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Abstract
Background and Objective: In vitro  propagation of fig (Ficus carica  L.) is one of the possible approaches that may be used to maximize
the diversity of plant species. The current work was carried out to evaluate genetic stability of micropropagated fig plantlets and to
determine the effect of in vitro  propagation on genomic content of Saudi fig. Materials and Methods: The start codon-targeted (SCoT),
DNA-barcoding chloroplast gene RNA polymerase1 (rpoC1  sequencing) and total protein profiling assays (SDS-PAGE) techniques were
used to detect genetic stability in micropropagated fig plantlets. Results: The Scorable PCR bands were produced with 10 SCoT primers
used, where the total number of bands was 135 bands. Twenty polymorphic bands were generated with 18.4% of a polymorphism
percentage. According to the result, no visual unique bands were generated which confirmed the genetic homogeneity of
micropropagated plantlets samples compared to the control sample (mother plant). Sequence analysis and phylogenetic tree generated
using fig rpoC1  sequence showed high similarity between control and plantlets samples of fig plant. The protein profiling results revealed
no remarkable changes between micropropagated plantlets and the mother plant. Conclusion: The results indicate that using SCoT, DNA
barcoding and protein profiling have demonstrated their utility to detect genetic homogeneity in micropropagated fig plantlets, which
suggests using of micropropagation protocol of plants applied on the plantlets in the current study as a reliable protocol for in vitro
culture and conservation of fig plant.
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INTRODUCTION

The fig tree (Ficus carica  L.) is a deciduous perennial tree
belonging to the Moraceae family. Fig has been a traditional
part of the Mediterranean diet for millennia, because of its rich
nutritional content1. Fig fruits contain seventeen groups of
amino acids at least, the main of them are aspartic acid as well
as glutamine2. Dried figs often produce relatively high
amounts of fibres, more than all other common fruits, which
have been used in weight loss, control of blood cholesterol
and blood sugar3. In folk medicine, fig tree roots are almost
used as a cure for ringworms, sweet leucoderma and their
fruits have purgative, antipyretic, aphrodisiac characteristics4.
According to FAO , global figs production in 2018 was roughly
a million tons. Countries including Afghanistan, Albania and
Algeria were among the top fig fruit producers5.

Saudi Arabia (KSA) flora is one of the richest ecosystems
areas and is a significant genetic resource for exotic plants6.
The KSA is categorized by its vast territory, exhibiting climatic
variation attributed to differing in height, leading to wide
variability in flora. Figs are cultivated in KSA, where the
diversity of some local varieties has been documented
through nutritional studies7. Wild fig trees have been reported
in KSA’s Al-Baha region, where their crude extract
antimicrobial activity has been documented8. Such studies
show KSA's possible importance as an origin for figs and its
significance for diversity studies.

To encourage local production and maintenance of
national figs resources, a high-performance and efficient
procedure for the propagation of figs is needed. Using tissue
culture for in vitro  propagation of the varieties of Saudi figs is
a  possible  method  to  produce  plant  clones  from  single
cells using controlled dietary and for plant resources
conservation9,10. It is one of the possible approaches that may
be used to maximize the diversity of plant species.

Furthermore,  tissue  culture  can  be  used  to  induce
soma-clonal variations ranging from easy to assess differences,
especially morphological traits, to significant variances in
bunching, fruit size and chemical content11. Such variation
requires an effective and rapid method of detection that can
be used at the industrial propagation level.

Molecular marker assays are reliable, cheap and could be
used effectively to detect the soma-clonal variation in plants12.
Start Codon-Targeted (SCoT), DNA barcoding, RAPD, AFLP and
ISSR are the most commonly utilized molecular marker assays
in the assessment of soma-clonal variation10,13-15. The SCoT was
constructed based on a short standard area flanking ATG start
codon in the plant genome. The SCoT markers should be more
efficient than other random marker assays in particular due to

high annealing temperatures and longer primers length16. It
does not involve comprehensive genomic information so that
it can be applied to plants without a genomic reference17. The
implementations of SCoT molecular assays were reported in
different plant species including coconut18, jojoba19, olive20

and tomato21.
One of the most successful molecular marker assays is

DNA-barcoding, in which a standardized DNA region is
sequenced as a tool of identification of species and it can help
in plant documentation22-24. Numerous plastid, mitochondrial
and nuclear genome regions including ropC1, matK, rpoB,
rbcL and trnH-psbA, which were used extensively to assess
diversity and identification of different plant species, ropC1
gene has been utilized to screen genetic variability of different
species i.e., Calluna 25, Apocynaceae 26 and Gongora 27. It has
also been successfully applied in some plant species to study
soma-clonal variations28. The study of protein profiles of
micropropagated plants could be used to identify any
genomic changes. Protein assays using SDS-PAGE was used to
assess stability and soma-clonal variation of grass pea plants
which regenerated in vitro 29, Orthosiphon stamineus 30 and oil
palm31.

