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Abstract

Thyroid hormones (TH) play a critical role in metabolism, energy balance and thermogenesis. The mechanisms whereby thyroid hormone
increases heat production have been analyzed with emphasis in more recent developments. Thyroid hormone increases obligatory
thermogenesis as a result of the stimulation of numerous metabolic pathways involved in the development, remodeling and delivery of
energy to the tissues. In this section, alterations in primary hyperthyroidism and hypothyroidism will be contrasted with the physiological
characteristics of TH-dependent regulation in response to fasting and exposure to cold. The current review will discuss the situation with
regard to regional thyroid hormones in the Central Nervous System (CNS) and more specifically, in peripheral cells. When caused by
exposure to cold or fasting, local anomalies in the CNS are distinct from peripheral compartments, in contrast to hyperthyroidism and
hypothyroidism, which differ when similar changes are observed. Lower hypothalamic TH concentrations are associated with cold
exposure, although higher peripheral TH levels. The TH tendency is reversed by fasting. Primary hypothyroidism and hyperthyroidism
impairthem. The current study aims to trace the various mechanisms used by the thyroid gland to regulate the body’s energy production
process.
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INTRODUCTION

Warm-blooded creatures orendotherms, keep their body
temperatures constant regardless of their surroundings.
Ectotherms or cold-blooded creatures, on the other hand,
control their body temperature in response to environmental
factors like sunlight or a warm rock surface'. A more active
metabolism and a worse thermodynamic efficiency are the
fundamental causes of endothermy?. Given that both sets of
processesresultinincreased body temperature and peripheral
heat production at the same time*>. It is possible that THs
were a key factor in the evolution of endothermy. As a result,
THs are essential for obligatory thermogenesis, or the creation
of heat that results as a consequence of metabolic rate®.

Endothermic animals have evolved facultative or adaptive
thermogenesis, which is the creation of heat on demand, to
adjust to quickly changing environmental temperatures’®.
Shivering is the oldest and most basic reaction to cold,
although endothermic species have created non-shivering
facultative thermogenesis processes that are more effective
and long-lasting. The two primary classes of modern
endothermic creatures, birds and mammals, have different
facultative thermogenesis sites and mechanisms. Skeletal
muscle is the primary site of facultative thermogenesis in
birds®, whereas the BAT is the primary site in mammals'®'",

The sympathetic nervous system (SNS)-mediated
activation of BAT is a central mechanism by which THs are
important regulators of thermogenesis'>'3. However, it is not
yetunderstood whetherand how environmental temperature
affects such consequences. This has therapeutic implications
for the recognition and treatment of THs-related disorders
such as hypothyroidism and hyperthyroidism, which are
characterized by a preference for cold or a preference for heat,
respectively™. It is also interesting in terms of evolutionary
adaptation to cold and warm habitats®. The purpose of this
study is to ascertain how ambient temperature affects how TH
affects energy balance and thermogenesis mechanisms.

ELEMENTS OF THERMOREGULATION

In homeothermic species, thermal regulation consists
of a multitude of mechanisms that meticulously regulate
core body temperature to ensure proper metabolic
process regulation. Energy-intensive metabolic processes’
endogenous, activity-dependent heat production must be
matched with heat loss from the body’s surface in colder
climates. Furinsulation is a crucial strategy for reducing body
heat loss', although intradermal fat's ability to act as
insulation has been questioned, atleastin mice'®. Vasodilation

454

and constriction are crucial mechanisms for controlling body
temperature by preventing or conserving heat from being lost
by peripheral body parts'.

Brown adipose tissue (BAT) activation is a characteristic
of shivering thermogenesis, According to Celi et al',
whereas involuntary muscular activity is a characteristic of
non-shivering (or adaptive) thermogenesis'®. Through the use
of cold-sensitive thermoreceptors, cutaneous cold sensing
primarily stimulates the sympathetic nervous system (SNS)%.
Then, as described by Cohen and Spiegelman?!, the SNS
activates pathways regulated by the 3-adrenergic receptor
(ARB3) that speed up lipolysis and the release of free fatty
acids (FFA) by raising the noradrenaline release from
postganglionic sympathetic fibers.

