taken from different sites of each experiment. Each sample was taken from a depth of 0-30 cm from each treatment. The chemical analysis was carried out for each soil extract 1:5 to estimate the soluble anions, cations and Total Dissolved Salts (TDS). The Electrical Conductivity (EC) was estimated in the extract of the soil saturate paste. The

procedure for preparation and measurements of the soil extract was taken according to ¹⁸. The methods of ¹⁹ for soil chemical analysis were followed. The description of the two soil experiments used in this investigation is shown in Table 2.

Methods

Studied traits: Fifty plants were taken from each genotype for each experiment of (normal and saline treatments) to evaluate the following traits:

- Plant height (cm): Length of the main culm was measured from the soil surface to the tip of the main panicle at maturity
- Number of filled grains per panicle: Filled grains of the main panicle with separated and counted
- 1000-grain weight (g): It was recorded as the weight of 1000 random filled grains per plant
- Grain yield per plant (g): was recorded as the weight of grain yield of each plant and adjusted to 14% moisture content
- Determination of some physiological traits related to salinity tolerance such as Na⁺ uptake, K⁺ uptake and Na/K ratio

Shoot samples of each genotype were determined and performed after 45 days from the sowing of each experiment. Samples were weighed, dried for three days at 70°C, grounded and 1 g dried powder from each sample for all studied materials under normal and salt stress experiments and were taken for Na⁺ and K⁺ determination by flame photometer:

 Osmotic adjustment: It was determined by the formula of²⁰ as follows:

Table 1: Barley cultivars, type, no. of rows, pedigree salinity tolerance and released year used for lineXtester analysis

Name	Туре	Row	Pedigree	Salinity tolerance	Year of released
Tester					
Giza 123	Hulled	Six	Giza 117/FAO 86	Tolerance	1988
Giza 126	Hulled	Six	BaladiBahteem/S D729-Por12762-BC	Tolerance	1995
Giza2000	Hulled	Six	Giza117/Bahteem52//Giza118/FAO86/3/Baladi16/Gem	Tolerance	2003
Lines					
Giza 125	Hulled	Six	Giza117/Bahteem52//Giza118/FAO86(sister line to G.124	Moderate	1995
Giza 133	Hulled	Six	ICB91-0343-0AP-0AP-0AP-281AP-0AP	Moderate	2011
Giza 134	Hulled	Six	ICB91-0343-0AP-0AP-0AP-289AP-0AP	Moderate	2011
Giza 129	Hulless	Six	DeirAlla 106/Cel//As46/Aths*2"	Sensitive	2001
Giza 130	Hulless	Six	Comp.cross"229//Bco.Mr./DZ02391/3/DeirAlla 106	Moderate	2001
Giza 131	Hulless	Six	CM67B/CENTENO//CAMB/3/ROW906.73/4/GLORIABAR/COME-B/5/FALCON BAR/6/LINO	Moderate	2001
Giza 132	Hulled	Six	Rihane-05//AS 46/Aths*2Athe/Lignee 686	Sensitive	2006

Table 2: Chemical analysis of both types of soils; normal (Nubaria) and saline (El-Sirw) using in this study

(El Sil W) dallig	(El Silve) asing in this study						
Characteristics	Normal soil	Salinity soil					
EC (dS m ⁻¹)	1.72	11.2					
pH (1:2.5)	7.14	7.83					
Ca ⁺⁺	3.52	5513-5722					
Mg ⁺⁺	2.33	12.73					
Na ⁺	5.23	11.42					
K ⁺	0.55	56.22-61.55					
CO ₃ -	0.08	0.37					
HCO ₃ ⁻	1.84	0.13					
CI-	15.77	1.41					
SO_4^-	1.64	39.83					

EC: Electrical conductivity, TDS: Total dissolved salts, *Measure of soil saturation, **Measure of soil water extract 1:5

$$Osmotic \ adjustment = \frac{OP \times RWC}{100} \ (normal) - \frac{OP \times RWC}{100} (drought)^{100}$$

where, OP is the osmotic pressure, RWC is the relative water content:

- Proline content: Was determined from a standard curve and calculated on a fresh basis is as follows: [(μ g proline/mL C mL toluene)/115.5 μ g μ^{-1} mole]/[(g sample/5)] = μ moles proline/g of fresh weight material. The results related to proline content are average values of at least 3-4 samples for each species, according to Abraham *et al.*²¹ and the modified method by Kalsoom *et al.*²²
- Glycine betaine contents: It was carried out according to the method of Senthilkumar et al.²³

Estimation of salinity stress tolerance indices: All salinity tolerance indices were estimated for the ten barley parents and the best five F1 crosses recorded highly salt tolerance under saline experiment conditions compared to the control experiment in all studied attributes according to researchers²⁴⁻³⁰.

Molecular characterization: DNA was extracted from fresh leaves of the fifteen barley genotypes using the cetyltrimethylammonium bromide method as described by researchers³¹. Extracted DNA was used in a Polymerase Chain Reaction (PCR) using eleven SSR primers, Table 3 to identify SSR primers that could differentiate among the parental cultivars and their hybrids to study and genetic identity assessment for hybridity testing for salinity. Mixture PCR reaction contained 5 pmol of both forward and reverse primers, 0.2 mM of each dNTPs, 10 mM 10x pcr buffer, 0.5 unit

Tag polymerase and 80 ng of DNA template then completed dH₂O₂ up to 25 μL. PCR reactions were performed for initial denaturation at 95 °C for 5 min, followed by 35 cycles at 94 °C for 1 min, annealing temperatures based on primer Tm (55-60°C) for 30 sec and extension at 72°C for 30 sec then final extension at 72°C for 7 min. PCR products were assessed on 2% agarose gel compared with 100 bp DNA ladder. The fifteen barley genotypes were the ten barley parents and the highest five F1 crosses recorded a high level of salinity tolerance in all studied traits under saline treatment compared to the normal experiment and the order of barley samples in PCR analysis were as follow; 1: Giza 123, 2: Giza 125, 3:Giza 126, 4: Giza 133, 5: Giza 2000, 6: Giza 132, 7: Giza 131, 8: Giza 134, 9: Giza 130, 10: Giza 129, 11: Giza 125XGiza 2000, 12: Giza 133XGiza 126, 13: Giza 125XGiza 126, 14: Giza 125XGiza 123 and 15: Giza 133XGiza 123, respectively.

Data analysis: All calculated data from all studied traits under both treatments were analyzed through the formula of Kumari et al.32, heterosis and both types of combining ability effects (GCA and SCA) were calculated by previous studies^{33,34}. GCA/SCA ratio: - MSe of GCA-MS error term/Number of parent +2/MSe of SCA-MS error term. Multivariable analyses and Principal Component Analysis (PCA) were calculated using the formula of Darwish et al.35. Cultivars were clustered using the unweighted pair group method using arithmetic average as outlined by Mareiy et al.36. Data were prepared for final analysis through the presence or absence of the total fragments for each primer. Pairwise components of the fifteen barley genotypes based on the presence or absence of unique and shared polymorphic products, were used to determine distance coefficients according to Rauch³⁷. The distance coefficients were then used to construct dendrograms, using the Unweighted Pair Group Method with Arithmetic Averages (UPGMA).

RESULTS AND DISCUSSION

Analysis of variance: All barley entries presented in Table 4 were revealed highly significant differences under normal and salinity conditions for all studied traits. These results included the impact of salinity stress in ten agro-morphological traits compared to the normal conditions. Further, highly significant variations were obtained between all lineXtester analysis components for all studied attributes under both experiments namely; genotypes, parents, lines, testers, Line Vs Crosses and lineXtester, respectively.

Table 3: Name, sequences, chromosome location and expected bands of the selected SSR primers

Primer name	Sequence	Chromosome location	Expected band size
Bmac0063	F: AAACATGCACGTCACCTAC	1H	125
	R: ACAACCACTGCATGAACAT		
Bmag0770	F: AAGCTCTTTCTTGTATTCGTG	1 H	260
	R: GTCCATACTCTTTAACATCCG		
Bmag0742	F: AAACAGAGGGTTTTAGTAATGG	2H	148
	R: AGTGAGATGGCAGTACATAGG		
Bmag 0125	F: AATTAGCGAGAACAAAATCAC	2H	138
	R: AGATAACGATGCACCACC		
Bmac0067	F: AACGTACGAGCTCTTTTTCTA R:ATGCCAACTGCTTGTTTAG	3H	171
Bmac0209	F: CTAGCAACTTCCCAACCGAC	3H	176
	R: ATGCCTGTGTGGACCAT		
Bmac0084	F: CTTGTGCCCTTTGATGCAC	4H	173
	R: CATAACTTGAGGATGTGTGACA		
Bmac0096	F: GCTATGGCGTACTATGTATGGTTG	5H	173
	R: TCACGATGAGGTATGATCAAAGA		
Bmag0173	F: CATTTTTGTTGGTGACGG R: ATAATGGCGGGAGAGACA	6H	150
Bmac0064	F: CTGCAGGTTTCAGGAAGG	7H	155
	R: AGATGCCCGCAAAGAGTT		
Bmag0135	F: ACGAAAGAGTTACAACGGATA	7H	161
	R: GTTTACCACAGATCTACAGGTG		

Table 4: Mean squares of LineXTester analysis in barley entries for all studied traits under normal and salinity conditions