The  current  work  was  carried  out  to  evaluate  the
genetic stability of micropropagated fig plantlets. The SCoT,
DNA-barcoding, total protein profiling assays were used to
evaluate its ability in identifying possible soma-clonal variation
in the micropropagated plantlets. The DNA-barcoding was
used to determine the biodiversity of Saudi fig variety relative
to known species of plants.

MATERIALS AND METHODS

Study area: This research study was conducted from June,
2019 to October, 2021.

Plant material: Ten samples of micropropagated plantlets
were obtained from in vitro  propagated fig plant according to
El-Dessoky et al.10, control sample was collected from mother
plant grown in greenhouse of Taif University main campus.

Isolation of DNA: Total genomic DNA was isolated by DNA
easy Plant Mini Kit, about 2 g of 11 fig tissue samples, obtained
from 10 micropropagated plantlets and one control, were
used for DNA extraction. The quality and quantity of DNA were
evaluated by comparing DNA samples (2 µL) to DNA marker
on 1% agarose gel. The amount and consistency of the DNA
samples were determined relative to the fluorescence
strength of the DNA marker bands.
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Molecular marker assay: Ten SCoT primers and the rpoC1
gene  region  were  used  in  the  present  investigation  in
Table 1 and 2. The rpoC1  PCR program (40 cycles) and gene
sequencing protocol was applied as reported by Phong et al.32.
The   SCoT   assay   reaction   content   and   the   PCR   program
(40  cycles)  were  conducted  according  to  Awad  et al.33.
Final products of PCR were stored at 4EC. Agarose gel (8%)
stained  with  ethidium  bromide  was  utilized  to  separate 
the PCR fragments    compared    to  1kb  DNA  Ladder  (4 µL)
(NEB NEBNext® Ultra™). The documentation of gel images was
conducted using the Gel Doc XR system (Bio-Rad, Hercules,
CA, USA).

The NCBI BLASTn program has been used to identify
related species according to fig’s rpoC1 gene34. ClustalW
software was used to study ornithological genes using
phylogenetic analysis35. Interactive Tree of Life (ITOL) online
tool was used to construct phylogenetic trees that reflect gene
relationships36. Moreover, the PCR fragments were counted as
absent (0) or present (1) and utilized for the coefficients of
similarity matrix between different samples and illustrated
using phylogenetic dendrograms.

Protein profiling: In this study to obtain protein profiles, with
different molecular weights of each sample, SDS-PAGE was
used. Extraction of protein was performed by grinding 2 g of
micropropagated plantlets and control samples into a powder.
The total protein was isolated as reported by Sahara et al.31,
SDS-PAGE electrophoresis using 12% acrylamide gel was
applied to resolve protein samples. Electrophoresis at 100 V
was used for 1.5-2.5 hrs. Coomassie blue was used to stain the
gel and it was washed using distilled water d.H2O and stored
at room temperature for 24 hrs.

Table 1: The rpoC1 gene primer sequence
Primer code Sequence Product size
rpoC1-F 5'-GGCAAAGAGGGAAGATTTCG-3' 500 bp
rpoC1-R 5'-CCATAAGCATATCTTGAGTTGG-3' 500 bp

Table 2: Sequence information of SCoT primers used in this study
Name Sequence 5'-3'
SCoT-2 CAACAATGGCTACCACCC
SCoT-3 CAACAATGGCTACCACCG
SCoT-4 CAACAATGGCTACCACCT
SCoT-11 AAGCAATGGCTACCACCA
SCoT-12 ACGACATGGCGACCAACG
SCoT-13 ACGACATGGCGACCATCG
SCoT-14 ACGACATGGCGACCACGC
SCoT-16 ACCATGGCTACCACCGAC
SCoT-20 ACCATGGCTACCACCGCG
SCoT-22 AACCATGGCTACCACCAC

