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Abstract

Background and Objective: Aflatoxins affect many species including humans and animals, therefore the present study was designed
toinvestigate the protective effect of Chelidonium majus Ethanolic Extract (CMEE) on neurotoxicity induced by Aflatoxin B, (AFB1) inrats.
Materials and Methods: Four groups of male Albino rats were treated orally for 28 days as follows: (1) Control group was daily given
DMSO-PBS buffer (1.0 mL per rat), (2) CMEE (300 mg kg~'/day) dissolved in DMSO-PBS buffer, (3) AFB1 (80 ug kg~'/day) dissolved in
DMSO-PBS bufferand (4) Received daily AFB1 (300 mg kg~') in combination with CMEE (300 mg kg~"). Results: CMEE exhibits antioxidant
activity /n vitro and neuroameliorative efficiency /n vivo as its administration in combination with AFB1 succeeded significantly in down
regulating the elevated levels of inflammatory and apoptotic markers and restoring the values of neurochemical markers (AChE-ase,
dopamine and serotonin) that were deteriorated by AFB1 intake. Conclusion: In conclusion, the neuroprotective effect of CMEE may be
mediated throughits antioxidant and free radical scavenging activity that proved from the data of ferric-reducing power ability and DPPH
radical scavenging activity.
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INTRODUCTION

Aflatoxins are naturally-occurring mycotoxins that
contaminate agricultural products'. Aflatoxins affect many
species including humans and animals?. The Aflatoxin B,
(AFBT1) is a secondary metabolite that is produced by the
Asperqgillus parasiticus and Aspergiflus flavus fungi and is
found in crops, foods and feedstuffs as a natural
contaminant®. AFB1 is the most potent hepatotoxin and
carcinogen and has a variety of toxicities such as
mutagenicity, genotoxicity and immunotoxicity’. AFB1
ingestion causes also damage to the heart, kidney?, intestine,
bladder, pancreas, bone and viscera®. Furthermore, AFB1
causes degeneration in the central and peripheral nervous
systems by direct toxicity to both the neural cells and blood-
brain barrier’® through significant changes in biochemical
parameters®. Besides, it causes an inflammatory reaction in
human microglial cells that is potentially harmful to the
homeostasis of the central nervous system which may
increase susceptibility to neurodegenerative diseases'™ like
Reye’'s syndrome (cerebral oedema with neuronal
degeneration) in man'" and horses'.

Chelidonium majus L., greater celandine, is a plant that
belongs to the Papaveraceae family'. Chelidonium majus L.
contains various alkaloids, flavonoids and phenolic acids that
exhibit a wide range of pharmacological activities, such as
antioxidant', antimicrobial, antitumor', antiviral’® and anti-
inflammatory effects'. It showed also choleretic, diuretic,
analgesic and spasmolytic effects'®'?. Extracts from
Chelidonium majus have been used also in the treatment
of digestive dysfunction, liver diseases, skin disorders,
rheumatoid arthritis, tuberculosis and asthma'®. These
multiple pharmacological effects of Chelidonium majus are
achieved due to numerous alkaloids contents, such as
berberine, chelidonine, coptisine, chelerythrine and
homochelidonine as well as flavonoids, carotene, vitamin C
and phenolic acid™.

Therefore, the current study was conducted to
evaluate the antioxidant and neuroprotective role of the
ethanolic extract of Chelidonium majus against aflatoxin
B,-induced neurotoxicity. To achieve this objective, we studied
the protective effects of this extract on some oxidative stress
indices, inflammatory and apoptotic markers. We also
examined acetylcholinesterase activity, serotonin and
dopamine as selective indices of brain functions, in two brain
regions (cortex and hippocampus) in Albino rats.
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MATERIALS AND METHODS

Study area: This study was carried out in the Laboratories of
Medical Physiology and Animal House at the National
Research Centre during the period between December, 2017-
February, 2019.

Chemicals and plant extraction: Dimethyl Sulfoxide (DMSO)
was purchased from Heiltropfen Co. Germany while AFB1 was
purchased fromthe Cayman Chemical Co. (USA) and dissolved
in dimethyl sulfoxide-buffer mixture (DMSO/PBS buffer,
pH 7.2) before use. Other solvents and chemicals used were
either analar or of a high analytical grade and obtained from
the stores of the National Research Centre.