				Number of							
		Plant heig	ht (cm)	filled grains/	spike	1000-gr	rain weight (o	g) Grain y	ield/plant (g)	Na+ conte	ent (ppm)
SOV	DF	N	S	N	S	N	S	 N	S	N	 S
Rep.	2	12.56	10.08	14.67	7.45	6.19	4.23	11.16	9.23	23.15	18.14
Genotypes	30	44.05**	27.98**	36.76**	31.09**	63.12**	55.03**	126.05**	78.13**	105.39**	111.04**
Parents	9	117.83**	45.23**	37.72**	28.19**	17.38**	11.48*	59.13**	18.02**	24.17**	19.04**
Crosses	20	198.77**	81.09**	55.13**	46.23**	26.04**	19.37**	83.76*	41.32**	33.25**	41.28**
P vs. C	1	116.45**	106.34**	67.33**	81.15**	14.32**	11.07**	49.0**	53.02**	10.38**	8.53**
Lines (L)	6	125.44**	161.18**	67.59**	107.33**	80.04**	51.97**	28.36**	17.45**	93.76**	70.12**
Testers (T)	2	234.77**	188.57**	113.55**	152.19**	126.59**	74.02**	43.15**	31.04**	157.33**	106.01**
LXT	12	24.39**	16.08**	72.84**	52.10**	160.04**	183.15**	110.31*	119.26**	35.64**	29.20**
Error	60	1.56	1.28	2.34	1.45	0.94	1.04	1.47	1.15	1.06	0.86
		K+ conte	ent (ppm)	Na/Kı	atio			Proline cont	ent	Glycine be	taine content
						Os	smotic				
SOV	DF	N	S	N	S	adjı	ustment	N	S	N	S
Rep.	2	3.95	4.06	2.11	1.15	i	0.66	35.22	24.94	28.44	13.14
Genotypes	30	11.27**	5.58**	14.72**	18.03	J**	16.32**	22.18**	15.04**	56.14**	38.77**
Parents	9	134.23**	122.50**	73.23**	39.47	·** 12	28.37**	107.84**	113.25**	63.18**	52.48**
Crosses	20	207.11**	151.34**	115.07**	77.14	!**	11.06**	121.30**	2.41.57**	92.04**	103.18**
P vs. C	1	136.22**	125.84**	104.56**	35.94	**	37.05**	13.84**	28.07**	20.17**	8.13**
Lines (L)	6	12.88**	49.07**	187.05**	255.13	**	79.12**	119.23**	258.11**	149.78**	207.05**
Testers (T)	2	57.62**	71.03**	233.84**	308.11	**	33.02**	226.83**	293.09**	172.10**	255.98**

GCA/SCA ratio: MSe of GCA-MS error term/Number of parent+2/MSe of SCA-MS error term, *Significant at 5%, **Significant at 1%, NS: Not significant

127.03**

1.45

15.08**

0.34

118.93**

1.86

Mean performance: Results viewed in Table 5 detected that the three barley testers; Giza 123, Giza 126 and Giza 2000 besides; the crosses; Line 1XTester 1 (Giza 125XGiza 123), Line 2XTester 1 (Giza 133XGiza 123), Line 1XTester 2 (Giza 125XGiza 126), Line 2XTester 2 (Giza 133XGiza 126) and Line 1XTester 3 (Giza 125XGiza 2000) recorded highly mean values of several filled grains/spike, 1000-grain weight and grain yield/plant traits under normal and salinity conditions. Further, the rest barley genotypes showed low to medium averages in this

175.0**

1.19

LXT

Error

12

60

193.17**

1.25

regard. While these promising genotypes recorded the lowest mean performance of plant height trait under both experiments compared to the other entries under testing. This confirms that the aforementioned superior barley genotypes showed great tolerance to salt stress. Also, their losing rate for yield and its components traits was not significant under the saline treatment compared to the standard experiment. While the rate of loss was very large for the rest of the barley entries under the same conditions. Also, the eight promising barley

26.04**

0.75

143.15**

0.96

131.23**

1.03

18.32**

1.11

betaine content 24.12 20.32 15.42 27.68 43.48 54.39 83.10 74.83 12.05 26.19 23.76 18.94 108.32 85.14 19.32 12.06 12.40 24.15 17.43 102.36 30.02 22.72 17.32 16.74 49.11 13.64 14.91 Glycine 31.09 32.16 38.04 51.19 79.14 68.73 24.55 20.18 33.08 103.55 77.60 20.13 32.16 95.84 27.06 27.81 21.44 29.01 43.67 28.73 30.07 27.41 15.32 30.82 31.15 25.80 24.60 34.55 19.62 1.91 31.00 14.32 13.12 23.15 12.77 58.03 47.14 69.11 104.05 92.14 11.03 20.02 25.54 16.22 77.05 86.09 11.02 12.72 27.08 16.49 34.07 24.12 21.54 98.72 11.84 Proline content 32.01 31.19 74.23 25.13 28.10 27.49 18.42 37.06 20.41 53.18 45.78 65.13 96.23 87.33 25.22 28.37 23.17 22.04 15.32 33.14 30.16 17.61 81.13 27.03 91.04 26.02 26.81 34.91 adjustment Osmotic 1.96 1.07 1.03 1.92 1.36 1.05 0.28 1.94 2.01 0.38 0.40 0.03 0.02 0.36 0.30 0.39 0.04 0.26 0.23 0.23 0.05 0.04 0.03 0.25 0.41 0.01 0.53 0.39 0.27 0.27 0.41 0.02 Na/K ratio 0.29 0.10 0.05 0.29 0.20 0.15 0.29 0.35 0.25 0.07 0.05 0.05 0.20 0.34 0.14 0.27 0.05 0.03 99. 0.31 0.21 0.21 content (ppm) 1.08 96.0 1.13 1.48 1.06 1.52 1.09 2.26 2.64 2.83 3.22 1.13 .59 1.32 3.04 1.05 1.86 1.28 1.38 1.13 2.77 .53 2.31 Ξ. 1.89 1.30 2.86 2.05 1.27 1.95 2.07 9. Table 5: Mean performances of all studied traits in all barley genotypes tested under the control and salinity conditions content (ppm) 0.45 0.49 0.31 0.08 0.05 0.44 0.41 0.34 0.61 0.18 0.42 0.39 0.12 0.16 0.35 0.43 0.27 0.29 0.34 0.35 0.21 0.13 0.32 0.28 0.36 0.30 0.37 0.09 0.37 14.72 15.33 24.13 17.45 17.62 44.13 31.53 47.08 49.16 19.12 17.45 14.92 22.00 24.60 19.77 36.11 41.05 32.04 47.64 15.92 28.21 20.65 50.27 22.05 29.40 18.64 20.07 yield/plant (g) 55.09 28.39 26.25 43.07 48.12 38.96 59.32 28.43 34.05 26.03 23.17 37.11 56.17 53.47 26.43 30.02 20.15 27.83 34.85 61.04 30.11 26.19 18.44 29.03 19.33 45.76 53.71 28.14 24.06 20.38 19.55 57.12 27.81 21.33 25.31 23.14 15.84 49.87 20.13 40.01 50.07 52.01 grain weight (g) 33.14 38.02 30.09 26.12 35.13 27.08 50.39 44.13 62.03 36.05 30.12 34.00 64.19 60.05 33.60 39.07 28.02 32.05 63.11 25.90 58.81 40.11 26.21 25.31 38.83 23.87 filled grains/spike 20.13 48.39 30.19 69.02 65.10 26.09 27.13 18.33 19.86 35.43 38.71 41.03 55.80 24.06 19.02 27.08 14.62 21.38 12.15 18.92 23.01 51.07 Number of 68.17 25.42 37.04 34.55 29.65 32.41 28.73 49.38 31.05 30.29 76.38 26.41 30.04 33.15 38.05 58.03 29.08 28.16 26.84 81.02 29.81 102.38 89.03 82.10 84.20 99.03 101.23 95.13 107.96 80.05 76.87 96.18 97.13 100.02 97.16 85.03 82.17 94.06 105.29 98.55 102.36 102.88 Plant height (CM) 99.18 81.05 102.11 82.01 75.81 74.23 08.01 105.18 106.19 104.16 107.13 93.15 87.16 103.16 102.39 103.98 108.32 85.33 87.15 102.55 105.67 108.93 99.60 112.05 111.39 107.13 102.07 103.04 89.11 88.44 90.04 107.33 104.13 86.54 109.04 112.93 7 -SD at 0.01 SD at 0.05 L4XT3 L6XT3 L7XT3 .3XT2 .4XT2 .5XT2 L6XT2 L7XT2 L1XT3 -2XT3 L3XT3 L5XT3 L1XT2 L1XT1 L2XT1 L3XT1 L4XT1 L5XT1 -6XT1 L2 L3 L5 \mathbb{C} 9

entries mentioned above recorded a low level of Na⁺ content and highly averages of K⁺ content under both treatments. Besides, their mean values of Na⁺/K⁺ ratio and osmotic adjustment traits were less than the other barley entries for the same conditions. Concerning proline and glycine betaine contents traits, the three barley testers and the highest five crosses mentioned above were recorded highly level in this regard under salinity treatment compared with the control experiment and were surpassed of the rest barley genotypes.

Heterosis over better-parent: Significant and highly significant negatively values of heterosis over better-parent were showed for plant height trait in the crosses; L1XT1, L1XT2, L2XT2 under normal and salinity conditions, L2XT1 and L1XT3 for the normal conditions only and L3XT2, L2XT3 and L3XT3 for salinity treatment only (Table 6). In the same negative direction, Na+ content and Na+/K ratio traits were exhibited the same results in the crosses; L1XT1, L2XT1, L1XT2, L2XT2 and L1XT3 under both conditions except; the cross; L2XT2 where it was highly significant and negatively values of this parameter under the control treatment only in Na+/K ratio trait, respectively. In the same context, the promising five barley crosses namely; L1XT1, L2XT1, L1XT1, L2XT2 and L1XT3 recorded negative results of heterosis over better-parent but not significant for osmotic adjustment trait. On the other hand, the two crosses; L1XT1 and L2XT1 have exhibited highly significant and positive values of this genetic parameter for K⁺ content trait under normal and salinity conditions. On the same track, the five barley promising crosses; L1XT1, L2XT1, L1XT2, L2XT2 and L1XT3 have detected significant and highly significant positive values of heterosis over better parent for the traits; the number of filled grains/spike, 1000-grain weight, grain yield/plant, proline and glycine betaine contents under both conditions except the cross; L2XT2 for 1000-grain weight trait under normal treatment only where it was not significant, respectively.

