http://www.pjbs.org

ISSN 1028-8880

Pakistan Journal of Biological Sciences

ISSN 1028-8880 DOI: 10.3923/pjbs.2022.23.28

Research Article Study the Effect of *P. minor* Seaweed Crude Extract as a Biostimulant on Soybean

Zozy Aneloi Noli, Putri Aliyyanti and Mansyurdin

Department of Biology, Faculty of Mathematics and Natural Science, Andalas University, Padang, West Sumatera, Indonesia

Abstract

Background and Objective: Seaweed biostimulants are often used in agriculture because of their benefits in increasing growth, production and quality of plants and are safe for the environment. *Padina minor* is one of the potential seaweeds that contains high macro and micronutrients and has also been shown to increase the vegetative growth of several plants. This study aims to determine the effect of *P. minor* seaweed extract in various concentrations and frequencies as a biostimulant on the growth and production of soybean plants. **Materials and Methods:** *Padina minor* extract was applied to soybean plants with several concentrations (0, 10, 20, 30 and 40%) at three different application times. Where 1 application (2 weeks after planting), 2 applications (2 and 4 weeks after planting) and 3 applications (2, 4 and 5 weeks after planting). **Results:** *Padina minor* extract with a concentration of 40% with 1 application was able to increase plant height and shorten soybean harvest life. While the *P. minor* extract with a concentration of 40% with two and three applications was able to increase the gross and dry weight of plants, the number of pods, gross and dry mass of whole seeds. **Conclusion:** *Padina minor* seaweed extract with a concentration of 40% was able to increase the growth and production of soybean plants.

Key words: Padina minor, seaweed extract, soybean, abiotic stresses, plant metabolism, planting, biostimulant

Citation: Noli, Z.A., P. Aliyyanti and Mansyurdin, 2022. Study the effect of *P. minor* seaweed crude extract as a biostimulant on soybean. Pak. J. Biol. Sci., 25: 23-28.

Corresponding Author: Putri Aliyyanti, Department of Biology, Faculty of Mathematics and Natural Science, Andalas University, Padang, West Sumatera, Indonesia

Copyright: Zozy Aneloi Noli *et al.* 2022. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

Biostimulants are natural or synthetic organic compounds that are not fertilizers, which can increase growth and plant response to stress. Its utilization can modify plant physiological processes such as photosynthesis and absorption of ions. Seaweed is one of the most important marine resources whose potential has not been fully explored. Therefore, seaweed extract has the opportunity to be used as a biostimulant and physioactivator that can stimulate plant growth and development. Seaweed extracts contain polysaccharides, proteins, unsaturated fatty acids, polyphenols and minerals. These components can positively influence plants, especially in germination, growth, productivity and plant resistance to biotic and abiotic stresses^{1,2}.

Seaweed extract biostimulants and physioactivators exert parallel effects on several processes, including activating mineral nutrients in plants by stimulating several enzymes that play vital roles in plant metabolism. These enzymes are nitrate reductase and phosphatase. In addition, seaweed can also activate photosynthesis by increasing the activity and amount of chlorophyll in the leaves and the activation of flowering and fruit formation through the mechanism of polyamine synthesis, a compound responsible for flower abundance and pollination efficiency. High polyamine stimulates the intensity of cell division which promotes an increase in the number of cells³. Biostimulants in seaweed extracts have been applied to several plants such as *Zea mays*, *Phaseolus vulgaris* and *Oryza sativa*⁴⁻⁶.

Noli *et al.*⁷ has researched by screening four types of seaweed distributed in the waters of Kasiak Gadang Island, Nirwana Beach, West Sumatra. The results obtained in this study were that *P. minor* was the seaweed with the highest nutrient content compared to other seaweeds. Furthermore, the results showed that *P. minor* was the best seaweed extract in increasing soybean germination and vegetative growth. Moreover, the type of biostimulant, the frequency of application and the concentration of the seaweed extract significantly increase plant growth and productivity^{8,9}.

Soybean is one of the important food commodities for the Indonesian people, especially as the main raw material for tempeh and tofu, which are popular foods for the Indonesian people. The level of consumption and demand for soybeans increases along with population growth. At the same time, national soybean production tends to decline, causing domestic soybean needs to be met through imports from abroad¹⁰.

This research will study the effect of concentration and frequency of *P. minor* seaweed crude extract application as a biostimulant on soybean plants.

MATERIALS AND METHODS

Location: This research was conducted from March-June 2020 in the greenhouse of Andalas University, Padang, West Sumatra, Indonesia.