Dry stem branches of Chelidonium majuswere obtained
from Abd EI-Rahman Harraz (Bab El-Khalk zone, Cairo, Egypt).
The plantis carrying the taxonomic serial number 501481 and
is identified in the Department of Botany, Faculty of Science,
Cairo University, Egypt. The plant was ground, soaked in
ethanol (70%) at a ratio of 1:5 (w/v) and kept at room
temperature for 2 days in a closed container with continuous
shaking, then filtered through a sterile filter paper under
vacuum, finally, the ethanol was evaporated and then
freeze-dried to remove water residues?. The resulting
Chelidonium majus Ethanolic Extract (CMEE) yield was
calculated as g/100 g crude powder and stored at -20°C until
further use.

Total phenolics content: Total phenolic content was
determined in the CMEE using Jayaprakasha et a/*' methods.
Triplicate measurements were made and the total phenolic
content was estimated from the standard curve as catechin
equivalent.

Radical scavenging activity (RSA): Determination of radical
scavenging activity of CMEE by 2,2- diphenyl-1-picrylhydrazyl
(DPPH) assay was carried out following the method described
by Nogala-Kalucka et a/?2. The RSA was calculated as the
percentage of the scavenged DPPH for three measurements.

Reducing power determination: The ferric-reducing power
of CMEE was determined according to the method described
by Sethiya et a/?. The reducing power of the extract was
calculated as equivalent to ascorbic acid from the standard
curve of ascorbic acid.

GC/MS identification of the chemical composition of the
extract: The chemical composition of the ethanolic extract
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was identified using LC/MS/MS,4000 Qtrap Applied
Biosystems, Waters Corporation, Milford, MA, USA,
(Quadrupole/linear ion trap mass spectrometer) and the
liquid chromatography (Agilent Technologies, Palo Alto, CA,
USA) system coupled with electrospray ionization-mass
spectrometer (ESI-MS/MS) detector?#%,

Experimental design: Thirty-two male Albino rats weighing
150-170 g were purchased from the animal colony of the
Research Institute of Ophthalmology, Egypt. The animals
were maintained on the standard laboratory diet and water
ad libitum for a week before starting the experiment for
acclimatization. The experimental protocol was approved by
the Animal Care and Experimental Committee, National
Research Centre (FWA 00014747), Cairo, Egypt.

The animals were divided into 4 groups (8 rats each) and
treated daily for 28 days as follows:

Control group, animals were orally administrated with
DMSO-PBS buffer (1.0 mL per rat)

Animals were orally given CMEE (300 mg kg~') dissolved
in DMSO-PBS buffer?

Animals were orally given AFB1 (80 g kg™) dissolved in
DMSO-PBS buffer?”

Animals received both AFB1 (80 ug kg™") and CMEE (300
mg kg™') together

Tissue sampling: At the end of the experimental period, the
animals were sacrificed by sudden decapitation and the brain
of each animal was rapidly dissected out onto an inverted
ice-cold glass Petri dish. Each brain was anatomized to obtain
the regions of the cortex and hippocampus, finally, the brain
areas were frozen at -80°C until homogenization. A certain
weight of each brain area was then homogenized in Tris-HCl
buffer (pH 7.4) to give 10% w/v homogenate, using an
ultrasonic homogenizer. The homogenate was centrifuged at
5000 rpmat 0°C for 15 min and the supernatant was used for
the determination of oxidative stress markers, inflammatory
cytokines levels and acetylcholinesterase activity. The
remaining parts of the cortexand hippocampus were weighed
and homogenized in 0.1 M perchloric acid (containing 3, 4-
dihydroxybenzylamine) to give a concentration of 25 ng mL™!
then centrifuged for 10 min at 3600 rpm. The obtained
supernatant was then filtered through 0.25 mm nylon filters,
Millipore, USA and used for the determination of dopamine
and serotonin.

Biochemical determinations: MDA level which is the product
of lipid peroxidation was determined following the chemical
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method described by Ruiz-Larrea et a/® based on MDA
reaction with thiobarbituric acid which forms a pink complex
that can be measured photometrically. The activities of
Catalase (CAT), Superoxide Dismutase (SOD) and Glutathione
Peroxidase (GPx) enzymes were determined using reagentkits
obtained from Biodiagnostic Co., Giza, Egypt. Nitric Oxide
(NO) and Glutathione (GSH) levels were also assessed using
reagent kits obtained from Biodiagnostic Co., Giza, Egypt.

