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Abstract
Background and Objective: Developing rice (Oryza  sativa  L.) varieties with increased yield potential has been a major concern for genetic
improvement. This study aimed to evaluate aromatic rice lines and the relationship among their twelve agronomic traits using heatmap
Pearson correlation and multivariate analysis to identify high yield lines using grain yield as a marker-trait. Materials and Methods: Twelve
aromatic rice genotypes (eleven mutant lines and one control) were evaluated in the M4 generation. The experiment was conducted at
Tana Toraja regency following Randomized Complete Block Design (RCBD) with two replications. Results: The darker and lighter colour
scale produced by heatmap revealed contrasting nature of genotypes. A significant positive correlation observed for yield was the number
of fertile grains and grain weight per panicle, while a negative correlation was days to flowering. The first four components account for
83.46% of the total cumulative variation. Cluster analysis grouped 11 lines and one control into three clusters. Conclusion: The results
concluded that the PB-A.5.3.45 line could be used for hybridization programs to develop high-yielding mutant-derived aromatic rice
varieties for further improvement.
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INTRODUCTION

Indonesia is a country with a wealth of biodiversity that is
largely still unexploited. A wide diversity of rice varieties has
resulted from a long history of conventional rice cultivation
interwoven with an even richer diversity of cultural and
spiritual traditions1. Local rice that has survived for decades or
even hundreds of years is a cultivar that has been selected by
natural selection to have desirable traits such as a pleasant
aroma and high quality. However, like local rice in general,
local rice in Indonesia face obstacles, such as low yields and
long life. This is in contrast to the national high-yielding
varieties, which are short-lived and high-yielding traits.
Nevertheless, the diversity of local rice, which has several
advantages, is a potential asset to be utilized and conserved.

One of the efforts to improve plant character is through
plant breeding using the plant mutation method. Induced
mutations have contributed to the improvement of plant
genetics in various parts of the world. In fact, in some cases,
they have impacted in improving plant traits2. Mutations can
occur naturally due to base-pair changes in the DNA
sequence3. Plant genetic mutations can be induced by using
mutagens such as heavy-ion beam irradiation. Heavy-ion
beam irradiation has been used on many plant species but
local varieties are still very little reported, especially in local
varieties of Toraja rice. The objective of mutation induction is
to alter one or more essential plant characters while keeping
the majority of the original, preferred traits4. These changes
can be passed on from generation to generation. Thus
mutations are the primary source of genetic variation. As the
main element of germplasm, genetic diversity of rice is a
breeding source to meet existing food needs5. Induced
mutation can quickly generate variability in qualitative and
quantitative inherited traits of crop plants.

Nowadays, mutants have allowed researchers to
distinguish important elements for developing high yield
potential varieties with desirable traits such as early maturing6,
semi-dwarfism7  and  increased  fertile  grain8. Therefore,
continuous germplasm assessment should be conducted to
expand the genetic base of species and find additional genes
or alternative sources that control a particular trait for crop
improvement.

Genetic diversity can describe the variation between
individuals in a population9. The high genetic diversity and
increasing the chances  of  combining  the  desired  good 
traits  also allow the  improvement  of  plant   traits   through 
direct  selection. Therefore, information on genetic diversity is
needed to obtain the expected new varieties. Osman et al.10

stated that to achieve a selection, it must be known about the
agronomic traits so selecting one or more traits can be made.

Several methods exist for analyzing genetic diversity in
breeding lines, germplasm accessions and populations.
Multivariate analyses simultaneously analyze all random
variables  measured  on  each  experimental  or sampling
unit11. Principal Component Analysis (PCA), one of the
multivariate statistical approaches, divides the data into two
proportions to expose comparison and association among
variables and genotypes based upon the percentage of
variability and correlations12. PCA is a technique for reducing
the dimensions of a data set with several interconnected
variables13,14. The cluster analysis, another multivariate
statistical tool, is a suitable approach for evaluating genotype
relationships. Cluster analysis is a technique for identifying and
categorizing variables based on the similarity of the traits they
possess15. It aims to reduce within-group variance and
maximize between-group variance. It is also helpful in the
breeding program to select the genotypes that are superior in
terms of agronomic traits during the rice improvement. PCA
and cluster analysis have previously been used to assess the
extent of genetic variation in rice for various agronomic
traits16-18.