General and specific combining ability effects: Data revealed in Table 7 and associated with GCA effects confirmed that the five barley entries; Giza 123, Giza 125, Giza 126, Giza 133 and Giza 2000 were exhibited highly significant and positive values in the traits; the number of filled grains/spike, 1000-grain weight, grain yield/plant, K⁺ content, proline and glycine betaine contents under both experiments. While, the same promising barley genotypes were showed highly significant and negatively values for plant height, Na⁺ content, Na⁺/K⁺ ratio and osmotic adjustment traits under both treatments conditions. The barley crosses; (L1XT1, L2XT1, L1XT2, L2XT2 and L1XT3) exhibited highly significant and positive values of

SCA effects for the two experiments in the traits; the number of filled grains/panicle, 1000-grain weight, grain yield/plant, K⁺ content, proline and glycine betaine contents (Table 8). While the same five barley crosses mentioned above were recorded highly significant and negative values for SCA effects in the rest studied traits namely; plant height, Na⁺ content, Na/K ratio and osmotic adjustment under normal and salinity conditions.

Tolerance indices: Data presented in Table 9 revealed that the genotypes; Line 1, testers (1, 2 and 3) and the crosses number (1, 4 and 5) for (YSI) parameter and the three barley testers besides, the promising five crosses for (MP and GMP) parameters recorded the highest mean values for salinity tolerance indices test in this study for grain yield trait. These results confirmed that these barley genotypes considered highly salinity tolerance under stress treatment compared to the control conditions. On the same track, the three barley testers and the promising five crosses for the (YI) parameter besides the same genetic materials except tester 1 and 3 for (STI) were exhibited mean values higher than the unity. This means that these barley entries were given highly salinity tolerance under salinity stress compared to the standard experiment and this result was not achieved in the rest of barley genotypes, respectively. On the other hand, all barley entries for the parameter (YR) and the genotypes; (Line 1), testers (1, 2 and 3) and crosses number (1, 4 and 5) for the parameter SSI were exhibited mean values lower than one which confirmed that these superior barley entries were revealed highly tolerance for salinity stress in this regard.

Principal component analysis (PCA): Principal Component Analysis (PCA) based on ten agro-physiological traits were used to distinguish all genotypes into groups (Fig. 1). Where the selection of genotypes could be based on the values of both first and second principal component analysis illustrated in Table 10 that the first and second principal components analysis (PCA1 and PCA2) covered about 85.71% of the total variation. Where, the first PCA1 axis, showed 80.54% of the total variation influenced by six traits (plant height, number of filled grains/spike, 1000 grain weight, grain yield/plant, proline and glycine Betaine contents). While, the second PCA2 axis represents 5.17% of the total variability due to K content, Na content, Na/K ratio and osmotic adjustment. Tolerant genotypes to salinity stress could be defined according to the values of PCA1. Results in Table 10 distinguished that the three barley testers; Giza 123, Giza 126 and Giza 2000 besides; the crosses; Line 1XTester 1 (Giza 125XGiza 123), Line 2XTester 1 (Giza 133XGiza 123), Line 1XTester 2 (Giza 125XGiza 126), Line 2XTester 2 (Giza 133XGiza 126) and Line 1XTester 3 95.81** -55.56**

149.12*

-71.48** -44.45**

-72.26*

88.19** -44.80*

-59.91**

52.37** -57.09** -46.67** -51.61* -61.43**

-75.46**

-76.68**

-72.58**

1.97

Significant at $5\%^{**}$ Significant at 1% and $^{ extsf{NS}}$: Not significant

-68.15**

-58.22*

-69.22**

betaine content 172.21** -47.13** -34.21** -31.14** -24.25** 103.99** -27.94** -59.72** -47.08** -61.67** 57.38** -53.78** -18.98** -15.45** 87.22** -39.14** -49.59** -51.94** -32.50** -43.78** 1.91 63.44** -72.04** 58.77** -75.32** -65.50** -55.98** 82.62** -76.62** -73.01 ** -42.55** -54.30** -65.01 ** -82.86** -65.09** -53.68** -65.88** -80.99** 42.84** -50.70** Proline content -72.04 1.68 -66.88** -52.57** -27.61** -65.94** 64.21** -41.35** -46.65** -56.43** -66.53** -40.95** -56.85** -53.69** 80.95** 62.14** 77.21** -51.85** -45.10** 39.78** -60.04** -39.50** -46.39** 0.57 0.82 adjustment N 55.42^{NS} 26.50^{NS} 79.16^{NS} 50.60NS 63.85NS 33.73NS 228.81** 232.20** 261.01** -52.54^{NS} -44.06^{NS} 240.67** 8.47^{NS} -11.11^{NS} 276.38** 58.33NS 87.50** Osmotic -37.34NS 225.0** 147.22* Table 6. Estimates of heterosis over better-parent for the 21 barley crosses obtained from LineXtester analysis in all studied traits under normal and salinity conditions 33.33NS -99.99-314.28NS 1266.66NS 766.66NS 833.33NS 666.66NS 1666.66NS 620.0NS 400.0NS 720.0NS -50.0** 550.0NS 680.0NS 875.0^{NS} 700.0NS -40.0** 500.0NS 575.0NS 700.0NS 1025.0NS 1.64 Na/K ratio 44.44** 88.88_{NS} 277.77NS 314.28NS 44.44** 55.55^{NS} -28.57** -28.57** 85.71 NS 428.57NS 114.28NS 122.22^{NS} 200.0NS 110.0NS 210.0NS 80.0NS 110.0^{NS} 140.0NS -70.0** 250.0NS 2.66 25.22** -52.21^{NS} 15.15^{NS} -45.45NS -44.15^{NS} -4.92^{NS} -33.76^{NS} 42.47** -21.23^{NS} -29.64_{NS} -29.54NS -51.51^{NS} -51.94^{NS} -41.59^{NS} -47.72^{NS} 19.91^{NS} -44.58^{NS} -38.09NS -50.0NS -60.22* -57.19* content (ppm) -47.44NS 36.74** -44.18NS -39.53NS 14.85^{NS} -5.58NS 0.97^{NS} -12.09NS -52.61™ -17.67^{NS} -43.41 NS -42.92NS -5.62^{NS} -48.99NS -21.68NS -48.99NS 25.85NS -37.07NS -22.92NS -20.0NS 2.18 z 215.38NS 161.53^{NS} 512.50^{NS} 384.61NS 246.15^{NS} 209.09NS 318.18^{NS} 281.81^{NS} -23.07** 323.07NS -37.50** 362.50NS 312.50NS 662.50^{NS} -45.45** 363.63NS 218.18NS -50.0** 450.0^{NS} 454.54NS 1.8 content (ppm) 33.33^{NS} 76.19^{NS} 47.61^{NS} -33.33** -11.11** 94.44^{NS} 138.88^{NS} 166.66^{NS} 66.66^{NS} 105.55^{NS} 109.52^{NS} 95.23^{NS} 80.95NS -57.14** 80.0NS -25.0** 60.0NS 95.0^{NS} 40.0NS 110.0NS 31.93** 19.75** -8.23** -37.35** 22.20** -55.91 ** -21.87** -42.81** -63.65** -40.07** -31.17** -37.98** -59.23** 14.68** -53.42** -57.49** -46.40** -41.82** -12.68** 56.89** -26.49** 1.46 2.09 yield/plant (g) -20.94** -8.36** -22.71** 27.90** 37.72** -33.99** -39.56** -46.20** -27.77** -17.01** -13.83** -45.07** -37.61** -58.12** -42.16** -27.57** -14.93** -30.23** 16.72** 11.11** 56.67** 2.36 27.78** -42.75** -51.51** -53.48** 13.65** -39.22** 44.68** -49.43** 44.38** -53.78** .27.31** -58.79** -33.04** 24.82** -53.38** -65.38** -49.68** -19.57** -57.46** 24.64** 1.98 grain weight (g) 13.39** 23.09** -28.45** -20.40** -40.22** -32.52** 9.14** 2.10^{NS} -42.86** -52.35** -45.50** -31.02** -41.30** -38.15** **80.6--45.90** -47.98** -33.56** -56.96** -12.0** 43.0** 1.32 -26.76** 57.49** -32.09** -58.73** 78.30** -37.92** -60.22** -43.91** -57.93** 36.57** 46.31** .23.56** -14.78** -32.60** -51.12** filled grains/spike 68.17** -44.76** -68.61** -29.91** 24.46** -64.95** 2.34 1.64 Number of -29.55** -31.28** 58.33** -31.02** -35.21** -41.10** -42.97** -43.07** 54.65** -42.33** -21.23** -15.97** 49.26** -41.74** -25.64** -49.97** -48.38** -41.29** 17.51** -35.19** 2.98 2.08 23.41** 20.08** 11.87** 26.96** 8.03** 26.29** -0.97NS 16.46** 19.05** 5.64** 18.26** 10.69** 1.18^{NS} -6.46** -8.41** 33.26** -7.70** -10.08** -13.65** 26.93** 1.54 height (CM) 22.24** -3.33** -6.43** 9.91 23.29** 18.56** 27.69** 18.58** 25.74** 10.74** 15.22** 19.58** 14.28** 21.13** 15.08** 11.77** 11.78** 20.07** -2.19* -2.14* .SD at 0.01 2.43 z -SD at 0.05 L1XT2 L3XT3 L4XT3 L5XT3 L6XT3 L7XT3 L4XT1 L6XT1 L2XT2 L3XT2 -5XT2 L6XT2 L1XT3 L2XT3 L2XT1 L3XT1 L5XT1 L7XT1 L4XT2 L7XT2