Enzyme-Linked Immunosorbent Assay (ELISA) technique
was used for the determination of Tumour Necrosis Factor-
alpha (TNF-a), Interleukin-1 beta (IL-1B), caspase-3 and CD4
levels using rats' reagent (ELISA)-kits purchased from
SinoGeneClon Biotech Co., Hangzhou, China.

Colorimetric determination of acetylcholine esterase
(AChE) activity was carried out in the concerned brain areas by
the method of Gomaa et a/?, while the dopamine and
serotonin levels were determined using HPLC (Waters,
Melford, USA) and using an electrochemical detector following
the method of Parrot et a/*.

Statistical analysis: Multiple comparisons between means
were carried out using one way ANOVA followed by post hock
test (Duncan) at p>0.05" using Statistical Analysis System
(SAS) program software, Copyright (c) 1998 by SAS Institute
Inc., Cary, NC, USA.

RESULTS

The resulting Chelidonium majus ethanolic extract
(CMEE) vyield was 13 g/100 g crude powder and the
determination of total phenolic content in the CMEE revealed
that CMEE contains16.46£1.70mg g~".

LC/MS  analysis  revealed the identification of
32 compounds in CMEE including organic acids, unsaturated
fatty acids, phenolic compounds, volatile constituents and
monosaccharides (Table 1).

The in vitro results showed the ability of the CMEE to
scavenge 69+3% of DPPH. free radicals. The antioxidant
properties are further confirmed in Fig. 1 which indicates the
reducing power of CMEE which increased by increasing the
concentration of the extract.

Table 2 depicts the effect of AFB1 and CMEE on the
oxidative stress markers in brain regions. Significant increases
in MDA and NO levels were detected in the cortex and
hippocampus of the AFB1-treated group, while the GSH level
and the activities of CAT, GPx and SOD enzymes showed
significant decreases as compared to the control one.
Administration of CMEE to the AFB1-intoxicated group
induced significant improvement in all the mentioned
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Table 1: LC/MS analysis of Chelidonium majus ethanolic extract

RT Names Formula Area Area sum (%)
4912 Acetic acid, hydroxy-, ethyl ester C,Hg0;5 1068660.4 0.65
6.761 2-Propanone, 1-hydroxy- CHqO, 2019676.8 1.22
7.039 Acetaldehyde, hydroxy- C,H,0, 4194996.1 2.53
8.755 1,2,3-Propanetriol C3Hg05 3005097 1.82
9.359 Butane, 1,2:3,4-diepoxy-, (+/-)- C,H:O, 2394905.2 1.45
10.785 Acetic acid C,H,0, 6904804.3 417
11.008 2-Furancarboxaldehyde CsH,0, 1519991.6 0.92
11.208 Acetoxyacetic acid CHO, 1216938.4 0.74
12.035 Formic acid CH,0, 5149305.6 3.11
13.824 Acetic acid ethenyl ester C,Hs0, 1103245.2 0.67
14.12 Cyclopent-2-en-1,4-Dione CH,0, 1590178.2 0.96
16.754 2-Furanmethanol CsHsO, 2008274 1.21
19.503 Aziridine, 2-(1,1-dimethylethyl)-3-methyl-, trans- CHsN 1158139 0.70
21.437 Propanoic acid, 3-(trimethylsilyl)-, ethyl ester CgH150,Si 1279523.7 0.77
24.754 Dodecanoic acid, 3-hydroxy- Cy,H,,04 961938.81 0.58
26.766 Dihydroxyacetone C3HO5 17226638 1041
27.817 2,3-Pentanedione, 4-methyl- CeH100, 1745695.1 1.05
28.639 Succindialdehyde C,Hs0, 979407.43 0.59
28.705 4,4'-Biscyclohexanone, 2,2',6,6'-tetramethyl- CiH60, 1014864.9 0.61
31.449 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- CeHgO4 45810774 2.77
31.823 1,3-Isobenzofurandione CgH,0, 924945.06 0.56
33.877 Glycerin C3Hg0,4 37839317 22.86
39.781 5-Hydroxymethylfurfural CeHeOs 21098441 12.75
40.953 Vanillin CgHg0;4 1014156.1 0.61
41.11 Cyclopentanone, 2-(1-methylpropyl)- CoH,60 1635576.3 0.99
41.907 3,6-Octadecadiynoic acid, methyl ester CioH300, 1759606.8 1.06
42222 2H-Pyran-2-methanol, tetrahydro- CeH,,0, 1574980.4 0.95
42.548 2-Deoxy-D-galactose CeH;,05 1882631.3 1.14
43418 Cyclohexane, 1,1'-[1-(2,2-dimethylbutyl)-1,3-Propanediyl] BIS CyiHyo 910330.27 0.55
4491 DL-Arabinose CsH,05 2268575.6 137
49.242 9-Octadecenoic acid (2)- Ci5H340, 23032628 13.91
49.889 Hexadecanoic acid Ci6H3,0, 10476487 6.33
Table 2: Oxidative stress markers of brain regions (cortex and hippocampus) of control, AFB1 and CMEE-treated rats
Area Parameters Control CMEE AFB1 AFB1+CMEE
Cortex MDA (umol g7 4630%+103 4740+118 64631£137* 5212+87*
NO (nmol g™) 0.812+0.018 0.856+0.022 1.21£0.031* 0.899+0.019*
CAT (umol/min/g) 5983+49 5818+46 4336+38* 5278%51*
GPx (umol/min/g) 18.97+0.95 19.48+0.93 14.04+0.81* 17.57+0.97*
SOD (Ug™) 2772%57.3 2875%55.5 1681+17.8* 2270%23.7¢
GSH (umol g™) 49991445 5098+46.6 4440+37.5*% 48241314
Hippocampus MDA (umol g=7) 3856t41 3679+38 6035+54* 4187+33*
NO (nmol g) 2.59+0.028 2.48%0.025 4.931+0.034% 3.12%+0.022*
CAT (umol/min/g) 6061155 6176160 4055139*% 5570+41*
GPx (umol/min/g) 25.44%0.65 26.381+0.58 18.38+0.37*% 23.04+0.41*
SOD(Ug™) 374167 3792%63 2146+34* 3387+57¢
GSH (umol g™) 14008163 14177169 0824+48* 12880£51*