The present study aimed to evaluate the relationship
among their twelve agronomic traits using heatmap Pearson
correlation and genetic variation using multivariate
techniques. Thus, identify mutants with contrasting
characteristics in order to improve local rice breeding in
Indonesia.

MATERIALS AND METHODS

Plant material and growth conditions: Eleven M4 mutant
lines, obtained from irradiated local Toraja variety 'Pare Bau'
using  heavy-ion beam irradiation at 10 Gy and one control
(Pare  Bau  variety)  were  used  in  this  study.  The  experiment
was  carried  out  at  rice  fields  in  Tana  Toraja  Regency,
Gandang  Batu  Sillanan  District,  Buntu  Limbong  Village,
with an altitude of 898 m above sea level from December,
2018  to  June,  2019.  The  climate  was generally classified
with a mean annual maximum temperature of 23EC and a
mean annual minimum of 22.4EC. The maximum and
minimum relative humidities were  89.1 and 83%. The sunlight
intensity was highest (67.3%) in May and lowest (40.5%) in
June. 

Procedures: The experimental design was a Randomized
Complete  Block  Design  (RCBD)  with  two   replications.  The
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experimental plot sizes measured 5 m wide×4 m long. Rice
was planted at a spacing of 0.3×0.3 m with one seedling per
hill. Sufficient care was taken for plant protection measures,
irrigation and weeding at the seedling stage to make
seedlings grew well. The plots were kept weed-free by using
the hand hoe and chemical for weeding. Control of pests and
diseases was carried out chemically. One week after planting,
dead seedlings are replanted with healthy seedling.
Fertilization was done two times. The first fertilization was
carried out, 14 days after planting using NPK fertilizer
(16:16:16) at 225 kg haG1 and the second fertilization was
applied before panicle initiation stage using urea fertilizer as
much as 150 kg haG1.

Data collection for agronomic traits: Data were collected
based on twelve agronomic traits, such as plant height (cm),
days  to  flowering  (days from sowing to time when 50% of
the plants start to flower), number of tillers, number of
panicles, length of flag leaf (cm), width of flag leaf (cm),
panicle length (cm), number of fertile grains, grain weight per
panicle (g), 100-grain weight (g), grain weight per plant (g)
and yield (t haG1).

Statistical analysis: Mean, range, standard deviation and
Coefficient Variation (CV) were determined using descriptive
statistics. A correlation analysis was ascertained using the
Pearson correlation coefficient for the assessment of
relationships between quantitative traits. The PCA was used to
determine the genotype relationships19. The results of the PCA
were shown as biplots of PC1 vs. PC2 for each specific trait,
where markers on the biplot represented lines. A Hierarchical
Clustering  on Principal Components (HCPC) study was used
to establish clusters based on agronomic traits. According to
the Ward method, hierarchical clustering was performed to
understand the patterns of variation among genotypes
better20.

RESULTS

Agronomic traits variation: The mean, standard deviation,
range and the coefficient of variation of the traits measured
were given in Table 1. The CV ranged from 0.57% for days to
flowering to 6.90% for number of fertile grains. 

Correlation analysis: Phenotypic correlation analysis was
used to determine  trait  association  and  the result was
shown in Fig. 1. Days to flowering showed negative
correlations with the  number of fertile grains (-0.61), grain
weight  per  panicle  (-0.62),  grain  weight  per  plant (-0.62)
and  yield  (-0.78).  The   number   of   tillers  was  highly 
positive with the number of panicles (0.85). The number of
panicles  was negatively  correlated  with  the  number of
fertile grains (-0.68)  and  grain  weight  per  panicle  (-0.60).
The width of flag  leaf   showed  a  close  positive  correlation
with number of fertile grain (0.77)  and  grain  weight  per 
panicle (0.73). The number of fertile grains was positively
correlated with grain  weight per panicle (0.98), grain yield  per
plant (0.59) and yield (0.67). grain weight per panicle was
positively correlated with grain weight per plant (0.59) and
yield (0.64).