Research design: This study used an experimental method arranged in a factorial Completely Randomized Design (CRD) consisting of 2 factors and 3 replications. Factor A is the concentration of seaweed extract which consists of 0, 10, 20, 30 and 40%. Factor B is the frequency of seaweed extract application consisting of 1 application (2 MST), 2 applications (2 MST and 4 MST) and 3 times (2,4 and 5 MST).

Seaweed extract *P. minor* **production:** Seaweed was collected from Kasiak Gadang Island, Padang, West Sumatra, Indonesia. Then the seaweed was cleaned and dried for four days. Furthermore, the seaweed is mashed so that it is in powder form. Coarse powder of seaweed is mixed with water in a ratio of 1:20 (w/v) and then macerated using an autoclave at 121 °C, 15 lbs/sq for 20 min. Furthermore, the seaweed extract was filtered and the filter results were centrifuged at 5000 rpm for 15 min. The supernatant formed is a seaweed extract with a concentration of 100%¹¹.

Planting and plant care: The planting medium used was a mixture of Ultisol soil and manure with a ratio of 5:1. Planting is done by planting three seeds in one polybag with a depth of 3 cm. Plant care includes fertilizer application at the beginning of planting (0.23 g urea; 0.9 g TSP and 0.9 KCl per polybag) and 30 days after planting (0.23 g per polybag)^{8,12}.

Seaweed extract application: The application of seaweed extract with several concentration groups was carried out by spraying the extract as much as ± 25 mL evenly on the leaves according to the time and concentration determined¹³.

Observation parameters: Parameters observed in this study included vegetative and generative growth parameters of soybean plants which included plant height, number of branches, number of leaves, gross weight and dry weight of plants, chlorophyll content, harvest age, number of pods, the mass of whole seeds, dry mass of whole seeds and dry mass of 100 seeds.

Data analysis: Data analysis was performed using analysis of variance (ANOVA). Suppose the effect of treatment is significantly different. In that case, it will be continued with Duncan's New Multiple Range Test (DNMRT) at a 95% confidence level and continued with multivariate regression analysis to determine the relationship between growth parameters and soybean yield parameters.

RESULTS AND DISCUSSION

The effect of *P. minor* extract on the vegetative growth of soybean plants is presented in Table 1. Based on Table 1, *P. minor* extract with a concentration of 40% with one application increased plant height. In comparison, *P. minor* extract with a concentration of 40% with two and three times application was able to increase the plant's gross and dry weight. *P. minor* biostimulant contains macro and micronutrients that can stimulate plant growth. According to Rajasekar *et al.*¹⁴, nitrogen and phosphorus in *P. minor* extract

are essential elements in photosynthesis, respiration, enzymatic reactions and cell division and enlargement that can increase plant height and gross and net weight plants. Previous studies reported that seaweed extract increased plant height, gross and dry weight of some plants such as tomatoes¹⁵, strawberries¹⁶ dan beans¹⁷.

The effect of *P. minor* extract on soybean harvesting age is shown in Fig. 1. The result of Fig. 1 shows that the application of *P. minor* extract with a concentration of 40% with one application could shorten the harvest life of soybean plants compared to controls. The high phosphorus content in *P. minor* extract is estimated to stimulate root growth so that plants can absorb nutrients in deeper soil layers, which has an impact on the faster pod formation process so that soybean harvest life is shorter¹⁸. This result is similar to Yao *et al.*¹⁹ that reported that the application of seaweed extract could accelerate the ripening of tomatoes.

The effect of *P. minor* extract as a biostimulant on soybean crop production is presented in Table 2. Application

Table 1: Effects of foliar applications *P. minor* extract on soybean growth parameters