RESULTS

SCoT marker assay: In this study, Scorable PCR bands were
produced  with  10  SCoT  primers  used,  SCoT-02,  ScoT-03,
SCoT-04,  SCoT-11,  SCoT-12,  SCoT-13,  SCoT-14,  SCoT-16,
SCoT-20 and SCoT-22 as shown in Fig. 1 and Table 3. The
number of total bands was 135 with a mean of 13.5
bands/primer in Fig. 1a-j and Table 3. Where SCoT bands
ranged from 6 (SCoT-11) to 19 (SCoT-03). Twenty polymorphic
bands  were  generated  using  SCoT-PCR  assay,  of  which
primer SCoT-16 produced the highest number of 4
polymorphic bands, with 24% of polymorphism percentage.
The results indicated that the lowest Polymorphic bands (0)
were detected using primers SCoT-11 and SCoT-22, with 0%
of polymorphism percentage. The phylogenetic relationship
constructed using binary SCoT data revealed genetic variation
among the investigated plant samples in Fig. 2. The
phylogenetic tree was separated into three clusters,
separating sample 5 into one branch. Control, 1 and 2 samples
were Hollings worthed together, while 10, 7, 8 and 9 samples
were Hollings worthed in a different cluster.

DNA-barcoding  analysis  using  rpoC1  gene:  Analysis  of
DNA-barcode using  rpoC1  gene sequencing was employed
to evaluate the soma-clonal variability between
micropropagated plantlets and control (mother plant) of fig
plants. The NCBI-BLAST results indicate high sequence
similarity with a mean of 99.5% of both sequences to Ficus
carica  (common fig) plant species in Fig. 3a-d and 4a-d. The
phylogenetic tree was generated using the fig rpoC1 
sequence and the most related sequences acquired from
other species in Fig. 5. The sequence alignment of the two
sequences of control and micropropagated  plants shows low
single nucleotide mutation in Fig. 6.

Protein profiling: The protein profiling of control and 10
plantlets samples of fig plant revealed several protein bands
in Fig. 7. None of these bands was successful to differentiate
between control and micropropagated plants.

Table 3: Polymorphism percentage of the SCoT primers used in this study
PN TB MB PB PP
SCoT-02 15 14 1 0.07
SCoT-04 11 8 3 0.27
SCoT-03 19 16 3 0.16
SCoT-11 6 6 0 0
SCoT-12 14 12 2 0.14
SCoT-13 17 15 2 0.12
SCoT-14 13 10 3 0.23
SCoT-16 17 13 4 0.24
SCoT-20 11 9 2 0.18
SCoT-22 12 12 0 0
Total 135 115 20
PN:  Primer  name,  TB:  Total  number  of  PCR  bands,  MB:  Monomorphic  bands,
PB: Polymorphic bands and PP: Polymorphism percentage
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Fig. 1(a-j): PCR profiles of SCoT primers used to study genetic homogenety between control and ten plantlets samples of plant
(a) SCoT-02, (b) SCoT-03, (c) SCoT-04, (d) SCoT-11, (e) SCoT-12, (f) SCoT-13, (g) SCoT-14, (h) SCoT-16, (i) ScoT-20 and (j)
SCoT-22
 M: DNA marker (1 kb DNA ladder), C: Control (mother plant and (1-10): Micropropagated plantlets samples

Fig. 2: Phylogenetic tree constructed using SCoT molecular assay data control (mother plant) and 10 micropropagated plantlets
samples of plant
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Fig. 3(a-d): NCBI-BLAST result of the rpoC1 gene sequence recovered from the control (mother plant), (a) Sequence information,
(b) Similar species and blast result, (c) Shared sequences region and (d) Sample sequence alignment between fig and
similar species
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Fig. 4(a-d): NCBI-BLAST    result    of    the    rpoC1    gene    sequence    recovered    from    explant    (micropropagated    plantlets),
(a) Sequence information, (b) Similar species and blast result, (c) Shared sequences region and (d) Sample sequence
alignment

420

 
(a) 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (d) 



Pak. J. Biol. Sci., 25 (5): 415-425, 2022

Fig. 5: Phylogenetic tree constructed using sequences of rpoC1  gene of control (mother plant) and micropropagated plantlets
and the most similar sequences generated from other species
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Fig. 6: Sequence alignment constructed using rpoC1 sequences of control (mother plant) and micropropagated plantlets
sequences

Fig. 7: The proteins profile of Fig plant samples
M: protein marker, C: control (mother plant) and ten samples (1-10) of micropropagated plantlets

DISCUSSION

Soma-clonal variation between the sub clones is common
during  plant  micropropagation.  Plantlets,  that  propagated
in vitro, were reported to have soma-clonal variations that are
sometimes inheritable37,38. The SCoT, rpoC1-sequencing and
protein profiling assays were used to evaluate the genetic
impacts of soma-clonal variability generated during in vitro
propagation of fig plant. These molecular assays were used to
detect genetic stability of in vitro  propagated some fig
species located across Saudi Arabia.