Principal component analysis: To extract the important
information from the data table and simplify the data set
definition, we used Principal Component Analysis (PCA), a
multivariate statistical technique. The first four principal
component axes represented 81.46% of the total cumulative
variation (Table 2). The PC1 accounted for 44.46% of
variability,  which  was mainly explained by days to flowering
(-0.60), number of tillers (-0.78), number of panicles (-0.81),
width of flag leaf (0.77), number of fertile grains (0.96), grain
weight per panicle (0.94), grain weight per plant (0.65) and
yield  (0.71).  The  PC2 accounted for 16.76% of variability and 

Table 1: Mean values, standard deviation, minium value, maximum value and coefficients of variation of agronomic traits of aromatic rice lines
Traits Mean±SD Minimum value Maximum value Coefficient of variation (%)
Plant height (cm) 152.75±2.49 148.00 156.00 1.81
Days to flowering (day) 124.17±1.80 121.00 127.00 0.57
Number of tillers 9.67±0.89 8.00 11.00 6.45
Number of panicles 9.33±0.89 7.00 10.00 6.24
length of flag leaf (cm) 40.86±1.14 39.13 42.37 2.30
Width of flag leaf (cm) 1.88±0.09 1.79 2.11 3.87
Panicle length (cm) 31.60±0.78 29.86 32.79 1.72
Number of fertile grains 150.58±14.30 134.00 186.00 6.90
Grain weight per panicle (g) 4.99±0.47 4.42 6.02 6.76
100-grain weight (g) 3.34±0.07 3.22 3.49 1.71
Grain weight per plant (g) 45.58±2.88 40.67 49.42 4.59
Yield (t haG1) 4.52±0.27 4.25 5.03 4.70
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Fig. 1: Pearson correlation coefficients for 12 agronomic traits of 12 genotypes of aromatic rice mutant
Strength of a particular association between two traits is indicated by the color assigned to a point in the heat map grid. Positive correlation is indicated by
red, while negative correlation is indicated by blue

Table 2: Eigenvalues, proportion of variability and agronomic traits that contributed to the first four principal components of aromatic rice mutant lines
Components
----------------------------------------------------------------------------------------------------------------------------------------------------

Traits 1 2 3 4
Plant height -0.20 -0.50 0.47 0.36
Days to flowering -0.60** 0.74** 0.16 0.09
Number of tillers -0.78** -0.49 0.13 -0.03
Number of panicles -0.81** -0.44 0.16 0.08
length of flag leaf 0.11 0.55 0.65** -0.34
Width of flag leaf 0.77** 0.11 0.14 -0.13
Panicle length 0.56 0.06 0.73** 0.24
Number of fertile grains 0.97** -0.04 -0.14 -0.10
Grain weight per panicle 0.94** -0.06 -0.23 0.05
100-grain weight 0.10 0.40 -0.14 0.85**
Grain weight per plant 0.65** -0.28 0.07 0.39
Yield 0.71** -0.48 0.21 -0.18
Eigen value 5.33 2.01 1.41 1.25
Variability (%) 44.46 16.76 11.79 10.45
Total variance (%) 44.46 61.22 73.01 83.46
**Eigen values >0.59 are significant
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Fig. 2: Biplot drawn based on the first and second components obtained from principal component analysis 
PH:  Plant  height,  FD:  Days  to  flowering,  NT: Number of tillers, NP: Number of panicles, LFL: Length of flag leaf, WFL: Width of flag leaf, PL: Panicle length,
NFG: Number of fertile grains, GWP: Grain weight per panicle, 100-GW: 100 grain weight, GWPP: Grain weight per plant, Y: Yield