REGULATION OF THERMOGENESIS BY
THYROID HORMONES

Although their function in regulating body temperature
has not yet been fully elucidated. The THs’ significance in
directly promoting energy expenditure has been extensively
explored and recorded. Brown adipose tissue (BAT) activation
is a characteristic of shivering thermogenesis, according
to Cheng et a/', whereas involuntary muscular activity is a
characteristic of non-shivering (or adaptive) thermogenesis'.
Through the use of cold-sensitive thermoreceptors, cutaneous
cold sensing primarily stimulates the sympathetic nervous
system (SNS)2°. Then, as described by Cohen and Spiegelman?’
and Fliers et a/?,the SNS activates pathways regulated by the
3-adrenergic receptor (ARB3) that speed up lipolysis and the
release of free fatty acids (FFA) by raising the noradrenaline
release from postganglionic sympathetic fibers.

INTERNAL BODY TEMPERATURE AND
THYROID HORMONES

The THs may directly affect important metabolically
active tissues and hence modify required thermogenesis,
as shown in several experimental models of hypothyroidism
and hyperthyroidism in both animal models and humans.
Although this aspect of thermogenesis can also be
controlled by the central nervous system, their main job
is to integrate different environmental cues and adjust
facultative thermogenesis as needed?. Through a
sophisticated, multilocular central neural network of
temperature-sensitive centers, this control circuit reacts to
changesin core body temperature directly as well as indirectly
through changes in outer temperature signals detected, for
example, by skin temperature sensors.
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By activating GABAergic neurons that extend to the
dorsomedial DMH and the VMH, direct heating or cooling of
the POA affects efferent SNS signaling, which in turn changes
thermogenesis?*. By altering sympathetic tone to the BAT,
liver and muscle, activation and inhibition of these neurons
significantly lowered or increased core body temperature by
about 2°C? receptor.

Although UCP1 and TRB expression in BAT are closely
connected, TRA is required for thermogenesis to produce an
adrenergic response?, Visceral body fat increases when TRA1
function is impaired, at least in the form of a TRA P398H
mutation. Reduced adaptive thermogenesis, insulin resistance
and hyperleptinemia are associated with the study of
Johann etal?,as are decreased lipolysis, insulin sensitivity and
hyperleptinemiaZ,

HEPATIC EFFECTS MEDIATED BY THYROID HORMONES

Through independent and dependent pathways of the
Low-Density Lipoprotein Receptor (LDLR), TH affects the
distribution of lipids in the liver. Numerous known TH
transporters are expressed in the liver, according to studies
doneonrats. Large Amino Acid Transporter-1(LAT1) and DIO1
were also highly upregulated by hyperthyroidism, as were
monocarboxylate transporter 10 (MCT10) and LAT1%. It's
interesting to note that DIO1 has recently been demonstrated
to be dramatically downregulated following insulin receptor
inactivation in animals, along with a drop in the expression of
the gene for Apolipoprotein A1 (Apoal), which similarly
lowers levels of High-Density Lipoprotein cholesterol (HDL)*.
The pathophysiological alterations seen in metabolic
syndrome are thus reflected by this DIO1 regulation and its
effect on HDL cholesterol.

EFFECTS OF THYROID HORMONE ON ADIPOSE TISSUE

The primary role of WAT is to store energy, which can be
released when needed most, such as during cold stress,
starvation, or disease. The importance of WAT as a helpful
element in the regulation of energy homeostasis has been
established since the discovery of leptin3'. The SNS activity
controls the process of mobilizing the substrate, which is
primarily controlled at the cellular level by AT’s ARB3-induced
lipolysis®2. It's interesting to note that in humans, WAT from
various anatomical regions exhibits varying lipolysis
susceptibility, with visceral WAT being more susceptible than
subcutaneous WAT?, Rats can also exhibit distinct variations
in the degree of lipolysis®*.
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EFFECTS OF THYROID HORMONE ON
GLUCOSE METABOLISM