1004

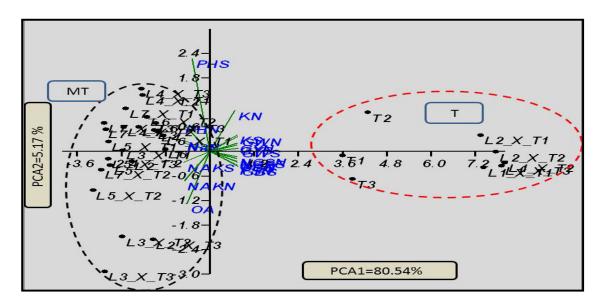


Fig. 1: Bi-plot based on 10 agro-physiological traits for 31 Egyptian barley genotypes

Plant height (CM)

Table 7: Estimates of general combining ability effects of the 10- barley entries for all studied traits under normal and salinity conditions

Number of filled grains/spike 1000-grain weight (g)

Grain yield/plant (g)

Na+ content (ppm)

Parents	N	S	N	S	N	S	N	S	N	S
Lines										
L1	-10.64**	-2.87**	2.49**	3.48**	6.22**	2.39**	1.57**	3.09**	-2.36**	-4.26**
L2	-8.12**	-5.11**	3.18**	5.03**	4.03**	5.04**	3.48**	1.47**	-1.48**	-1.98**
L3	4.97**	10.0**	-1.21 ^{NS}	-2.41**	-1.57**	-4.23**	-2.37**	-6.32**	0.34 ^{NS}	0.75**
L4	11.03**	6.07**	-0.66 ^{NS}	-7.34**	-3.22**	-3.07**	-8.98**	-4.17**	9.98**	3.04**
L5	8.17**	4.76**	-15.45**	-13.02**	-7.39**	-1.79**	-8.73**	-2.96**	0.68 ^{NS}	1.46**
L6	2.66**	5.33**	-11.04**	-1.79**	-2.14**	-0.95*	-7.75**	-8.47**	4.90**	0.55**
L7	18.19**	9.63**	-4.34**	-5.10**	-8.43**	-12.67**	-7.16**	-3.05**	2.88**	11.14**
LSD at 0.05 (gi)	3.56	2.71	1.82	1.06	1.19	1.27	0.35	0.72	0.88	0.28
LSD at 0.01 (gi)	4.15	3.12	2.34	1.65	1.48	1.51	0.44	0.89	1.04	0.42
Testers										
T1	-8.34**	-11.03**	7.23**	6.63**	5.92**	4.11**	12.58**	9.05**	-2.49**	-1.49**
T2	-11.79**	-7.55**	13.58**	4.34**	3.70**	1.55**	7.08**	6.45**	-3.71**	-5.43**
T3	-6.13**	-9.23**	6.22**	10.18**	2.88**	9.62**	10.28**	4.91**	-8.74**	-3.78**
LSD at 0.05 (gi)	1.42	1.26	2.39	1.17	0.96	0.81	0.49	0.37	0.74	0.54
LSD at 0.01 (gi)	1.59	1.38	2.48	1.32	1.33	1.06	0.68	0.52	1.02	0.68
	K+ conten	ıt (ppm)	Na/K rat	io		Pro	line content		Glycine beta	ine content
					Osmoti	c				
Parents	N	S	N	S	adjustme	ent N		S	N	S
Lines										
L1	6.07**	2.17**	-5.04**	-3.23**	-6.15**	2.90	6**	7.29**	6.48**	1.29**
L2	3.91**	4.01**	-2.90**	-1.18**	-3.04**	4.0	3**	1.99**	3.89**	3.11**
L3	-0.22 ^{NS}	-3.12**	3.14**	0.36 ^{NS}	7.11**	-7.0	1**	-6.0**	-2.08**	-4.05**
L4	-5.34**	-2.11**	0.08 ^{NS}	0.55 ^{NS}	2.34**	-3.1	5**	-8.56**	-8.59**	-2.87**
L5	-3.0**	-1.82**	6.11**	9.02**	5.71**	-5.08	8**	-3.81**	-0.08 ^{NS}	-5.01**
L6	-6.57**	-4.95**	1.69**	1.02**	1.43**	-1.7	5**	-1.77*	-13.42**	-0.06 ^{NS}
L7	-1.46**	-6.86**	2.22**	2.54**	1.96**	-15.4	5**	-8.07**	-8.65**	-5.69**
LSD at 0.05 (gi)	0.38	0.53	0.28	0.74	0.46	1.49	9	1.56	1.19	1.03
LSD at 0.01 (gi)	0.61	0.79	0.41	0.91	0.69	1.63	3	1.94	1.35	1.23
Testers										
T1	1.97**	3.12**	-2.15**	-5.28**	-3.45**	6.28	8**	10.47**	7.12**	2.85**
T2	2.88**	5.19**	-1.67**	-1.47**	-1.89**	8.1	5**	5.19**	10.09**	6.07**
T3	1.76*	4.37**	-1.48**	-2.33**	-4.02**	11.02	2**	3.27**	5.24**	4.36**
LSD at 0.05 (gi)	1.66	1.35	1.04	1.02	0.56	2.88	8	2.44	1.55	1.27
LSD at 0.01 (gi)	1.82	1.53	1.29	1.17	0.71	3.2	5	3.19	1.92	1.39

^{*}Significant at 5%, **Significant at 1% and NS: Not significant, N: Normal conditions and S: Salinity conditions

-9.44 -3.78** 22.88** -5.39

-2.54**

-10.22**

-7.23** 3.11**-

1.91

-13.92**

-14.83*

107.94**

-14.06*

-32.88**

-8.95

46.11*

-6.13** -22.17** -19.16**

112.03** -240.82* betaine content Glycine -4.17** -2.74** 72.55** -6.93** 38.82** -2.99** -8.52** -4.15** -4.25** -25.17** -85.82** -11.04** -15.60** 54.0** -16.72** 55.28** -14.83** -10.09** -14.70* 2.68 39.77** -6.73** -4.16** -16.58** 61.05** -1.98** -8.47** -5.17** 75.19** -7.13** -21.05** -12.83** -28.23** 96.52** -3.66** -11.02** -41.03** -12.09** -405.66** -170.64** Proline content -9.83** 52.83** -17.95** -8.67 7.08 -6.12** -10.03** -7.31** -13.42** -23.40** -13.42** 173.80** -24.15** -10.35** 123.45** 117.87** -26.34** -19.72** -21.05** 1.63 1.85 Z adjustment -62.08** 82.56** 15.07** -38.21** 72.06** 4.85** 12.18** 7.12** 3.18** 6.15** 13.79** 13.04** 37.11** 3.95** -59.13** -107.83** 11.07** 5.42** 9.14** 15.32** Osmotic -44.76** 1.73 3.68** 32.06** 7.12** 40.09** 3.72** 6.39 -132.11** 19.27** -112.16** 12.09** 7.41** 16.55** 14.05** 8.57** 21.04** 17.49** -80.50** -117.0** 19.28** 291.98** 1.33 Na/K ratio 12.55** -96.18** 22.14** 16.15** 8.79** 10.62** -70.38** 4.58** 13.05** 11.71** 21.48** 1.98** 27.33** 23.49** 7.38** -48.56** -69.80 16.08** 257.09** 185.39 45.90** -9.75** -4.88** -27.55** -9.03** 61.19** -10.08** -13.47** 125.34** 70.62** -12.74** -17.24** -26.29** -19.84** -42.16** -16.84** -12.63** -7.41** -5.04** -187.43** 119.33* 1.41 content (ppm) Table 8: Estimates of specific combining ability effects for the 21 barley crosses of all studied traits under the control and salinity conditions 31.04** -6.18** -28.30** 115.60** -7.42** -5.93** -14.65** -5.49** -2.98** 50.02** -13.81** -20.13** -9.37** -2.90** **88.06 -36.94** -27.17** -166.13** -15.72** -11.09** 86.67** 1.02 6.52** 8.23** -72.18** 25.34** 22.48** 26.14** 2.13** 11.63** 13.08** -91.33** 1.89** 9.38** 11.32** 12.83** -81.33** 3.59** 10.56** -77.22** 253.92** 1.28 content (ppm) -76.04** 3.72** -38.17** 7.93** 2.14** 5.08** 12.05** 8.12** 3.11** 11.03** 3.97** 8.33** 6.33** -22.45** **404 17.09** 32.60** 9.17** -134.16** -55.19** 191.30** 1.53 1.84 z -7.28** -9.34** -4.22** 38.56** -6.49** 78.22** -6.02** 29.02** 53.60** -9.88 -2.89** -20.14**-7.92** -9.13** -12.15** -25.07** -12.03** -7.14** -2.48** -70.24** 1.71 2.19 yield/plant (g) -20.05** -23.05** -7.54** 45.08** -13.05** -10.04** 55.87** 47.55** -7.82** -2.87** -10.05** -8.07** 37.12** -5.60** -7.44** -2.55** -11.03** -5.12** -15.07** -58.32** 22.05* 1.54 -31.09** -8.15** -4.26** 37.86** -8.44** -2.55** 110.17** -19.43** -23.18** 27.04** -21.06** -14.25** 105.87** -11.09** -5.11** -6.80** -87.95 -27.12** -19.02** -11.15* grain weight (g) 105.43** -42.19** -7.22** -28.04** -9.16** -18.04** -6.95** -4.72** -10.04** -7.23** -1.42** -3.48** 83.17** 60.17** -12.75** 22.38** -2.67** -14.03** -224.95** -4.29** 1.12 1.29 'Significant at 5%, **Significant at 1% and NS: Not significan 41.07** -25.03** -8.06** -7.94** 92.11** -4.87** -4.97** -12.56** -33.18** -8.42** 12.08** -5.12** -1.94** filled grains/spike -15.86** -1.96 -3.77** -11.05** -17.22** **0.96 -128.49** 1.48 Number of 128.32** -10.03** -5.23** -4.93** -7.88** -1.83** -21.07** -3.19** 33.21** -12.05** -7.19** -8.33** -5.19** 35.95** -3.85** -6.81 -10.02** 86.23** -15.66** -225.57** 1.42 1.65 7.38** 9.63** 390.69** -52.84** 6.25 13.62** 3.81 17.61** 4.13** 4.58** -127.0** 6.19 122.19** 15.93** 10.06** 15.08** 5.32** 11.02** 28.40* -112.0** 1.65 1.81 -135.67 height (CM) 5.17** -129.45** 13.96** 17.82** 9.85 27.23** -71.06** 6.32** 16.48** 4.19** 8.15** 24.11** 11.06** 10.04** 12.55** 233.51** 18.09** .94.33** 42.79** 7.44** LSD at 0.05 (SIJ) 1.83 LSD at 0.01 (SIJ) 2.14 L1XT2 L2XT3 L2XT1 L2XT2 L3XT2 L4XT2 L5XT2 L6XT2 L7XT2 L1XT3 L3XT3 L4XT3 L5XT3 L6XT3 L3XT1 L5XT1 L6XT1 L7XT1 L4XT1