Data are presented as Mean=SEM and subjected to one-way ANOVA followed by post hoc test (Duncan) at p<0.05, within the same row,*Significant vs. control group

and *Significant vs. AFB1 group

parameters and reversed their values towards the values of
the controls. Insignificant changes in oxidative stress markers
were observed between the control group and those that
received CMEE alone, indicating the safety of CMEE at the used
dose.

Theresults obtained revealed that TNF-a, IL-18, caspase-3
and CD4 were significantly increased in both the cortex and
hippocampus of AFB1 group, while as animals received the
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CMEE alone showed insignificant changesin these parameters
when both groups were compared with the control group.
The animals that were given CMEE in combination with AFB1
showed significant decreases in TNF-a, IL-1B, caspase-3 and
CD4 as compared to the AFB1-treated group (Table 3).

AFB1 intoxication inhibited ACh-ase activity (Fig. 2a) and
significantly decreased dopamine (Fig. 2b) and serotonin
(Fig. 2c) levels in the cortex and hippocampus, while
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Fig. 1: Reducing power ability of Chelidonium majus ethanolic extract
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CMEE-treated rats
Data are expressed as Mean=SEM, *Significant vs. control group and #Significant vs. AFB1 group
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Table 3: Levels of inflammatory cytokines and apoptotic markers in cortex and hippocampus of control, AFB1 and CMEE-treated animals

Area Parameters Control CMEE AFB1 AFB1+CMEE

Cortex TNF-a (ng g~ tissue) 13.20£0.41 12.88+0.44 17.81%£0.53* 14.6410.48"
IL-1B (ng g~ tissue) 128.33+37 126.95+£4.5 182.29£6.1* 152.13+4.8¢
Caspase-3 (pg g~ tissue) 14.13+1.07 12.67+0.85 23.05+2.44* 15.22+1.87¢
CD4 (U g~ tissue) 374+18 345%2.1 62.6+2.8* 43.9+2.4*

Hippocampus TNF-a (ng g~ tissue) 24.991+1.99 2391%23 38.43+3.7* 29.34+33%
IL-1B (ng g~ tissue) 147+4.2 141£3.8 296+6.6* 186+4.1*
Caspase-3 (pg g~ tissue) 71.1£38 67.814.6 96.8+6.2* 76.2%t4.3%
CD4 (U g~ tissue) 5861t23 56.7+2.2 105.7£3.1*% 72.8+29¢

Data are presented as Mean*SEM and subjected to one-way ANOVA followed by post hoc test (Duncan) at p<0.05, within the same row,*Significant vs. control group

and *Significant vs. AFB1 group

treatment with CMEE alone had no significant effect on the
values of the mentioned parameters as compared to the
control group. Treatment of AFB1- intoxicated rats with CMEE
was found to be effective in restoring ACh-ase activity and
levels of biogenic amines in these brain regions.