Table 3: Groups of 12 genotypes according to cluster analysis from twelve agronomic traits
Cluster number Number of lines Percent Lines
I 1 8.33 PB-A.5.3.45
II 4 33.33 PB-A.7.1.9, control, PB-A.8.1.5, PB-A12.2.11
III 7 58.33 PB-A.5.3.36, PB-A.6.1.15, PB-A.7.1.30, PB-A.7.1.41, PB-A.6.1.9, PB-A.6.1.12, PB-A.6.1.13

Table 4: Mean values of twelve agronomic traits for five groups revealed by
cluster analysis among 12 genotypes

Clusters
------------------------------------------------------------

Traits I II III
Plant height (cm) 152.00 153.26 152.68
Days to flowering (day) 122.00 125.38 123.36
Number of tillers 7.56 10.09 9.57
Number of panicles 7.34 9.92 9.44
length of flag leaf (cm) 42.37 41.75 40.14
Width of flag leaf (cm) 2.11 1.84 1.88
Panicle length (cm) 32.79 31.51 31.47
Number of fertile grains 186.22 139.48 152.02
Grain weight per panicle (g) 6.02 4.55 5.09
100-grain weight (g) 3.33 3.30 3.36
Grain weight per plant (g) 49.42 43.63 46.14
Yield (t haG1) 5.03 4.41 4.51

was largely  influenced  by  days  to  flowering (0.74). The PC3
accounted for 11.79% of the variability, mainly explained by
the length of flag leaf (0.65) and panicle length (0.73). The PC4
accounted for 10.45% of the variability, which was explained
by 100-grain weight (0.85). 
The biplot of the first two components (PC1 on the X-axis

and PC2 on the Y-axis to assess the association of the lines and

agronomic traits) were illustrated in Fig. 2. The biplot of the
mean performance explained 61.22% of the total variation.
Across the 11 tested rice lines and one control, the yield was
positively associated with the number of fertile grains, grain
weight per panicle and grain weight per plant, while
negatively correlated with days to flowering. The distance
between the genotype and the origin of the biplot is a one-of-
a-kind measure of the genotype, a hypothetical genotype with
an average level for all traits represented by the biplot origin.
Therefore PB-A.5.3.45 line with a long vector had extreme
value for one or more traits. 

Cluster analysis: Ward's hierarchical cluster method was split
into three clusters for the 11 lines and control (Table 3, Fig. 3).
The first major group was cluster III consisting of 7 lines,
followed  by  cluster  II  (3  lines and one control) and cluster I
(1 line). Mean values of twelve different traits for five groups
among 12 genotypes were presented in Table 4. Mean values
of the traits in cluster I showed high yield and early flowering.
The representative line of cluster I can be used as parents for
hybridization.
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Fig. 3: Cluster analysis showing the relationship among 12 genotypes of aromatic rice based on twelve agronomic traits

DISCUSSION

The main objective of plant breeding is to create new
plant types with improved characteristics that provide a high
yield. Yield is one of the most important and complex
characteristics of rice. These characters are controlled by
genes and influenced by external environmental factors21. In
rice, yields are determined by indirect properties such as plant
height, growth period, tiller production capacity, panicle
length as well as direct properties such as number of panicles,
number of grains contained per panicle and grain weight per
panicle22,23.

The days to flowering had a highly significant negative
correlation with yield (-0.78**). The negative correlation
coefficient between traits indicates that two variables are
changing in opposite directions. However, it indicates that the
lines with early flowering tend to have higher yield. This was
corroborated by the findings from Abarshahr et al.24 and
Asante et al.25. On the contrary, the grain weight per panicle
and grain weight per plant positively correlates with yield. It
indicated that these traits   should   be   emphasized  as the
best selection criteria in selecting high-yielding lines. This
relationship  indicated  that these properties affect the final
rice yield. This character is considered a suitable outcome
predictive factor and is very important in further studies in the
selection process. Breeding with these traits may be useful for
developing high-yielding lines.
The number of panicles also played an important role in

determining production and it was found that both the
environment and cultivation strongly influenced the main