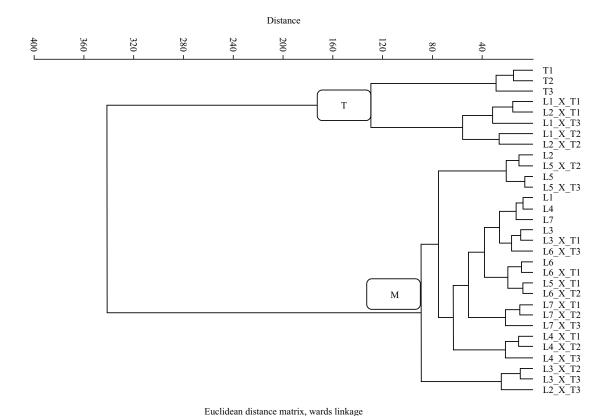


Fig. 2: Cluster analysis based on 10 agro-physiological traits for 31 Egyptian barley genotypes

Table 9: Estimation of salinity tolerance indices for the ten barley parents and the highest five crosses especially for grain yield/plant trait under both treatments

Genotypes	GYP	GYS	YSI	YI	MP	STI	GMP	YR	SSI
Line 1	23.15	18.94	0.81	0.59	21.04	0.26	20.96	0.19	0.86
Line 2	30.05	22.84	0.76	0.72	26.44	0.42	26.19	0.24	1.09
Line 3	28.39	15.33	0.53	0.48	21.86	0.26	20.86	0.47	2.13
Line 4	31.74	24.13	0.76	0.76	27.93	0.47	27.67	0.24	1.09
Line 5	24.38	17.45	0.71	0.55	20.91	0.26	20.62	0.29	1.31
Line 6	26.25	17.62	0.67	0.55	21.93	0.28	21.50	0.27	1.22
Line 7	25.43	19.77	0.77	0.62	22.60	0.30	22.42	0.23	1.04
Tester 1	43.07	36.11	0.83	1.14	39.59	0.95	39.43	0.17	0.77
Tester 2	48.12	41.05	0.85	1.29	44.58	1.21	44.44	0.15	0.68
Tester 3	38.96	32.04	0.82	1.01	35.50	0.76	35.33	0.18	0.81
Cross 1	55.09	47.64	0.86	1.50	51.36	1.61	51.22	0.14	0.63
Cross 2	59.32	44.13	0.74	1.39	51.72	1.61	51.16	0.26	1.18
Cross 3	56.17	42.08	0.74	1.33	49.12	1.45	48.61	0.26	1.18
Cross 4	53.47	45.16	0.84	1.42	49.31	1.48	49.13	0.16	0.72
Cross 5	61.04	50.27	0.82	1.58	55.65	1.88	55.39	0.18	0.81

Line 1: Giza 125, Line 2: Giza 133, Line 3: Giza 134, line 4: Giza 129, Line 5: Giza 130, Line 6: Giza 131, Line 7: Giza 132, Tester 1: Giza 123, Tester 2: Giza 126, Tester 3: Giza 2000, Cross 1: Giza 125XGiza 123, Cross 2: Giza 133XGiza 123, Cross 3: Giza 125XGiza 126, Cross 4: Giza 133XGiza 126 and Cross 5: Giza 125XGiza 2000, respectively

(Giza 125XGiza 2000) which were positive and get high values of PCA1 could be more tolerant genotypes and suitable for both saline and normal conditions.

Cluster and biplot analysis: Biplot analysis identifies the greater genotypes for both stress and non-stress conditions. Genotypes exposed to Biplot analysis, are compared for

assessing relationships between all the attributes at once. Biplot and cluster analysis using (Euclidean distance matrix and words Linkage) based on their ten agro-physiological traits and PCA values had clustered all 31 barley genotypes; (tester, lines and their crossing) into two major groups (Fig. 1 and 2). The First group (T) includes all the tolerant genotypes which had higher grain yield and higher values of

Table 10: Principal component analysis for the ten agro-physiological traits of 31 barley genotypes

31 bariey genotypes			
Traits/genotypes	PCA1	PCA2	PCA3
Agronomical traits			
Plant height (CM)	13.471	-2.2984	0.049515
Number of filled grains/spike	1.6825	-0.95248	0.39623
1000-grain weight (g)	1.6966	-0.50369	0.18808
Grain yield/plant (g)	1.0574	-0.36937	0.089815
Physiological traits			
K ⁺ content (ppm)	-4.6286	1.2635	-0.07637
Na+ content (ppm)	-4.8753	1.3466	-0.08047
Na/K ratio	-4.8942	1.3452	-0.08011
Osmotic adjustment	-4.679	1.401	-0.08084
Proline content	1.5012	-2.295	-0.82311
Glycine betaine content	1.2594	-1.9982	0.66596
Genotypes or parents			
Giza 125 L1	-1.933	0.60231	-0.32963
Giza 133 L2	-2.1212	-0.23578	-0.03763
Giza 134 L3	-1.5142	0.52557	-0.07853
Giza 129 L4	-1.4143	0.4849	-0.76605
Giza 130 L5	-2.7109	-0.33266	0.60215
Giza 131 L6	-1.2086	0.058849	-1.2318
Giza 131 L7	-2.8261	0.54467	0.54657
Giza 132 L7 Giza 123 T1	3.5951	-0.09331	-1.1525
Giza126 T2			
	4.2814	0.96138	-1.2424
Giza 2000 T3	3.8649	-0.66925	-0.81457
Crossing	7.4402	0.20702	0.40005
L1_X_T1	7.4183	-0.38792	0.48885
L2_X_T1	7.3407	0.40076	-0.09735
L3_X_T1	-2.3801	0.027831	0.21893
L4_X_T1	-1.8254	1.3822	-0.27532
L5_X_T1	-2.7478	0.24381	1.5816
L6_X_T1	-1.2724	0.39163	-1.3414
L7_X_T1	-2.2871	1.0557	1.7473
L1_X_T2	7.9925	-0.26964	1.2517
L2_X_T2	7.7513	-0.0024	0.75829
L3_X_T2	-2.3823	-2.0751	-0.03376
L4_X_T2	-2.342	0.59587	-1.0155
L5_X_T2	-3.1682	-0.94167	-0.16411
L6_X_T2	-1.711	0.84688	-0.87654
L7_X_T2	-2.9513	-0.44698	1.6226
L1_X_T3	7.904	-0.3465	0.32341
L2_X_T3	-1.5404	-2.147	-1.0377
L3_X_T3	-2.8567	-2.9322	0.21404
L4_X_T3	-1.8598	1.5356	0.44981
L5_X_T3	-2.7594	-0.17593	0.52263
L6_X_T3	-1.4666	0.69737	-0.16756
L7_X_T3	-2.8692	0.70101	0.33451
Eigenvalue	15.30	0.98	0.75
Variance (%)	80.54	5.17	3.96
Variance (70)	30.34	3.17	3.70

PCA1 under normal and saline stress conditions. So, we could consider them as a tolerant cultivars such as (Giza 123, Giza 126, Giza 2000, Line 1XTester 1 (Giza 125XGiza 123), Line 2XTester 1 (Giza 133XGiza 123), Line 1XTester 2 (Giza 125XGiza 126), Line 2XTester 2 (Giza 133XGiza 126) and Line 1XTester 3 (Giza 125XGiza 2000). While the second group (M) included the moderated tolerant genotypes in this regard.