Treatments	Plant height	Number of branches	Leaf number	Fresh weight of the plant	Dry weight of the plant	Total of chlorophyll content
A_0B_1	33.05 ^{ab}	13.00°	19.00ª	84.17 ^{abc}	40.02ab	2.67 ^{ab}
A_0B_2	36.13 ^{ab}	13.00 ^a	20.66ª	148.75 ^{def}	65.12 ^{cd}	2.67 ^{ab}
A_0B_3	40.36ab	14.66ª	20.66ª	157.21 ^{def}	76.36 ^{de}	2.53ab
A_1B_1	33.30 ^{ab}	14.00 ^a	17.50°	67.87ª	35.38°	2.26 ^a
A_1B_2	34.16 ^{ab}	11.66ª	19.33ª	107.96 ^{abcd}	50.03 ^{abc}	2.34°
A_1B_3	36.90 ^{ab}	14.33ª	19.33ª	129.71 ^{bcde}	64.97 ^{cd}	2.54 ^{ab}
A_2B_1	24.03 ^a	12.33ª	17.00 ^a	74.97 ^{ab}	36.39a	2.37ª
A_2B_2	40.30 ^{ab}	11.00 ^a	19.66ª	105.02 ^{abcd}	48.07 ^{abc}	2.51ab
A_2B_3	30.50 ^a	12.66ª	19.00ª	148.42 ^{def}	68.83 ^{cde}	2.31ª
A_3B_1	37.03 ^{ab}	12.33ª	16.00ª	119.06 ^{abcde}	60.55 ^{bcd}	2.33ª
A_3B_2	32.63ab	13.00 ^a	18.00 ^a	162.01 ^{def}	71.21 ^{cde}	2.55ab
A_3B_3	39.40ab	11.33ª	23.00 ^a	132.01 ^{cde}	61.43 ^{bcd}	2.38a
A_4B_1	48.30 ^b	12.50ª	23.00 ^a	89.25 ^{abc}	51.05 ^{abc}	2.89 ^b
A_4B_2	38.95 ^{ab}	14.00 ^a	23.50 ^a	168.38ef	83.58 ^{de}	2.63ab
A_4B_3	40.50ab	14.55ª	23.50 ^a	193.84 ^f	90.90°	2.32ª

 A_0 : 0%. A_1 : 10%, A_2 : 20%, A_3 : 30%, A_4 : 40%, B_1 : 1x application, B_2 : 2x application, B_3 : 3x application, Means within a column with different superscripted letters are significantly different from each other according to DNMRT at p<0.05

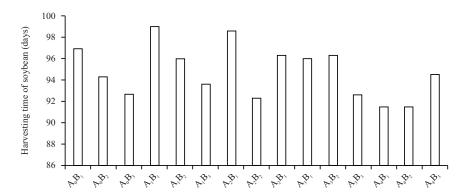


Fig. 1: Graphic harvesting time of soybean was applied by *P. minor* extract as a biostimulant A₀: 0%. A₁: 10%, A₂: 20%, A₃: 30%, A₄: 40%, B₁: One time application, B₂: Two time application, B₃: Three time application

Table 2: Effects of foliar applications *P. minor* extract on yield of soybean

Treatments	Number of pods	Fresh weight of seed	Dry weight of seed	Dry weight of 100 seeds
$\overline{A_0B_1}$	55.50°	23.74 ^{ab}	18.05 ^{ab}	15.09ª
A_0B_2	81.66 ^{abc}	42.38 ^{bcd}	28.73 ^{cde}	15.57ª
A_0B_3	95.33 ^{cde}	51.46 ^{def}	29.37 ^{cde}	13.20 ^a
$A_1 B_1$	60.50ab	18.75ª	14.32ª	19.62ª
A_1B_2	77.66 ^{abc}	34.15 ^{abcd}	22.32 ^{abcd}	15.15ª
A_1B_3	88.33 ^{bcd}	45.06 ^{cde}	27.52 ^{cde}	15.53ª
A_2B_1	55.33°	19.80ª	14.85ª	13.73ª
A_2B_2	62.33 ^{ab}	28.20 ^{abc}	18.30 ^{ab}	14.03ª
A_2B_3	102.00 ^{cde}	48.30 ^{cdef}	33.32 ^{efg}	15.30ª
A_3B_1	80.33 ^{abc}	40.47 ^{bcd}	27.09 ^{bcde}	16.41ª
A_3B_2	86.00 ^{bc}	51.33 ^{def}	30.59 ^{def}	15.58ª
A_3B_3	96.66 ^{cde}	47.51 ^{cdef}	31.53 ^{defg}	15.78ª
A_4B_1	84.50 ^{bc}	35.07 ^{abcd}	20.18 ^{abc}	12.71ª
A_4B_2	117.00°	64.32 ^{ef}	40.39 ⁹	15.67ª
A_4B_3	115.00 ^{de}	67.12 ^f	39.19 ^{fg}	15.79ª

 A_0 : 0%. A_1 : 10%, A_2 : 20%, A_3 : 30%, A_4 : 40%, B_1 : 1x application, B_2 : 2x application, B_3 : 3x application, Means within a column with different superscripted letters are significantly different from each other according to DNMRT at p < 0.05