DISCUSSION

The results of the current study revealed that AFB1
intoxication resulted in a marked disturbance in the oxidative
status of the studied brain regions. AFB1, known to be the
most toxic of the aflatoxins®2. Oxidative stress which is the
main direct mechanism of aflatoxin or its metabolites
induces an excessive generation of free radicals and causes
the production of high levels of Lipid Peroxidation (LPO) that
may increase the susceptibility of the brain to neural damage.
Lipid peroxidation is described as the peroxidation of
unsaturated fatty acids of the cell membrane and organelles
by free radicals**. The brain contains a great amount of
polyunsaturated fatty acids and consumes about 20% of the
body’s oxygen, so it is particularly susceptible to oxidative
damage. Moreover, the brain has a high rate of oxidative
metabolism, although the activity of its antioxidant defence
mechanism is relatively low3>3,

The antioxidant enzymes (SOD, CAT and GPx) play an
important role in the conversion of free radicals into
harmless compounds®3, the significant deterioration in the
activity of these enzymes, post-AFB1 ingestion, suggests the
participation of free radical-induced oxidative cell injury in
mediating the toxicity of AFB1. Our results agree with those
obtained by Gugliandolo et a/*°, who observed that AFB1
administration significantly decreased antioxidant enzymes
activities and increased LPO in the brains of experimental
animals.

AFB1 is metabolized largely by the hepatic cytochrome
P450 enzyme system, to form the Reactive Oxygen Species
(ROS), AFB1-8,9-epoxides* !, These epoxides may attack the
critical molecules which include DNA, lipids and proteins with
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elevation in LPO levels and decreasing the endogenous
antioxidants which ultimately lead to the impairment of cell
function and cytolysis*?. AFB1 and its metabolites are
transported from the liver into the bloodstream, penetrate
through the Blood Brain Barrier (BBB) and reach the brain via
the metabolite transporter within oligodendrocytes,
astrocytes, microgliaand neurons cells** and trigger oxidative
stress* causing damages to the brain tissues*,

Other studies have suggested that AFB1-enhanced
peroxidation and neurodegenerative disorders may be related
to up-regulation of Inducible Nitric Oxide Synthase (iINOS)
mRNA and increased Nitric Oxide (NO) production, a factor of
endothelial relaxation, in rat astrocytes and microglial cells’. In
addition, AFB1 activates nitric oxide and consequently affects
brain microvascular endothelial cells which constitute the BBB
involving astrocytes®. The significant increase in cortex and
hippocampus NO content which is observed in the current
study further confirms the pro-oxidative effect of AFB1 in brain
tissues.

Itis well established that antioxidantsintake is an efficient
way to raise and fortify endogenous defence systems due to
their role in decreasing oxidative stress resulting in
cytoprotection. In the current study, treatment with CMEE
reduced lipid peroxidation and NO production and increased
the values of SOD, CAT, GPx and glutathione in the brain
cortex and hippocampus of AFB1-treated rats. These results
indicated the antioxidant potential of CMEE and
demonstrated its ability to protect the brain from AFB1 toxicity
by reducing oxidative stress in brain tissues. The present study
suggests that the antioxidant capacity of CMEE may relate to
its bioactive component.

In the present study, elevated levels of TNF-a and IL-1B,
pro-inflammatory cytokines, were found in the cortex
and hippocampus of the AFB1 group. AFB1 can cause
inflammatory reactions in human microglial cells which
are potentially baleful to the homeostasis of the central
nervous system and consequently increase susceptibility to
neurodegenerative diseases’. AFBT intake can trigger Toll-like
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Receptors (TLR2), recognition receptors, and with activation
of the NF-kB pathway result in a significant elevation in the
secretion of TNFa and IL-1B in microglial cells’. Previously,
Mehrzad et al'® have shown that AFB1 can activate rat
microglial cells to produce significant amounts of
proinflammatory cytokines at mRNA and protein levels. In
addition, Mehrzad et a/'° found that a low concentration of
AFB1inducedintracellular ATP depletion and increased mRNA
expression of many proinflammatory molecules such as
MyD88, TLRs, NF-xB and CXCr4, in the human microglial cell
line.