Molecule marker analysis: Eleven SSR primer pairs previously mapped and covered all seventh chromosomes (Grain Genes database) were used in this study (Fig. 3a-d). These primers were screened against selected fifteen barley genotypes in an attempt to detect polymorphic markers. Out of these eleven primers, five primers showed monomorphic fragment profiles as one allele were Bmac0063 (1H), Bmag0125 (2H), Bmac 0209 (3H), Bmag0084 (4H Fig. 3c) and Bmac135(7H). Four primers produced two alleles were Bmac 0742 (2H), Bmac 0067 (3H Fig. 3d), Bmac0096 (5H) and Bmac 0173 (6H Fig. 3b), one primer produced three markers were Bmac 0064 (7H) and the SSR primer Bmag 770 (1H Fig. 3a) produced four alleles. Twenty alleles were produced as a result of fingerprinting 11 SSR primers ranging from one to four alleles per locus with a mean value of 1.81 alleles per locus as shown in Table 11. The outstanding six primer pairs (Bmac 0742, Bmac 0067, Bmac0096, Bmac 0173, Bmac 0064 and Bmag 770) generated clear fragment patterns with high polymorphism (100%) which were used to evaluate the genetic diversity of the selected 15 barley genotypes. The PIC (Polymorphism Information Content) value of each SSRs marker measure the marker ranged from 0.46 (Bmac0067 Fig. 3d) to 0.85 (Bmag 770 Fig. 3a) (Table 11). Furthermore, indicators of locus diversity (polymorphism information content-PIC) were calculated and Not considering the monomorphic loci. The primers which recorded a high rank of PIC were considered an ideal way to compare and distinguish among all barley genotypes under study. s The highest number of the fragment was developed by the primer (Bmag 770, 1H Fig. 3a) showed four fragments, which amplified specific allele with molecular size 260 bp found in all tolerance genotypes namely; (Giza 123, Giza 126, Giza 2000, Giza 125XGiza 123, Giza 133XGiza 123, Giza 125XGiza 126, Giza 133XGiza 126 and Giza 125XGiza 2000).

Molecular genetics in particular molecular parameters is considering the fruitful method in the field of plant genetics responsible for finding out the causes and molecular genetic evidence that attributes and causes barley tolerance to salinity. In addition, its main role in distinguishing between different entries and crosses at the molecular level. As well as, determining the degree of convergence and genetic separation (Genetic distance) between these genotypes under study through estimating phylogenetic tree or cluster analysis. Therefore, the goal of conducting molecular markers is the molecular description for the ten barley parents besides, the best and strongest five hybrids with high tolerance to salinity stress based on all results obtained from all studied traits

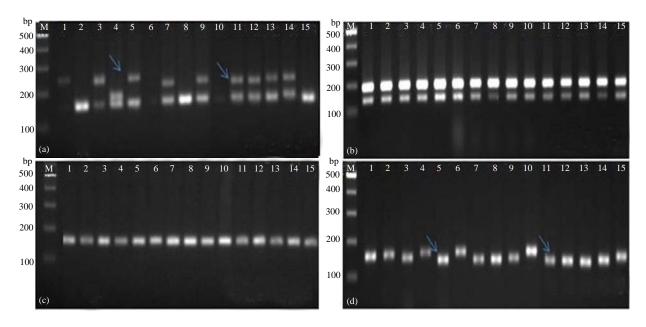


Fig. 3(a-d): Amplification results of the SSR primers

(a) Bmag 0770, (b) Bmag 0173, (c) Bmac 0084 and (d) Bmac 0067 in studied barley genotypes. M: Marker, 1: Giza 123, 2: Giza 125, 3: Giza 126, 4: Giza 133, 5: Giza 2000, 6: Giza 132, 7: Giza 131, 8: Giza 134, 9: Giza 130, 10: Giza 129, 11: Giza 125XGiza 2000, 12: Giza 133XGiza 126, 13: Giza 125XGiza 126, 14: Giza 125XGiza 123 and 15: Giza 133XGiza 123, respectively

Table 11: List of multiplexing sets of the used SSR primers motifs, no. of alleles, no of polymorphic bands, polymorphism information contents (PIC) and polymorphism (%)

Primer name	Motif	No. of alleles	No. of polymorphic bands	PIC	Polymorphism (%)
Bmac0063	(AC)14	1	0	0.0	0.0
Bmag0770	(GT)13,(AG)19	4	4	0.85	100
Bmag0742	(TC)29	2	2	0.47	100
Bmag 0125	(AG)19	1	0	0.0	0.0
Bmac0067	(AC)18	2	2	0.46	100
Bmac0209	(AC)13	1	0	0.0	0.0
Bmac0084	(AC)13	1	0	0.0	0.0
Bmac0096	(AT)6(AC)16	2	2	0.48	100
Bmag0173	(CT)29	2	2	0.34	100
Bmac0064	(AC)21	3	3	0.39	100
Bmag0135	(AG)10GG(AG)12	1	0	0.0	0.0
Average		1.81	1.36		54.54
Total		20	15		

under normal and salinity conditions. The UPGMA cluster divided into three main clusters (named as T, MT and S) (Fig. 4). Accordingly, after all the physiological and molecular genetics results mentioned above, can be considered the following four barley crosses namely; cross 1 (Giza 125XGiza 123), cross 3 (Giza 125XGiza 126), cross 4 (Giza 133XGiza 126) and cross 5 (Giza 125XGiza 2000) besides, the parents Giza 123, Giza 126, Giza 131 and Giza 2000 the most tolerant genotypes which grouped in the first cluster (T). Meanwhile, the second cluster (MT) include moderately tolerant barley genotypes namely; Giza 125, Giza 130, Giza 133 and Giza 134 besides, the cross 2 (Giza 133XGiza

123). The remained cluster (S) includes the sensitive barley genotypes; Giza 129 and Giza132 in diverged form as shown in Fig. 4.

DISCUSSION

Salinity stresses an utmost observed problem worldwide that has made a thoughtful impact on agriculture. It has instigated deleterious effects on physiology and productivity as well as yield in most plants. Results of lineXtester analysis largely indicated the vital and active role of additive and additiveXadditive types of gene action responsible for

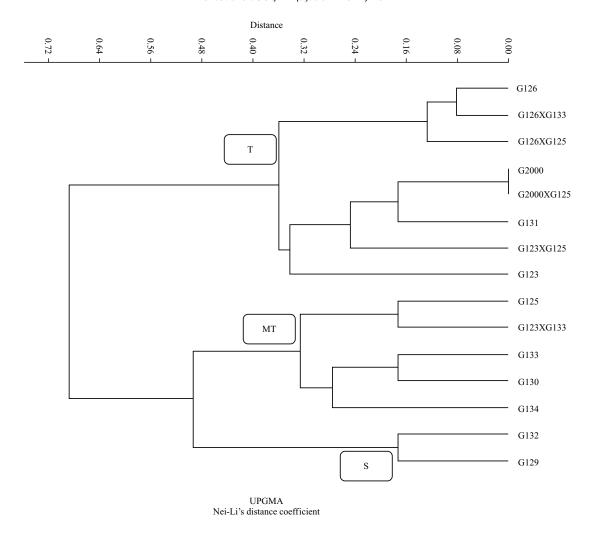


Fig. 4: Dendrogram representing the genetic relationship among the fifteen barley genotypes using UPGMA cluster analysis of Nei-Li's distance coefficient using 11 SSRs primers

inheriting and controlling a salinity-tolerant trait in barley genotypes. This is due to the importance of the three salttolerant barley varieties namely; Giza 123, Giza 126 and Giza 2000 which had the main role in producing 21 barley hybrids by independently hybridizing each of them with the rest of barley genotypes classified medium to sensitive tolerance to this dangerous environmental factor. The final result of 21 barley hybrids confirmed that most of them are considered tolerant or medium tolerance to salinity stress, Table 4^{4,7,38-41}. The eight promising barley entries presented in Table 5 namely; Giza 123, Giza 126 and Giza 2000 besides; the crosses; Line 1XTester 1 (Giza 125XGiza 123), Line 2XTester 1 (Giza 133XGiza 123), Line 1XTester 2 (Giza 125XGiza 126), Line 2XTester 2 (Giza 133XGiza 126) and Line 1XTester 3 (Giza 125XGiza 2000) which exhibited higher mean values for yield and its components traits scored the first rank of salinity tolerance in this regard. Because these genetic materials were

able to control the entering of sodium elements and also able to reduce its percentage and toxicity in cells. On the contrary, they allowed increasing the accumulation of potassium content, which is responsible for the resistance to salt stress and helps to build new cells. This reflects the ability to genetically control adventurous roots responsible for this process. In addition, controlling of opening and closing of stomata especially the upper ones besides, reducing the amount of water losing used in the transpiration process during photosynthesis under saline stress compared to the normal conditions. Further, after all of the above mentioned, it is noticed that the eight barley promising genotypes that tolerate salt stress have also succeeded in producing and excreting a large number of organic acids such as proline and glycine betaine contents under saline-stress level compared to normal treatment. Because research and studies have proven that these compounds have a close relationship with resistance to water and salt stresses in the tolerant entries when mass-produced. While, sensitive genotypes cannot produce these compounds in large quantities, 4,38-41. Data obtained in Table 6 and associated with heterosis over betterparent confirmed the importance of dominance and dominanceXdominance gene action beside the fruitful role of SCA effects for controlling, inheriting, enhancing and increasing the ability of salinity tolerance in the promising five barley crosses namely; L1XT1, L2XT1, L1XT2, L2XT2 and L1XT3, respectively. There is no doubt that the aforementioned five superior barley hybrids are the largest evidence for the transgressive segregation represented in the first generation. Therefore, the cultivation of these genotypes for several isolation generations with the simple selection of important traits such as salinity tolerance and high grain yield may ultimately lead to access to genetically stable, high yielding barley lines as well as tolerance to salt stress. These results were in agreement with those reported by^{4,40,42}. Results of GCA effects obtained in Table 7 detected the biggest role of additive and additiveXadditive types of gene action responsible for controlling salinity stress tolerance in barley entries through studying the recent traits. This strongly indicates the success achieved in the genetic improvement of tolerance to high soil salinity in the previous superior genotypes. Also, continuing to cultivate these superior entries for a few segregation generations may eventually lead to obtaining barley lines classified as high genetic stability, highly salinity tolerance and good yield^{4,40,42}. In the same track, results obtained in Table 8 and related to SCA effects confirmed the important role of dominance and dominanceXdominance types of gene action in controlling, activate and raising the ability of salinity tolerance in the superior five barley crosses in all attributes understudy in this investigation. Given that these five hybrids will serve as the nucleus for the production of barley varieties that are tolerant to salt stress, as a serious step for the genetic improvement of barley to confront environmental stresses^{4,40,42}. Salinity tolerance indices are considering the most important indicators used to verify all field experimental results prove or not prove salinity tolerance trait in all tested genetic materials of barley, Table 9. Accordingly, all results of grain yield/plant trait evaluated under salinity conditions compared to the control experiment for the promising eight barley genotypes namely; the three testers; (Giza 123, Giza 126 and Giza 2000) and the five barley crosses; Line 1XTester 1 (Giza 125XGiza 123), Line 2XTester 1 (Giza 133XGiza 123), Line 1XTester 2 (Giza 125XGiza 126), Line 2XTester 2 (Giza 133XGiza 126) and Line 1XTester 3 (Giza 125XGiza 2000) which exhibited highly salinity tolerance based on all salinity tolerance indices parameters in this