Table 3: Macro and microelements composition of ultisol soil and seaweed extract of *P. minor*

charact or 77 mm		
		Seaweed extract
Elements	Ultisol soil (%)	of P. minor (%)
Nitrogen (N)	2.94	1.459
Fosfor (P)	0.085	0.946
Kalium (K)	0.608	0.588
Natrium (Na)	0.298	0.661
Kalsium (Ca)	0.507	0.644
Magnesium (Mg)	0.325	0.489
Sulfur (S)	0.017	0.097
Mangan (Mn)	0.002	0.176

of P. minor extract increased the number of pods, gross weight and dry mass of whole seeds. Previous studies have reported that the application of seaweed extract can increase the production of some crops such as wheat²⁰, rice²¹, chilli, pepper dan tomatoes²². The increase in soybean yield is closely related to the macronutrient activity in the seaweed extract P. minor (Table 3). According to Hellal and Abdelhamid²³, Phosphorus is needed for seeds formation because it plays an important role in the process of converting light into chemical energy to synthesize sugars, starches and proteins. The increase of soybean yield is also influenced by other macronutrients such as Nitrogen (N), Phosphor (P), Cadmium (Cad) and Magnesium (Mg). These nutrients are constituents of chlorophyll that play role in photosynthesis. Meanwhile, the Mn micronutrient also plays an important role in photosynthesis, especially activating the RNA polymerase enzyme in chloroplasts²⁴.

Based on multivariate regression analysis, the growth parameter that most affected soybean production was the dry weight of the whole plant. The dry weight of the plant contributed to the increase in the dry weight of all seeds by 91.52%. Plant dry weight is the accumulation of photosynthetic results in plant organs. This result indicates that the higher the accumulation of photosynthate in plant organs will increase soybean productions. Similar results were reported by Karyawati and Puspitaningrum²⁵, where the dry weight of the plant has a positive correlation to soybean yields. The equation for multivariate regression analysis of growth parameters on the dry mass of all seeds is as follows:

$$Y_1 = 5.773 - 0.036 X_1 - 0.207 X_2 - 0.207 X_3 + 0.489 X_4$$

where, Y_1 is the dry mass all seeds, X_1 is the plant height, X_2 is the number of leaves, X_3 is the plant gross weight, X_4 is the plant net weight.

CONCLUSION

The 40% concentration of *P. minor* seaweed extract increased vegetative growth (plant height, gross and net weight of plants) and yield of soybean (number of pods, gross and dry mass of whole seeds). *P. minor* extract also was able to shorten the harvest life of soybean plants. Therefore seaweed extract of *P. minor* can be considered as a potential source of biostimulant to increase the growth and yield of soybean in agriculture.

SIGNIFICANCE STATEMENT

This study discovers the potential benefits of concentration and frequency of *P. minor* extract application as a biostimulant in increasing soybean growth and yield. This

study also showed that the potential seaweed extract of *P. minor* sources from the role of macro and micronutrients.

ACKNOWLEDGMENT

We thank the Indonesian Ministry of Research, Technology and Higher Education for funding this research with grant number (No). 034/SP2H/LT/DRPM/2020.

REFERENCES

- 1. Yakhin, O.I., A.A. Lubyanov, I.A. Yakhin and P.H. Brown, 2017. Biostimulants in plant science: A global perspective. Front. Plant Sci., Vol. 7, 10.3389/fpls.2016.02049.
- Hentati, F., L. Tounsi, D. Djomdi, G. Pierre, C. Delattre, A.V. Ursu, I. Fendri, S. Abdelkafi and P. Michaud, 2020. Bioactive polysaccharides from seaweeds. Molecules, Vol. 25. 10.3390%2Fmolecules25143152.
- Chojnacka, K., A. Saeid, Z. Witkowska and L. Tuhy, 2012. Biologically active compounds in seaweed extracts - the prospects for the application. Open Conf. Proc. J., 3: 20-28.
- 4. Salma, L., E.M. Aymen, S. Maher, A. Hassen, H. Chérif, C. Halima, M. Mounir and E. Mimoun, 2014. Effect of seaweed extract of Sargassum vulgare on germination behavior of two bean cultivars (*Phaseolus vulgaris* L) under salt stress. IOSR J. Agric. Vet. Sci., 7: 116-120.
- 5. Layek, J., A. Das, R.G. Idapuganti, D. Sarkar and A. Ghosh *et al.*, 2018. Seaweed extract as organic biostimulant improves productivity and quality of rice in Eastern Himalayas. J. Appl. Phycol., 30: 547-559.
- Ertani, A., O. Francioso, A. Tinti, M. Schiavon, D. Pizzeghello and S. Nardi, 2018. Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Front. Plant Sci., Vol. 9. 10.3389/fpls.2018.00428.
- 7. Noli, Z.A., Suwirmen, Aisyah and P. Aliyyanti, 2021. Effect of liquid seaweed extracts as biostimulant on vegetative growth of soybean. IOP Conf. Ser.: Earth Environ. Sci., Vol. 759.
- 8. Aulya, N.R., Z.A. Noli, A. Bakhtiar and Mansyurdin, 2018. Effect of plant extracts on growth and yield of maize (*Zea mays* L.). Pertanika J. Trop. Agric. Sci., 41: 1193-1205.
- Szparaga, A., S. Kocira, A. Kocira, E. Czerwińska and M. Świeca et al., 2018. Modification of growth, yield and the nutraceutical and antioxidative potential of soybean through the use of synthetic biostimulants. Front. Plant Sci., Vol. 9. 10.3389/fpls.2018.01401.
- 10. Nuhung, I.A., 2013. Soybean and food politics. Forum Penelitian Agro Ekonomi, Vol. 31. 10.21082/fae.v31n2.2013.123-135.