The oxidative stress that induced by mycotoxins toxicity
suppress astrocytes on which neurons are dependent for
protective signals resulting in accelerating apoptosis-related
pathways¥. Apoptosis is a normally occurring cell death
mechanism used to develop and maintain healthy
tissues*. Many diseases can be developed due to apoptotic
dysregulation, such as neurodegeneration, cancer and
immunological diseases*. These apoptotic events can disturb
the homeostasis, leading to the degeneration of the brain
barrier and then the occurrence of neural damage®. In our
study, we found a significant elevation in caspase-3 in both
brain regions. Caspase-3 is an apoptotic marker, activated
during cellular exposure to cytotoxic agents®'. In this
concern, Mehrzad et a/” observed in their in vitro study, that
AFB1 exposure triggered inflammatory reactions and induced
also a pro-apoptotic condition in murine pure primary
astrocytes.

Our results supposed that CMEE has anti-inflammatory
effects by inhibiting the release of TNF-a and IL-1B which may
be influenced by the bioactive components in the extract.
Several reports have demonstrated the anti-inflammatory
ability of the main bioactive components of Chelidonium
majus. It is found that stylopine which isolated from
Chelidonium majus suppressed gene expression of
Cyclooxygenase-2 (COX-2) and Inducible Nitric Oxide Synthase
(iNOS) and consequently inhibited the production of
prostaglandin E, and nitricoxide in Lipopolysaccharide (LPS)-
treated RAW264.7 macrophages'’. In another study conducted
on LPS -treated murine RAW264.7 macrophages, some
alkaloids isolated from Chelidonium majus, namely stylopine,
methyl 2'-(7,8-dihydrosanguinarine-8-yl) acetate,
norchelidonine, protopine, chelidonine, berberine and
8-hydroxydihydrosanguinarine, have been found to inhibit
inductions of COX-2 and iNOS mRNA in dose-dependent
manners>2,

CD4 is a monomeric glycoprotein expressed on
approximately 60% of peripheral blood T lymphocytes®>4, It
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is suggested that CD4 increases the capacity of T cells for
Major Histocompatibility Complex (MHC) class ll-bearing
cells®*36, The function of MHC class Il molecules is the
presentation of processed foreign antigens to CD4*T-
lymphocytes®. Several reports suggested that CD4
participates in signal transduction during T cell activation®®>°.
We observed in our study a significant increase in CD4 in the
cortex and hippocampus of rats given AFB1 alone, while
treatments of AFB1 rats with CMEE returned CD4 values to
those of the control rats. It is well confirmed that the Central
Nervous System (CNS) is largely invaded by peripheral
leukocytes in neuropathological states®. Brochard et a/%'
have shown that peripheral T cells invade the brain
parenchyma at the site of neuronal injury in Parkinson
Disease (PD) in humans and in experimental animals. Also,
Brochard et a/®" have demonstrated that this cell-mediated
immune response contributes to the degeneration of
Dopamine-containing Neurons (DNs) by a CD4* T cell through
Fas/FasL cytotoxic pathway. These reports could explain the
observed high CD4 levels in the cortex and hippocampus in
response to damage induced by AFB1 in the AFB1 intoxicated
group. On the other hand, the lowering effect of CMEE on
CD4 levels in AFB1 intoxicated group may be attributed to
the reduction in CD4* producing T cells as indicated by
Lee et a/%?, who found that CMEE could decrease the number
of CD4* T cells in the spleen and lymph node in collagen-
induced arthritis model mice and suggested that CMEE might
suppress the immune response by lowering CD4+ T cells and
enhancing CD8* T cells.

In the current study, AFB1 intoxication inhibited AChE
activity in both brain regions. This finding was confirmed in
previous studies conducted by Scafuri et a/®® and
Linardaki et a/%* which indicated that AFB1 can inhibit the
activity of AChE of rat whole brain, hippocampus and
cerebellum. The mechanisms behind the inhibitory effect on
AChE activity could be due to the blocking accession of the
substrate to the active site of the enzyme and/or the binding
to its peripheral site®.