regard. Simply, because it was able to reduce the waste in the final yield under salinity stress compared to the rest of barley genotypes tested under the same conditions (YR). Also, most of them gave results lower than one of them (SSI) parameters which confirms reached these genetic materials to highly limit of salinity tolerance compared to the rest of all genotypes under the same conditions. Further, also, it was able to increase the production of some organic compounds such as proline and glycine betaine contents that cause salinity tolerance. This mechanism is not available in the rest of the genotypes which medium tolerance or even sensitivity to salt stress. This indicates the extent of the change and the physiological development to salinity stress tolerance in these promising barley genotypes^{38,39}. Biplot and cluster analysis has been widely used for the description of genetic diversity and grouping based on agro-morphological and physiological traits which were considered as a helpful tool for breeders to design successful breeding programs for stress conditions. These results were in good harmony with⁴³⁻⁴⁷ where they studied genetic diversity in barley using multivariable analysis to grouping barley genotypes based on phenotypic traits. The present study confined that parental barley (7 lines and 3 testers) and their F1 hybrids exposed to saline conditions were examined for morphological attributes, yield parameters, harvest index and confirmed via DNA markers. Based on SSR analysis, it could use this marker as a positive marker for salt stress tolerance 41,45,46,48,49. Using direct field and other methods to assess barley to salt stress tolerance made it possible to identify promising with a set of positive traits for use in practical breeding and selection⁵⁰. Among 15 analyzed barley entries, the chosen set of 11 markers amplified 20 alleles with an average of 1.81, with a range from 1 to 4 alleles. Our finding was comparable with the findings of⁵¹ who detect an average PIC value of 0.58 in barley lines using 28 SSR markers. Our results are also similar to the mean PIC value of 0.57 obtained by⁵². Average mean PIC values were slightly higher than reported by 53,54 which ranging from 0.28 to 0.46. Microsatellite markers with higher values of Polymorphic Information Content (PIC) were considered as a powerful marker to classify and discriminate any genotypes. A locus with an assessed PIC value high than 0.50 is considered to be highly differentiated⁴⁹. In our study, the PIC values of the SSR markers ranged between 0.39 and 0.85. The UPGMA results (Fig. 4) agreed with Bi-plot and agro-physiological traits analysis (Fig. 1 and 2). The three clusters were detected in the UPGMA plot showed a pattern correlated to the salinity stress in barley parents and their hybrids. In addition, barley genotypes could be divided into groups according to morphology and different target traits such as yield and DNA marker (SSR) to a tolerance of abiotic stresses such as salinity¹². The system of genetic variation assessment of barley genotypes with the SSR markers was established. Also, the results of SSR analysis and the data on valued agricultural trait loci determined the genetic distance among parents and their hybrids, which is of unlimited rate for breeders.

CONCLUSION

This study succeeded in identifying the genetic behaviour associated with salinity tolerance in some promising barley entries included the ten parents and their F1 crosses obtained from lineXtester analysis. Results of all traits under study gave conclusive evidence that cannot be doubted that the genotypes; Giza 123, Giza 126 and Giza 2000 besides; the crosses; Line 1XTester 1 (Giza 125XGiza 123), Line 2XTester 1 (Giza 133XGiza 123), Line 1XTester 2 (Giza 125XGiza 126), Line 2XTester 2 (Giza 133XGiza 126) and Line 1XTester 3 (Giza 125XGiza 2000) were recorded the highest mean values under salinity treatment compared to the control experiment and considered highly tolerance to salinity stress in this regard. As well, these superior barley genotypes also gave positive results for salinity stress tolerance in all genetic parameters and salinity tolerance indices. Further, the molecular genetic markers using 11 SSR markers have already succeeded in determining the genetic basic responsible for salinity tolerance in 15 promising barley genotypes and superior to salinity tolerance (The ten parents besides, the best 5 F1 crosses with a high response for salt stress tolerance). This technique may be considered as a taxonomic basis at the molecular level to determine the semantics responsible for salinity tolerance in this track.

SIGNIFICANCE STATEMENT

This study detected some barley genotypes with a high ability to salt stress tolerance under Egyptian conditions. Also, this result has been confirmed after studying some agromorphological and physiological attributes related to salt stress tolerance in 31 barley genotypes under salinity stress conditions compared to the standard experiment. Based on these results, it can be concluded that the eight promising barley genotypes tolerant to salt stress especially the five F1 crosses mentioned above can be considered as a nucleus for producing high-yielding barley lines that are tolerated to salt stress. Further, this investigation will help the researchers to uncover the critical areas in molecular genetic markers which discovering 20 alleles generated from 11 SSR primers pairs (five of them were monomorphic and 15 fragments were polymorphic with 75.0% polymorphism). In addition, marker

Bmag succeeded in producing four alleles with a specific marker with molecular size 260 bp found in all tolerance barley entries. Thus, it is possible to enter those tolerant materials in the genetic improvement program for salinity tolerance in a barley crop. This is a new theory and a successful scientific leap in this regard.

REFERENCES

- Chen, Z., S. Shabala, N. Mendham, I. Newman, G. Zhang and M. Zhou, 2008. Combining ability of salinity tolerance on the basis of NaCl-induced K⁺ flux from roots of barley. Crop Sci., 48: 1382-1388.
- Vysotskaya, L., P.E. Hedley, G. Sharipova, D. Veselov, G. Kudoyarova, J. Morris and H.G. Jones, 2010. Effect of salinity on water relations of wild barley plants differing in salt tolerance. AoB Plants, Vol. 2010. 10.1093/aobpla/plq006.
- Nevo, E. and G. Chen, 2010. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ., 33: 670-685.
- El-Mouhamady, A.A., K.A. Amer and A.Y. Ragab, 2012. Development of salinity tolerance in some genotypes of barley using line X tester analysis and some techniques of biotechnology. J. Appl. Sci. Res., 8: 972-982.
- Long, N.V., O. Dolstra, M. Malosetti, B. Kilian, A. Graner, R.G.F. Visser and C.G. van der Linden, 2013. Association mapping of salt tolerance in barley (*Hordeum vulgare* L.). Theor. Appl. Genet., 126: 2335-2351.
- Jamshidi, A. and H.R. Javanmard, 2018. Evaluation of barley (Hordeum vulgare L.) genotypes for salinity tolerance under field conditions using the stress indices. Ain Shams Eng. J., 9: 2093-2099.
- 7. Ebrahim, F., A. Arzani, M. Rahimmalek, D. Sun and J. Peng, 2020. Salinity tolerance of wild barley *Hordeum vulgare* ssp. spontaneum. Plant Breed., 139: 304-316.
- 8. Mwando, E., Y. Han, T.T. Angessa, G. Zhou, C.B. Hill, X.Q. Zhang and C. Li, 2020. Genome-wide association study of salinity tolerance during germination in barley (*Hordeum vulgare* L.). Front. Plant Sci., Vol. 11. 10.3389/fpls.2020.00118.
- 9. Khatab, I.A., M.A. Farid and T. Kumamaru, 2016. Genetic diversity associated with heading date in some rice (*Oryza sativa* L.) genotypes using microsatellite markers. J. Environ. Agric. Sci., 6: 58-63.
- Khatab, I.A., A.R. Morsf, W.M. Fares and T. Kumamaru, 2016.
 Genetic diversity of soybean genotypes revealed by agromorphological and SSR markers. J. Fac. Agri. Kyushu. Uni., 61: 79-87.
- 11. Curto, M., S. Winter, A. Seiter, L. Schmid and K. Scheicher *et al.*, 2019. Application of a SSR-GBS marker system on investigation of European hedgehog species and their hybrid zone dynamics. Ecol. Evol., 9: 2814-2832.