- Sutharsan, S., S. Nishanthi and S. Srikrishnah, 2014. Effects of foliar application of seaweed (*Sargassum crassifolium*) liquid extract on the performance of *Lycopersicon esculentum* Mill. in sandy regosol of Batticaloa District Sri Lanka. Am.-Eurasian J. Agric. Environ. Sci., 14: 1386-1396.
- Zakiah, Z., I. Suliansyah, A. Bakhtiar and Mansyurdin, 2017.
 Effect of crude extracts of six plants on vegetative growth of soybean (*Glycine max* Mer.).
 Int. J. Adv. Agric. Sci Technol., Vol. 41.
- Kalaivanan, C., M. Chandrasekaran and V. Venkatesalu, 2012.
 Effect of seaweed liquid extract of *Caulerpa scalpelliformis* on growth and biochemical constituents of black gram (*Vigna mungo* (L.) Hepper). Phykos, 42: 46-53.
- Rajasekar, M., D.U. Nandhini, V. Swaminathan and K. Balakrishnan, 2017. A review on role of macro nutrients on production and quality of vegetables. Int. J. Chem. Stud., 5: 304-309.
- Hernández-Herrera, R.M., F. Santacruz-Ruvalcaba, M.A. Ruiz-López, J. Norrie and G. Hernández-Carmona, 2014. Effect of liquid seaweed extracts on growth of tomato seedlings (*Solanum lycopersicum* L.). J. Appl. Phycol., 26: 619-628.
- El-Miniawy, S.M., M.E. Ragab, S.M. Youssef and A.A. Metwally, 2014. Influence of foliar spraying of seaweed extract on growth, yield and quality of strawberry plants. J. Appl. Sci. Res., 10: 88-94.
- 17. Selvam, G.G. and K. Sivakumar, 2014. Influence of seaweed extract as an organic fertilizer on the growth and yield of *Arachis hypogea* L. and their elemental composition using SEM-energy dispersive spectroscopic analysis. Asian Pac. J. Reprod., 3: 18-22.
- 18. Pramanick, B., K. Brahmachari and A. Ghosh, 2013. Effect of seaweed saps on growth and yield improvement of green gram. Afr. J. Agric. Res., 8: 1180-1186.
- 19. Yao, Y., X. Wang, B. Chen, M. Zhang and J. Ma, 2020. Seaweed extract improved yields, leaf photosynthesis, ripening time and net returns of tomato (*Solanum lycopersicum* Mill.). ACS Omega, 5: 4242-4249.
- 20. De Carvalho, M.E.A., P.R. de Camargo, L.A. Gallo and M.V.C. Ferraz Jr., 2014. Seaweed extract provides development and production of wheat. Agrarian, 7: 166-170..
- 21. Sunarpi, H., F. Ansyarif, F.E. Putri, S. Azmiati and N.H. Nufus *et al.*, 2019. Effect of Indonesian macroalgae based solid and liquid fertilizers on the growth and yield of rice (*Oryza sativa*). Asian J. Plant Sci., 18: 15-20.
- Parađiković, N., T. Teklić, S. Zeljković, M. Lisjak and M. Špoljarević, 2018. Biostimulants research in some horticultural plant species-a review. Food Energy Secur., Vol. 8. 10.1002/fes3.162.

- 23. Hellal, F.A. and M.T. Abdelhamid, 2013. Nutrient management practices for enhancing soybean (*Glycine max* L.) production. Acta Biol. Colomb., 18: 239-250.
- 24. Mishra, A., S. Sahni, S. Kumar and B.D. Prasad, 2020. Seaweedan eco-friendly alternative of agrochemicals in sustainable agriculture. Curr. J. Appl. Sci. Technol., 39: 71-78.
- 25. Karyawati, A.S. and E.S.V. Puspitaningrum, 2021. Correlation and path analysis for agronomic traits contributing to yield in 30 genotypes of soybean. Biodiversitas J. Biol. Diversity, 22: 1146-1151.