The entrance of AFB1 and/or its metabolite into the brain
through BBB results in biochemical and pathological
changes® leading to brain dysfunction. In the current study,
asignificant decrease was noticed in dopamine and serotonin
content in the cortex and hippocampus due to AFBI
neurotoxicity. These neurotransmitters are known to play an
important role in brain function. Significant decreases in
dopamine and serotonin values were noticed also in previous
studies conducted in rats®” and chicken®. The lowering
effect of AFB1 on these neurotransmitters may be due to the
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disruption of mechanisms that facilitate the synthesis of
serotonin from tryptophan and dopamine from tyrosine®.
Other mechanisms have been suggested, including oxidative
stress® which causes membrane damage that affects neuron
integrity. Growing evidence suggests that neuroinflammatory
processes accelerate the progression of death of Dopamine-
containing Neurons (DN) 57! through CD4* Th FasL-mediated
activation of microglial cells that could participate in the
inflammatory reaction and DN degeneration’?.

The present study demonstrated that CMEE is effective in
reducing lipid peroxidation and inflammation and improving
the antioxidant enzymes and glutathione in the cortex and
hippocampus. Additionally, CMEE could restore brain function
that appeared from restoring AChE-ase, dopamine and
serotonin values that decreased by AFB1 intake. These results
indicated that CMEE exerted its neuroprotective activity
through its antioxidant ability that proved from the data of
reducing power ability and DPPH radical scavenging activity.
This might be attributed to the ability of CMEE to prevent
depletion of antioxidant enzymes and GSH and increase the
endogenous defensive capacity of the brain to resist the free
radicals and inflammation induced by AFB1 toxicity, this leads
to improvement of neuron integrity and prevents its
destruction and consequently improves brain function and
hence restoring the synthesis and function of the
neurotransmitter. The neuroprotective potential of CMEE may
be due to the numerous and diverse phytochemicals present
in the extract. In the present study, LC/ MS analysis revealed
theidentification of 32 compounds in CMEE including organic
compounds, unsaturated fatty acids, volatile constituents,
monosaccharides and nutrients. Furthermore, CMEE contains
13 phenolic compounds which are described as having an
antioxidative capacity /n vitro and in vivo 3. Researchers
have described the anti-inflammatory activity of unsaturated
fatty acids. Thefatty acid, n-hexadecanoicacid has beenfound
toinhibit phospholipase A (2). The inhibition of phospholipase
A (2) is considered as one of the ways that control
inflammation’. Bhattacharjee et a/” reported the protective
effect of the fatty acid cis-9 octadecenoic acid (Oleic acid)
against oxidative stress-mediated hepaticand cardiacinjuries.
5-hydroxymethylfurfural is known as an antioxidant and it
was found to accelerate wound healing through improvement
in inflammation, increased angiogenesis and collagen
production and promoted re-epithelialization’. Wei et a/”
reported the antioxidative activity of the volatile constituent,
2-furan methanol. CMEE also contains nutrients such as
vanillin  which has antidepressant, antioxidant and
anti-glycating properties. It has also protective effects on

241

cardiotoxicity induced by doxorubicin®. 4H-Pyran-4-One 2,3-
Dihydro-3,5-Dihydroxy-6-Methyl component was found to
ameliorate  reproductive  toxicity = and  decrease
malondialdehyde and nitric oxide levelsin cadmium chloride-
intoxicated rats”®. Another compound that may also play a role
in the CMEE activity is acetic acid, this organic acid is known
for its anti-inflammatory, hypoglycemic and hypotensive
effects®. The current study confirms that Chelidonium majus
ethanolic extract builds a defence battery against AFB1-
induced oxidative stressinrats’ brain tissue. To appreciate the
ameliorative potency of this extract in minimizing overall
AFB1-induced immune-inflammatory and neurochemical
deterioration, experimental antioxidant therapy in laboratory
animals is being explored. If the experimental models have
positive outcomes, it might be worth further study to use
them in integration with the existing clinical interventions
approved.

CONCLUSION

In conclusion, the current study indicated that AFB1
ingestion resulted in severe neurotoxic action. Treatment
with  CMEE in combination with AFB1 could produce
neuroprotective action via its antioxidant and free radical
scavenging activity which may be related to its higher
contents of bioactive constituents. Therefore, CMEE may be a
candidate for the prevention and treatment of neurotoxicity
resulting from the ingestion of aflatoxins contaminated diets.

SIGNIFICANCE STATEMENT

This study explores the possible ameliorating efficiency of
Chelidonium majus ethanolic extract against AFB1-resulted
neuron deterioration rats. This study will help toxicology
researchers to uncover that this herb may be beneficial in the
improvement of brain status as it is considered the most
important organ in the human body. Thus, a new theory on
this herb may be arrived at.
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