- 12. Brbaklić, L., D. Trkulja, S. Mikić, M. Mirosavljević and V. Momčilović *et al.*, 2021. Genetic diversity and population structure of serbian barley (*Hordeum vulgare* L.) collection during a 40-year long breeding period. Agronomy, Vol. 11. 10.3390/agronomy11010118.
- 13. Hayden, M.J., T.M. Nguyen, A. Waterman, G.L. McMichael and K.J. Chalmers, 2008. Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol. Breed., 21: 271-281.
- 14. Khatab, I.A. and M.A. Samah, 2013. Development of agronomical and molecular genetic markers associated with salt stress tolerance in some barley genotypes. Curr. Res. J. Biol. Sci., 5: 198-204.
- Mariey, S., M. Farid and I. Khatab, 2016. Physiological and molecular characterization of some Egyptian barley (*Hordeum vulgare* L.) cultivars for salt tolerance. Egypt. J. Genet. Cytol., 45: 367-382.
- 16. Abu-El-Lail, F.F.B., K.A. Hamam, K.A. Kheiralla and M.Z. El-Hifny, 2014. Salinity tolerance in 280 genotypes of two-rows barley. Egypt. J. Plant Breed., 18: 331-345.
- 17. Abdel-Hamid, A.M.E., 2014. Physiological and molecular markers for salt tolerance in four barley cultivars. Eur. Scient. J., 10: 252-272.
- 18. Hassan, H.I. and H.H. El-Kamali, 2015. Effect of soil physic-chemical properties and plant type on bacterial diversity in semi-arid parts in Central Sudan. Part I. Omdurman north region. Open Access Library J., Vol. 2.
- Irakoze, W., H. Prodjinoto, S. Nijimbere, J.B. Bizimana, J. Bigirimana, G.Rufyikiri and S. Lutts, 2021. NaCl- and Na₂SO₄induced salinity Differentially affect clay soil chemical properties and yield components of two rice cultivars (*Oryza sativa* L.) in Burundi. Agronomy, Vol. 11. 10.3390/agronomy11030571.
- 20. Blum, A., 2017. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ., 40: 4-10.
- 21. Ábrahám, E., C. Hourton-Cabassa, L. Erdei and L. Szabados, 2010. Methods for determination of proline in plants. Methods Mol. Biol., 639: 317-331.
- 22. Kalsoom, U., I.J. Bennett and M.C. Boyce, 2016. A review of extraction and analysis: Methods for studying osmoregulants in plants. J. Chromatogr. Sep. Tech., Vol. 7. 10.4172/2157-7064.1000315.
- 23. Senthilkumar, M., N. Amaresan and A. Sankaranarayanan, 2021. Determination of Glycine Betaine by Periodide Method. In: Plant-Microbe Interactions, Senthilkumar, M., N. Amaresan and A. Sankaranarayanan (Eds.)., Springer Protocols Handbooks, Humana, New York, pp: 99-100.
- 24. Aghaie, P., S.A.H. Tafreshi, M.A. Ebrahimi and M. Haerinasab, 2018. Tolerance evaluation and clustering of fourteen tomato cultivars grown under mild and severe drought conditions. Sci. Hortiic., 232: 1-12.

- 25. Sánchez-Reinoso, A.D., G.A. Ligarreto-Moreno and H. Restrepo-Díaz, 2020. Evaluation of drought indices to identify tolerant genotypes in common bean bush (*Phaseolus vulgaris* L.). J. Integr. Agric., 19: 99-107.
- 26. Taherian, M., M.R. Bihamta, S.A. Peyghambari, H. Alizadeh and A. Rasoulnia, 2019. Stability analysis and selection of salinity tolerant barley genotypes. J. Crop Breed., 11: 93-103.
- 27. Frih, B., A. Oulmi and G. Ali, 2021. Study of the drought tolerance of certain of durum wheat (*Triticum durum*Desf.) genotypes growing under semi-arid conditions in Algeria. Int. J. Bio-Resour. Stress Manag., Vol. 12.
- 28. Anwaar, H.A., R. Perveen, M.Z. Mansha, M. Abid and Z.M. Sarwar*et al.*, 2020. Assessment of grain yield indices in response to drought stress in wheat (*Triticumaestivum* L.). Saudi J. Biol. Sci., 27: 1818-1823.
- Wasae, A., 2021. Evaluation of drought stress tolerance based on selection indices in haricot bean varieties exposed to stress at different growth stages. Int. J. Agron., Vol. 2021. 10.1155/2021/6617874.
- Sun, F.L., Q. Chen, Q.J. Chen, M. Jiang, W. Gao and Y.Y. Qu, 2021. Screening of key drought tolerance indices for cotton at the flowering and boll setting stage using the dimension reduction method. Front. Plant Sci., Vol. 12. 10.3389/fpls.2021.619926.
- 31. Saraswathi, U. and L. Mullainathan, 2020. Extraction of high-quality genomic DNA and identification of different DNA barcoding markers for chickpea (*Cicer arietinum* L.). Buletin Agroteknologi, 1: 7-11.
- 32. Kumari, A., S.R. Vishwakarma and Y. Singh, 2020. Evaluation of combining ability and gene action in barley (*Hordeum vulgare* L.) using line x tester analysis. Electron. J. Plant Breed., 11: 97-102.
- 33. Zhang, X., L. Lv, C. Lv, B. Guo and R. Xu, 2015. Combining ability of different agronomic traits and yield components in hybrid barley. PLOS ONE, Vol. 10. 10.1371/journal.pone.0126828.
- 34. Madhukar, K., L.C. Prasad, J.P. Lal, K. Chandra and P. Thakur, 2018. Heterosis and mixing effects in Barley (*Hordeum vulgare* L.) for yield and drought related traits. J. Pharm. Phyto., 7: 2882-2888.
- 35. Darwish, M.A.H., W.M. Fares and E.M.A. Hussein, 2017. Evaluation of some bread wheat genotypes under saline soil conditions using tolerance indices and multivariate analysis. J. Plant Prod., 8: 1383-1394.
- 36. Mareiy, S.A., M.A. Farid and A.R. Karima, 2018. Morphological and molecular characterization of some Egyptian barley cultivars under calcareous soil conditions. Middle East J. Agric. Res., 7: 408-420.
- 37. Rauch, F., 2016. The geometry of the distance coefficient in gravity equations in international trade. Rev. Int. Econ., 24: 1167-1177.

- 38. Ragab, K. and A.M.S. Kheir, 2019. Characterizing some Egyptian bread wheat cultivars for salinity tolerance. J. Plant Prod., 10: 1043-1049.
- 39. Allel, D., A. BenAmar, M. Badri and C. Abdelly, 2019. Evaluation of salinity tolerance indices in North African barley accessions at reproductive stage. Czech J. Genet. Plant Breed., 55: 61-69.
- El-Mouhamady, A.B.A., H.M. Abdel-Rahman, A.A. Rizkalla and M.A. El-Metwally, 2019. Assessment of water stress tolerance in wheat genotypes based on half diallel analysis and DNA fingerprinting. Pak. J. Biol. Sci., 22: 103-116.
- 41. Al-Ashkar, I., A. Alderfasi, W.B. Romdhane, M.F. Seleiman, R.A. El-Said and A. Al-Doss, 2020. Morphological and genetic diversity within salt tolerance detection in eighteen wheat genotypes. Plants, Vol. 9. 10.3390/plants9030287.
- 42. Rizkalla, A.A., B.A. Hussien, A.M.F. Al-Ansary, J.E. Nasseef and M.H.A. Hussein, 2012. Combining ability and heterosis relative to RAPD marker in cultivated and newly hexaploid wheat varieties. Aust. J. Basic Applied Sci., 6: 215-224.
- 43. Ashraf, A.A., M.A.A. El-Shafi, E.M.S. Gheith and H.S. Suleiman, 2015. Using different statistical procedures for evaluating drought tolerance indices of bread wheat genotypes. Adv. Agric. Biol., 4: 19-30.
- 44. Meng, Y., P. Ren, X. Ma, B. Li and Q. Bao *et al.*, 2016. GGA biplot-based evaluation of yield performance of barley genotypes across different environments in China. J. Agric. Sci. Technol., 18: 533-543.
- 45. Mariey, S. and R.A. Khedr, 2017. Evaluation of some Egyptian barley cultivars under water stress conditions using drought tolerance indices and multivariate analysis. J. Sustainable Agric. Sci., 43: 105-114.
- Mariey, S.A., R.A. Khedr, B.A. Zayed and A.A. Elakhdar, 2017.
 Genetic variability among Egyptian barley varieties for agromorphological traits under saline soil condition. Egypt. J. Plant Breed, 21: 577-593.
- 47. Arshadi, A., E. Karami, A. Sartip, M. Zare and P. Rezabakhsh, 2018. Genotypes performance in relation to drought tolerance in barley using multi-environment trials. Agro. Res., Vol. 16.

- 48. Girma, G., K. Tesfaye and E. Bekele, 2010. Inter simple sequence repeat (ISSR) analysis of wild and cultivated rice species from Ethiopia. African J. Biotechnol., 9:5048-5059.
- 49. Mehta, G., S.K. Muthusamy, G.P. Singh and P. Sharma, 2021. Identification and development of novel salt-responsive candidate gene based SSRS (cg-SSRS) and MIR gene based SSRS (mir-SSRS) in bread wheat (*Triticumaestivum*). Sci. Rep., Vol. 11. 10.1038/s41598-021-81698-3.
- Tokhetova, L.A., S.I. Umirzakov, R.D. Nurymova, B.K. Baizhanova and G.B. Akhmedova, 2020. Analysis of economic-biological traits of hull-less barley and creation of source material for resistance to environmental stress factors. Int. J. Agron., Vol. 2020. 10.1155/2020/8847753.
- 51. Varshney, R.K., K.F.M. Salem, M. Baum, M.S. Roder, A. Graner and A. Börner, 2008. SSR and SNP diversity in a barley germplasm collection. Plant Genet. Resour.: Charact. Utilization, 6: 167-174.
- 52. Ferreira, J.R., J.F. Pereira, C. Turchetto, E. Minella, L. Consoli and C.A. Delatorre, 2016. Assessment of genetic diversity in Brazilian barley using SSR markers. Genet. Mol. Biol., 39: 86-96.
- 53. Pandey, M., C. Wagner, W. Friedt and F. Ordon, 2006. Genetic relatedness and population differentiation of Himalayan hulless barley (*Hordeum vulgare* L.) landraces inferred with SSRs. Theor. Appl. Genet., 113: 715-729.
- 54. Gougerdchi, V., S. Dezhsetan, M.A. Ebrahimi, B. Sadeghzadeh and S. Savari, 2014. Using SSR markers for assessment genetic diversity and detection drought escape candidate genes in barley lines (*Hordeum vulgare* L.). Plant Breed. Seed Sci., 70: 3-14.