Recently, studies Lopez et a/** have examined the effects
of TH on glucose metabolism. Much more disputed is the
evidence on the direct effects of TH on beta-cell mass, insulin
secretion and secretion. In the rat beta-cell line RIN5F,
TRA-dependent signaling appears to promote beta-cell
proliferation and insulin release is increased both in vitro and
in vive®S. In vivo, studies following high-dose T3 treatment,
however, show increased beta cell apoptosis, which was
consistent with studies on these effects, whereas a raised
beta-cell mass and hyperinsulinemia were discovered in
research on the effects of experimental hypothyroidism during
the final weeks of ovine gestation®. The data on the direct
effects of TH on beta-cell mass, insulin secretion and secretion
is far more hotly contested. The rat beta-cell line RIN5SF
exhibits enhanced insulin release both /n vitro and in vivo,
suggesting that TRA-dependent signaling encourages
beta-cell proliferation®®. /n vivo, studies following high-dose
T3 treatment, on the other hand, show increased beta cell
apoptosis, which was consistent with studies on these
effects®®. Hyperinsulinemia and stimulated beta-cell mass
were found in studies on the impact of experimental
hypothyroidism in the last weeks of ovine gestation.

PERIPHERAL BLOOD FLOW AND THYROID
HORMONE EFFECTS

The focus of this review does not extend to the
significance of TH in maintaining circulatory balance and the
heart. They have recently been thoroughly studied for their
important role in TRA on heart rate, positive inotropy and
cardiac hypertrophy*. Recent research has looked at how TH
affects vasoconstriction and vasodilation in rodents.

Animals with decreased TRA function exhibit
reduced phenylephrine-induced vasoconstriction and
acetylcholine-induced vasodilation. As a result, the animal’s
tailnolongerfunctions as a means of thermoregulation, which
has detrimental effects on both cardiovascular health and
thermogenesis*'.

CONCLUSION

The primary hyperthyroidism suppresses the release
and synthesis of TRH due to increased central thyroid
hormone levels. In contrast, it appears that there is a direct
peripheral lipolytic drive to provide triglycerides via the
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AMPK malonyl-CPT1 pathway, despite the consequent
large reduction in TSH secretion. On the other hand, local
elevations in TH levels in the VMH inhibit these
AMPK-malonly-CPT1-driven actions by triggering sympathetic
efferences to the liver and BAT. They cause BAT to start
producing heat, which is helped by the T3-dependent
transformation of WAT into beige fat. Additionally, it
encourages hepatic glucose production. The good impact on
metabolism also has positive effects on the cardiovascular
system. Direct central activation of AHA parvalbuminergic
neurons raises blood pressure. All of these systems will help
the body'’s core temperature rise more quickly. Heat-sensitive
neurons in the POA will be stimulated by negative feedback
and deactivated via GABAergic projections to the DMH and
VMH sympathetic outflow. A range of levels of insulin
resistance may develop as a result of TH's direct stimulation of
insulin manufacture and secretion, depending on the degree
of effect on beta cells, glucose generation and local control.
Additional variables that control the fine-tuning of peripheral
regulation include deiodinases and leptin, which modulate
GLUT expression.

SIGNIFICANCE STATEMENT

Thyroid hormone is long known for its profound
effect on body temperature regulation. Patients suffering
from hyperthyroidism display elevated body temperature
and are sensitive to heat, while hypothyroid patients are
cold-sensitive. Inthe currentresearch, the thermogenic effects
of thyroid hormones were discussed. Conclusively, it was clear
that primary hyperthyroidism suppresses the release and
synthesis of TRH due to increased central thyroid hormone
levels. Although a direct peripheral lipolytic drive was
activated, a large reduction in TSH secretion was initiated.
A local elevations in TH levels in the VMH inhibit these
AMPK-malonly-CPT1-driven actions by triggering sympathetic
efferences to the liver and BAT, it encourages hepatic glucose
production.
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