In the present study, the SCoT-PCR assay generated
twenty polymorphic bands with 27% of polymorphism
percentage (Table 3). The SCoT assay could not generate any
unique bands that distinguish between plantlets and control
of fig plant samples. The analysis of genetic instability using
SCoT was reported in previous work i.e., Rathore et al.12

demonstrated that analysis of micropropagated Cleome
gynandra  produced  a  total  of  65  bands  with  a  mean  of
4.3 ranging from 2-7 per primer. In contrast, there were no
polymorphic bands distinguish between the regenerated and
control, suggesting the genetic integrity of in vitro  grown
plantlets. Similarly, employing SCoT assay in evaluating the
genetic homogeneity of micropropagated Alhagi maurorum
generated  monomorphic  PCR  products  through  all
investigated micropropagated plants39. While the analysis of
genetic homogeneity of in vitro  propagated Ansellia africana,
a total of 70 PCR bands were revealed through using 16 SCoT
primers, five of which were polymorphic with 7.14% of a
polymorphism percentage40.

In the current investigation, the phylogenetic relationship
constructed using binary SCoT data revealed genetic variation
among the investigated plant samples (Fig. 2). According to
SCoT   assay   low   variation   was   observed   among   studied
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samples, which indicates the low impact of micropropagation
on fig's genetic content. During the evaluation of genetic
fidelity no polymorphism was recorded between the mother
plant and in vitro propagated Cleome gynandra plants,
indicating the genetic stability of the in vitro  raised plantlets12.
Monomorphic band patterns were resulted by ISSR and SCoT
assays, during the assessment of genetic stability between
micropropagated  plants  and  mother  plant  of  Helicteres
isora L.41, Agarwal et al.42 demonstrated that SCoT assay
showed high polymorphism (100%) during detection of
genetic variation 29 different Rosa  germplasm.

In the current study, evaluation of soma-clonal variability
between micropropagated and control fig plants by the
analysis of DNA-barcode using rpoC1 gene sequencing
showed that high sequence similarity of both sequences to
Ficus  carica  (common  fig)  plant  species  was  indicated  by
NCBI-BLAST results indicate (Fig. 3 and 4). The phylogenetic
tree was not successful in differentiating between control and
plantlets samples of fig plant (Fig. 5). Such results could
indicate the low impact of the micropropagation protocol on
the genetic background of fig plants or the poor efficacy of
DNA barcoding using rpoC1  in the differentiation between
control and micro-propagated explants. Cristina-Mirela et al.25,
according to their results on the identification of Calluna
vulgaris  (L.) Hull species by few barcode markers, they found
that barcode markers matK and rpoC1  are suitable markers in
the identification of Calluna vulgaris  species. Guardado et al.27

reported that similar phylogenetic trees were provided by the
sequences of rpoB  and rpoC1  which confirms the present
classification of Gongora  as individual species.

According to protein profiling of control and 10 plantlets
samples of fig plant by SDS-PAGE (Fig. 7). None of these bands
was successful to differentiate between control and
micropropagated plantlet. This result could indicate the low
impact of soma-clonal variation on functional genes of
micropropagated fig plantlets samples. In oil palm callus
culture, early detection of soma-clonal variation was  carried 
out  by  using  SDS-PAGE  protein  analysis31.  The SDS-PAGE
exhibits multiple molecular protein weights between the
rooted callus and the friable nodular aggregate. A specific
protein was detected in the nodular friable callus, which
distinguishes embryonic and non-embryogenic calluses31.

CONCLUSION

The main advantage of the in vitro  propagation process
is producing true to type plants. The use of efficient and more
sophisticated   molecular   assays   is   needed   to  identify
soma-clonal variation between in vitro raised plants.
According to the results of current research using SCoT, DNA

barcoding and protein profiling have demonstrated their
utility to detect genetic homogeneity in micropropagated fig
plantlets, which suggests using of micropropagation protocol
of fig plants applied on the plantlets in the current study as a
reliable protocol for in vitro culture and conservation of fig
plant.

SIGNIFICANCE STATEMENT

The  results  indicate  that  using  SCoT,  DNA  barcoding
and  protein  profiling have demonstrated their utility to
detect genetic homogeneity in micropropagated fig plantlets,
that suggestes using micropropagation of fig plants as a
reliable method for in vitro  culture and conservatron of fig
plant.
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