yield components. However, this is not always the case. In this
study, the number of panicles had a significant negative
correlation with the number of fertile grains and grain weight
per panicle, suggesting that the increase in one trait would
reduce the other. It would be challenging to identify rice lines
with a higher number of panicles simultaneously with a higher
number of fertile grain and grain weight per panicle. Results
assured that the rice crops with fewer tillers will have a better
canopy structure for light interception to produce fertile
grains than those with more tillers. When light is a limiting
factor, fewer tillers are important for maintaining a high
canopy photosynthetic rate26. 
The PCA revealed that total variation was largely

influenced by the number of fertile grains, grain weight per
panicle and yield, indicating that the traits were useful in
identifying the mutant lines. These traits could be selected
based on how important they are in distinguishing the  lines 
 and  their  inter-relationships.  Grain  yield improvement by
indirect selection of related traits is well-known and
commonly used27-28. High-loading traits from the PC are critical
for selection because they can better distinguish between
lines than traits with lower contributions29-31. 
The graphic dispersion demonstrated the separation of

mutant lines into groups and can be used as a strategy to
select different families for artificial crosses in breeding
programs. The groups formed by the biplot (Fig. 2). The
visualization of interrelationships among traits is aided by a
vector drawn from the origin of each trait in the biplot. Its
vector  length  measures  the  magnitude  of  a  trait's effects
on  yield.  According  to  this  theory,  two  traits  are positively
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correlated if the angle between their vectors is acute and
negatively  correlated  if  the  angle  is  obtuse32. These
associations could be confirmed from Pearson correlation
coefficients between any two traits.
Lines plotted in the positive quadrants of the axis can be

selected as genetic resources for improving yield. All the lines
and traits were widely scattered across a different group of
biplots. Biplot had the characteristic of grouping the mutant
genotypes into four distinct groups. The finding of current
research explained that mutant genotypes that were farther
away from the origin in the positive direction of trait showed
better performance in the first and second biplot groups
based on significant traits. Current results suggested that lines
PB-A.5.3.45  were  far  from  the  center,  indicating that the
line can be parents for some useful traits. The study of Gedam
et al.33 explained that superior genotypes in a particular trait
are the ones that are closer to the vector of that trait but
further plotted away from origin in the direction of that
particular trait vector. The biplot has been utilized to study
trait relation and genotype evaluation in several crop species,
including rice34, wheat35, Maize36 and Sorghum37.
Cluster analysis based on twelve agronomic traits groups

in three clusters indicates that each cluster's lines had some
distinct traits. The heterotic effect in cross progenies could be
increased by grouping the lines into separate distinct clusters
and lines with desired traits could be selected from these for
use in crossbreeding programs to obtain higher hybrid vigor
and improved segregants. The characterization of the present
study leads to some promising lines for specific traits. This
corroborated with the finding of several researchers about the
different number of clusters using agronomic traits in rice
lines38,39.
Results revealed that, among 11 mutant lines, only three

mutants cluster with control and mutant PB-A.5.3.45 formed
individual clusters. These findings confirmed that mutations
play a significant role in the development of genetic variations
in crop plants. Lines with distant clusters could be used as
parents for the hybridization program to increase heterosis.

CONCLUSION

Heavy-ion beam treatments play a significant role in
generating genetic variation and created line with superior
traits. Significant correlation between the number of fertile
grains, grain weight per panicle and yield showed that
simultaneous selection for the traits would be highly effective.
The days to flowering associated negatively with yield
indicating that the lines with early flowering tend to have
higher yield.  The  multivariate  approach  utilized in this study
could help breeders to make better selections on which lines

should be recommended to be released based on high yields.
The combining potential of the high yielding line from cluster
I could be investigated further. Thus, the genotypes observed
can be hybridized to create desirable traits with higher
heterotic potential.

SIGNIFICANCE STATEMENT

This study discovers the performance of tested aromatic
mutant lines for the 12 traits considered. This study will help
researchers to identify high-yield mutant lines. Thus, the
selected lines may come up as a recommendation for superior
parent for hybridization, which can boost the productivity of
aromatic rice. 
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